1
|
Jia K, Li C, Xu M, Dai G, Zhou J, Chen B, Zou J, Li J, Zhang Q, Ju W. Exploring the mechanism of Si-Ni-San against depression by UPLC-Q-TOF-MS/MS integrated with network pharmacology: experimental research. Ann Med Surg (Lond) 2024; 86:172-189. [PMID: 38222693 PMCID: PMC10783272 DOI: 10.1097/ms9.0000000000001464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/21/2023] [Indexed: 01/16/2024] Open
Abstract
Background Depression is becoming an urgent mental health problem. Si-Ni-San has been widely used to treat depression, yet its underlying pharmacological mechanism is poorly understood. Thus, we aim to explore the antidepressant mechanism of Si-Ni-San by chemical analysis and in-silico methods. Methods Compounds in Si-Ni-San were determined by ultra-high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). Then, bioactive compounds were obtained from Traditional Chinese Medicines for Systems Pharmacology Database and Analysis Platform and SwissADME, and the potential targets of which were acquired from SwissTargetPrediction. Depression-related targets were collected from GeneCards. The intersection between compound-related targets and depression-related targets were screened out, and the overlapped targets were further performed protein-protein interaction, biological functional and pathway enrichment analysis. Finally, networks of Si-Ni-San against depression were constructed and visualized by Cytoscape. Results One hundred nineteen compounds in Si-Ni-San were determined, of which 24 bioactive compounds were obtained. Then, 137 overlapped targets of Si-Ni-San against depression were collected. AKT1, PIK3R1, PIK3CA, mTOR, MAPK1 and MAPK8 were the key targets. Furthermore, PI3K-Akt signalling pathway, serotonergic synapse, MAPK signalling pathway and neurotrophin signalling pathway were involved in the antidepressant mechanism of Si-Ni-San. It showed that components like sinensetin, hesperetin, liquiritigenin, naringenin, quercetin, albiflorin and paeoniflorin were the mainly key active compounds for the antidepressant effect of Si-Ni-San. Conclusions This study demonstrated the key components, key targets and potential pharmacological mechanisms of Si-Ni-San against depression. These results indicate that Si-Ni-San is a promising therapeutic approach for treatment of depression, and may provide evidence for the research and development of drugs for treating depression.
Collapse
Affiliation(s)
- Keke Jia
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine
- Department of Clinical Pharmacology
| | | | | | | | - Jinyong Zhou
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Biqing Chen
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | | | - Jia Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine
| | - Qingyu Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine
| | | |
Collapse
|
2
|
Transcriptomic Studies of Antidepressant Action in Rodent Models of Depression: A First Meta-Analysis. Int J Mol Sci 2022; 23:ijms232113543. [DOI: 10.3390/ijms232113543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Antidepressants (ADs) are, for now, the best everyday treatment we have for moderate to severe major depressive episodes (MDEs). ADs are among the most prescribed drugs in the Western Hemisphere; however, the trial-and-error prescription strategy and side-effects leave a lot to be desired. More than 60% of patients suffering from major depression fail to respond to the first AD they are prescribed. For those who respond, full response is only observed after several weeks of treatment. In addition, there are no biomarkers that could help with therapeutic decisions; meanwhile, this is already true in cancer and other fields of medicine. For years, many investigators have been working to decipher the underlying mechanisms of AD response. Here, we provide the first systematic review of animal models. We thoroughly searched all the studies involving rodents, profiling transcriptomic alterations consecutive to AD treatment in naïve animals or in animals subjected to stress-induced models of depression. We have been confronted by an important heterogeneity regarding the drugs and the experimental settings. Thus, we perform a meta-analysis of the AD signature of fluoxetine (FLX) in the hippocampus, the most studied target. Among genes and pathways consistently modulated across species, we identify both old players of AD action and novel transcriptional biomarker candidates that warrant further investigation. We discuss the most prominent transcripts (immediate early genes and activity-dependent synaptic plasticity pathways). We also stress the need for systematic studies of AD action in animal models that span across sex, peripheral and central tissues, and pharmacological classes.
Collapse
|
3
|
Lin H, Lin WH, Lin F, Liu CY, Che CH, Huang HP. Potential Pleiotropic Genes and Shared Biological Pathways in Epilepsy and Depression Based on GWAS Summary Statistics. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6799285. [PMID: 35463244 PMCID: PMC9019309 DOI: 10.1155/2022/6799285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
Current epidemiological and experimental studies have indicated the overlapping genetic foundation of epilepsy and depression. However, the detailed pleiotropic genetic etiology and neurobiological pathways have not been well understood, and there are many variants with underestimated effect on the comorbidity of the two diseases. Utilizing genome-wide association study (GWAS) summary statistics of epilepsy (15,212 cases and 29,677 controls) and depression (170,756 cases and 329,443 controls) from large consortia, we assessed the integrated gene-based association with both diseases by Multimarker Analysis of Genomic Annotation (MAGMA) and Fisher's meta-analysis. On the one hand, shared genes with significantly altered transcripts in Gene Expression Omnibus (GEO) data sets were considered as possible pleiotropic genes. On the other hand, the pathway enrichment analysis was conducted based on the gene lists with nominal significance in the gene-based association test of each disease. We identified a total of two pleiotropic genes (CD3G and SLCO3A1) with gene expression analysis validated and interpreted twenty-five common biological process supported with literature mining. This study indicates the potentially shared genes associated with both epilepsy and depression based on gene expression, meta-data analysis, and pathway enrichment strategy along with traditional GWAS and provides insights into the possible intersecting pathways that were not previously reported.
Collapse
Affiliation(s)
- Han Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Wan-Hui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Intensive Care Unit, Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou 350001, China
| | - Feng Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chun-Hui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Hua-Pin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Intensive Care Unit, Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou 350001, China
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou 350001, China
| |
Collapse
|
4
|
Bis-Humbert C, García-Cabrerizo R, García-Fuster MJ. Dose-dependent opposite effects of nortriptyline on affective-like behavior in adolescent rats: Comparison with adult rats. Eur J Pharmacol 2021; 910:174465. [PMID: 34464602 DOI: 10.1016/j.ejphar.2021.174465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/19/2022]
Abstract
Antidepressant drugs elicit different behavioral and neurochemical responses with age. In fact, the use of antidepressants during adolescence is associated with an increased risk of suicidal thinking, being the best pharmacological treatment during this critical period a matter of constant debate in terms of its risk-benefit outcome. In this regard, the present study compared the effects of nortriptyline (3-10 mg/kg, 7 days) on regulating different aspects of affective-like behavior by screening adolescent and adult Sprague-Dawley rats through several consecutive tests (forced-swim, open field, sucrose preference). Brains were later collected to evaluate hippocampal neurogenesis and mBDNF protein content as potential molecular correlates of the observed behavioral responses. The main results in adolescent rats showed that nortriptyline induced dose-dependent opposite effects: while 3 mg/kg decreased immobility and increased mBDNF (indicative of an antidepressant-like response), 10 mg/kg decreased exploratory time in the open field and mBDNF (suggestive of an anxiogenic-like response). These effects were not associated with changes in neurogenesis regulation. In adult rats, nortriptyline failed to modulate affective-like behavior or the neuroplasticity markers evaluated at the doses tested. In conclusion, clear behavioral and neurochemical differences were observed between adolescent and adult rats in response to nortriptyline treatment. Interestingly, while nortriptyline displayed an antidepressant-like potential at the lowest dose examined in adolescence, a higher dose shifted these results towards a negative outcome, thus reinforcing the need to extreme caution when considering this treatment for our younger population.
Collapse
Affiliation(s)
- Cristian Bis-Humbert
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Rubén García-Cabrerizo
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - M Julia García-Fuster
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| |
Collapse
|
5
|
Issler O, van der Zee YY, Ramakrishnan A, Wang J, Tan C, Loh YHE, Purushothaman I, Walker DM, Lorsch ZS, Hamilton PJ, Peña CJ, Flaherty E, Hartley BJ, Torres-Berrío A, Parise EM, Kronman H, Duffy JE, Estill MS, Calipari ES, Labonté B, Neve RL, Tamminga CA, Brennand KJ, Dong Y, Shen L, Nestler EJ. Sex-Specific Role for the Long Non-coding RNA LINC00473 in Depression. Neuron 2020; 106:912-926.e5. [PMID: 32304628 PMCID: PMC7305959 DOI: 10.1016/j.neuron.2020.03.023] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/27/2020] [Accepted: 03/23/2020] [Indexed: 12/26/2022]
Abstract
Depression is a common disorder that affects women at twice the rate of men. Here, we report that long non-coding RNAs (lncRNAs), a recently discovered class of regulatory transcripts, represent about one-third of the differentially expressed genes in the brains of depressed humans and display complex region- and sex-specific patterns of regulation. We identified the primate-specific, neuronal-enriched gene LINC00473 as downregulated in prefrontal cortex (PFC) of depressed females but not males. Using viral-mediated gene transfer to express LINC00473 in adult mouse PFC neurons, we mirrored the human sex-specific phenotype by inducing stress resilience solely in female mice. This sex-specific phenotype was accompanied by changes in synaptic function and gene expression selectively in female mice and, along with studies of human neuron-like cells in culture, implicates LINC00473 as a CREB effector. Together, our studies identify LINC00473 as a female-specific driver of stress resilience that is aberrant in female depression.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Behavior, Animal
- Depression/genetics
- Depression/metabolism
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/metabolism
- Down-Regulation
- Female
- Humans
- Male
- Mice
- Mice, Transgenic
- Middle Aged
- Neurons/metabolism
- Prefrontal Cortex/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA-Seq
- Resilience, Psychological
- Sex Factors
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Young Adult
Collapse
Affiliation(s)
- Orna Issler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yentl Y van der Zee
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junshi Wang
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Chunfeng Tan
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yong-Hwee E Loh
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Immanuel Purushothaman
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deena M Walker
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zachary S Lorsch
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter J Hamilton
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catherine J Peña
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erin Flaherty
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brigham J Hartley
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Angélica Torres-Berrío
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hope Kronman
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julia E Duffy
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Molly S Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erin S Calipari
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benoit Labonté
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA 02139, USA
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kristen J Brennand
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
6
|
Blacker CJ, Millischer V, Webb LM, Ho AM, Schalling M, Frye MA, Veldic M. EAAT2 as a Research Target in Bipolar Disorder and Unipolar Depression: A Systematic Review. MOLECULAR NEUROPSYCHIATRY 2020; 5:44-59. [PMID: 32399469 PMCID: PMC7206595 DOI: 10.1159/000501885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022]
Abstract
Glutamate is implicated in the neuropathology of both major depressive disorder and bipolar disorder. Excitatory amino acid transporter 2 (EAAT2) is the major glutamate transporter in the mammalian brain, removing glutamate from the synaptic cleft and transporting it into glia for recycling. It is thereby the principal regulator of extracellular glutamate levels and prevents neuronal excitotoxicity. EAAT2 is a promising target for elucidating the mechanisms by which the glutamate-glutamine cycle interacts with neuronal systems in mood disorders. Forty EAAT2 studies (published January 1992-January 2018) were identified via a systematic literature search. The studies demonstrated that chronic stress/steroids were most commonly associated with decreased EAAT2. In rodents, EAAT2 inhibition worsened depressive behaviors. Human EAAT2 expression usually decreased in depression, with some regional brain differences. Fewer data have been collected regarding the roles and regulation of EAAT2 in bipolar disorder. Future directions for research include correlating EAAT2 and glutamate levels in vivo, elucidating genetic variability and epigenetic regulation, clarifying intracellular protein and pharmacologic interactions, and examining EAAT2 in different bipolar mood states. As part of a macromolecular complex within glia, EAAT2 may contribute significantly to intracellular signaling, energy regulation, and cellular homeostasis. An enhanced understanding of this system is needed.
Collapse
Affiliation(s)
- Caren J. Blacker
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, Stockholm, Sweden
- Neurogenetics Unit, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lauren M. Webb
- Mayo Medical School, Mayo Clinic, Rochester, Minnesota, USA
| | - Ada M.C. Ho
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Martin Schalling
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, Stockholm, Sweden
- Neurogenetics Unit, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Schmidt M, Lax E, Zhou R, Cheishvili D, Ruder AM, Ludiro A, Lapert F, Macedo da Cruz A, Sandrini P, Calzoni T, Vaisheva F, Brandwein C, Luoni A, Massart R, Lanfumey L, Riva MA, Deuschle M, Gass P, Szyf M. Fetal glucocorticoid receptor (Nr3c1) deficiency alters the landscape of DNA methylation of murine placenta in a sex-dependent manner and is associated to anxiety-like behavior in adulthood. Transl Psychiatry 2019; 9:23. [PMID: 30655507 PMCID: PMC6336883 DOI: 10.1038/s41398-018-0348-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/13/2018] [Indexed: 12/28/2022] Open
Abstract
Prenatal stress defines long-term phenotypes through epigenetic programming of the offspring. These effects are potentially mediated by glucocorticoid release and by sex. We hypothesized that the glucocorticoid receptor (Gr, Nr3c1) fashions the DNA methylation profile of offspring. Consistent with this hypothesis, fetal Nr3c1 heterozygosity leads to altered DNA methylation landscape in fetal placenta in a sex-specific manner. There was a significant overlap of differentially methylated genes in fetal placenta and adult frontal cortex in Nr3c1 heterozygotes. Phenotypically, Nr3c1 heterozygotes show significantly more anxiety-like behavior than wildtype. DNA methylation status of fetal placental tissue is significantly correlated with anxiety-like behavior of the same animals in adulthood. Thus, placental DNA methylation might predict behavioral phenotypes in adulthood. Our data supports the hypothesis that Nr3c1 influences DNA methylation at birth and that DNA methylation in placenta correlates with adult frontal cortex DNA methylation and anxiety-like phenotypes.
Collapse
Affiliation(s)
- Michaela Schmidt
- Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany.
| | - Elad Lax
- 0000 0004 1936 8649grid.14709.3bDepartment of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6 Canada ,0000 0004 1936 8649grid.14709.3bSackler Program for Epigenetics and Psychobiology, McGill University, Montreal, QC H3G 1Y6 Canada
| | - Rudy Zhou
- 0000 0004 1936 8649grid.14709.3bDepartment of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6 Canada
| | - David Cheishvili
- 0000 0004 1936 8649grid.14709.3bDepartment of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6 Canada ,0000 0004 1936 8649grid.14709.3bSackler Program for Epigenetics and Psychobiology, McGill University, Montreal, QC H3G 1Y6 Canada
| | - Arne Mathias Ruder
- 0000 0001 2190 4373grid.7700.0Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Alessia Ludiro
- 0000 0004 1757 2822grid.4708.bDepartment of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, I-20133 Milan, Italy
| | - Florian Lapert
- 0000 0001 2190 4373grid.7700.0Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Anna Macedo da Cruz
- 0000 0001 2190 4373grid.7700.0Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Paolo Sandrini
- 0000 0004 1757 2822grid.4708.bDepartment of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, I-20133 Milan, Italy
| | - Teresa Calzoni
- 0000 0004 1757 2822grid.4708.bDepartment of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, I-20133 Milan, Italy
| | - Farida Vaisheva
- 0000 0004 1936 8649grid.14709.3bDepartment of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6 Canada
| | - Christiane Brandwein
- 0000 0001 2190 4373grid.7700.0Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Alessia Luoni
- 0000 0004 1757 2822grid.4708.bDepartment of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, I-20133 Milan, Italy
| | - Renaud Massart
- 0000 0004 1936 8649grid.14709.3bSackler Program for Epigenetics and Psychobiology, McGill University, Montreal, QC H3G 1Y6 Canada ,0000 0004 0638 6979grid.417896.5Inserm, U894, Centre de Psychiatrie et Neurosciences, 75014 Paris, France
| | - Laurence Lanfumey
- 0000 0004 0638 6979grid.417896.5Inserm, U894, Centre de Psychiatrie et Neurosciences, 75014 Paris, France ,0000 0001 2188 0914grid.10992.33Université Paris Descartes, UMRS894, 75014 Paris, France
| | - Marco Andrea Riva
- 0000 0004 1757 2822grid.4708.bDepartment of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, I-20133 Milan, Italy
| | - Michael Deuschle
- 0000 0001 2190 4373grid.7700.0Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Peter Gass
- 0000 0001 2190 4373grid.7700.0Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Moshe Szyf
- 0000 0004 1936 8649grid.14709.3bDepartment of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6 Canada ,0000 0004 1936 8649grid.14709.3bSackler Program for Epigenetics and Psychobiology, McGill University, Montreal, QC H3G 1Y6 Canada
| |
Collapse
|
8
|
Pharmacogenomics in Psychiatric Disorders. Pharmacogenomics 2019. [DOI: 10.1016/b978-0-12-812626-4.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Neuroplasticity and second messenger pathways in antidepressant efficacy: pharmacogenetic results from a prospective trial investigating treatment resistance. Eur Arch Psychiatry Clin Neurosci 2017; 267:723-735. [PMID: 28260126 DOI: 10.1007/s00406-017-0766-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 01/14/2017] [Indexed: 02/06/2023]
Abstract
Genes belonging to neuroplasticity, monoamine, circadian rhythm, and transcription factor pathways were investigated as modulators of antidepressant efficacy. The present study aimed (1) to replicate previous findings in an independent sample with treatment-resistant depression (TRD), and (2) to perform a pathway analysis to investigate the possible molecular mechanisms involved. 220 patients with major depressive disorder who were non-responders to a previous antidepressant were treated with venlafaxine for 4-6 weeks and in case of non-response with escitalopram for 4-6 weeks. Symptoms were assessed using the Montgomery Asberg Depression Rating Scale. The phenotypes were response and remission to venlafaxine, non-response (TRDA) and non-remission (TRDB) to neither venlafaxine nor escitalopram. 50 tag SNPs in 14 genes belonging to the pathways of interest were tested for association with phenotypes. Molecular pathways (KEGG database) that included one or more of the genes associated with the phenotypes were investigated also in the STAR*D sample. The associations between ZNF804A rs7603001 and response, CREB1 rs2254137 and remission were replicated, as well as CHL1 rs2133402 and lower risk of TRD. Other CHL1 SNPs were potential predictors of TRD (rs1516340, rs2272522, rs1516338, rs2133402). The MAPK1 rs6928 SNP was consistently associated with all the phenotypes. The protein processing in endoplasmic reticulum pathway (hsa04141) was the best pathway that may explain the mechanisms of MAPK1 involvement in antidepressant response. Signals in genes previously associated with antidepressant efficacy were confirmed for CREB1, ZNF804A and CHL1. These genes play pivotal roles in synaptic plasticity, neural activity and connectivity.
Collapse
|
10
|
Chen L, Zhou C, Tan C, Wang F, Gao Y, Huang C, Zhang Y, Jiang L, Tang Y. Stereological Study on the Positive Effect of Running Exercise on the Capillaries in the Hippocampus in a Depression Model. Front Neuroanat 2017; 11:93. [PMID: 29204111 PMCID: PMC5698265 DOI: 10.3389/fnana.2017.00093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022] Open
Abstract
Running exercise is an effective method to improve depressive symptoms when combined with drugs. However, the underlying mechanisms are not fully clear. Cerebral blood flow perfusion in depressed patients is significantly lower in the hippocampus. Physical activity can achieve cerebrovascular benefits. The purpose of this study was to evaluate the impacts of running exercise on capillaries in the hippocampal CA1 and dentate gyrus (DG) regions. The chronic unpredictable stress (CUS) depression model was used in this study. CUS rats were given 4 weeks of running exercise from the fifth week to the eighth week (20 min every day from Monday to Friday each week). The sucrose consumption test was used to measure anhedonia. Furthermore, stereological methods were used to investigate the capillary changes among the control group, CUS/Standard group and CUS/Running group. Sucrose consumption significantly increased in the CUS/Running group. Running exercise has positive effects on the capillaries parameters in the hippocampal CA1 and DG regions, such as the total volume, total length and total surface area. These results demonstrated that capillaries are protected by running exercise in the hippocampal CA1 and DG might be one of the structural bases for the exercise-induced treatment of depression-like behavior. These results suggest that drugs and behavior influence capillaries and may be considered as a new means for depression treatment in the future.
Collapse
Affiliation(s)
- Linmu Chen
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Chunni Zhou
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Chuanxue Tan
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Feifei Wang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Yuan Gao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chunxia Huang
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Yi Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Lin Jiang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Forero DA, Guio-Vega GP, González-Giraldo Y. A comprehensive regional analysis of genome-wide expression profiles for major depressive disorder. J Affect Disord 2017; 218:86-92. [PMID: 28460316 DOI: 10.1016/j.jad.2017.04.061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 03/30/2017] [Accepted: 04/16/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a global health challenge. In recent years, a large number of genome-wide expression studies (GWES) have been carried out to identify the transcriptomic profiles for MDD. The objective of this work was to carry out a comprehensive meta-analysis of available GWES for MDD. METHODS GWES for MDD with available raw data were searched in NCBI GEO, Array Express and Stanley databases. Raw GWES data were preprocessed and normalized and meta-analytical procedures were carried out with the Network Analyst program. 743 samples from 24 primary studies were included in our meta-analyses for blood (Blo), amygdala (Amy), cerebellum (Cer), anterior cingulate cortex (ACC) and prefrontal cortex (PFC) regions. A functional enrichment analysis was carried out. RESULTS We identified 35, 793, 231, 668 and 252 differentially expressed (DE) genes for Blo, Amy, Cer, ACC and PFC regions. A region-dependent significant enrichment for several functional categories, such as gene ontologies, signaling pathways and topographic parameters, was identified. There was convergence with other available genome-wide studies, such as GWAS, DNA methylation analyses and miRNA expression studies. LIMITATIONS Raw data were not available for several primary studies that have been published previously. CONCLUSIONS This is the largest meta-analysis for GWES in MDD. The examination of convergence of genome-wide evidence and of the functional enrichment analysis provides a global overview of potential neural signaling mechanisms dysregulated in MDD. Our comprehensive analysis of several brain regions identified lists of DE genes for MDD that are interesting candidates for further studies.
Collapse
Affiliation(s)
- Diego A Forero
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia.
| | - Gina P Guio-Vega
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
12
|
Powell TR, Murphy T, Lee SH, Price J, Thuret S, Breen G. Transcriptomic profiling of human hippocampal progenitor cells treated with antidepressants and its application in drug repositioning. J Psychopharmacol 2017; 31:338-345. [PMID: 28208023 PMCID: PMC5349314 DOI: 10.1177/0269881117691467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Current pharmacological treatments for major depressive disorder (MDD) are ineffective in a significant proportion of patients, and the identification of new antidepressant compounds has been difficult. 'Connectivity mapping' is a method that can be used to identify drugs that elicit similar downstream effects on mRNA levels when compared to current treatments, and thus may point towards possible repositioning opportunities. We investigated genome-wide transcriptomic changes to human hippocampal progenitor cells treated with therapeutically relevant concentrations of a tricyclic antidepressant (nortriptyline) and a selective serotonin reuptake inhibitor (escitalopram). We identified mRNA changes common to both drugs to create an 'antidepressant mRNA signature'. We used this signature to probe the Library of Integrated Network-based Cellular Signatures (LINCS) and to identify other compounds that elicit similar changes to mRNA in neural progenitor cells. Results from LINCS revealed that the tricyclic antidepressant clomipramine elicited mRNA changes most similar to our mRNA signature, and we identified W-7 and vorinostat as functionally relevant drug candidates, which may have repositioning potential. Our results are encouraging and represent the first attempt to use connectivity mapping for drug repositioning in MDD.
Collapse
Affiliation(s)
- Timothy R Powell
- Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- National Institute for Health Research Biomedical Research Centre for Mental Health, Institute of Psychiatry, Psychology and Neuroscience, Maudsley Hospital and King’s College London, London, UK
| | - Tytus Murphy
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Sang H Lee
- Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- National Institute for Health Research Biomedical Research Centre for Mental Health, Institute of Psychiatry, Psychology and Neuroscience, Maudsley Hospital and King’s College London, London, UK
| | - Jack Price
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- National Institute for Health Research Biomedical Research Centre for Mental Health, Institute of Psychiatry, Psychology and Neuroscience, Maudsley Hospital and King’s College London, London, UK
| |
Collapse
|
13
|
Malki K, Koritskaya E, Harris F, Bryson K, Herbster M, Tosto MG. Epigenetic differences in monozygotic twins discordant for major depressive disorder. Transl Psychiatry 2016; 6:e839. [PMID: 27300265 PMCID: PMC4931599 DOI: 10.1038/tp.2016.101] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 04/05/2016] [Accepted: 04/20/2016] [Indexed: 12/22/2022] Open
Abstract
Although monozygotic (MZ) twins share the majority of their genetic makeup, they can be phenotypically discordant on several traits and diseases. DNA methylation is an epigenetic mechanism that can be influenced by genetic, environmental and stochastic events and may have an important impact on individual variability. In this study we explored epigenetic differences in peripheral blood samples in three MZ twin studies on major depressive disorder (MDD). Epigenetic data for twin pairs were collected as part of a previous study using 8.1-K-CpG microarrays tagging DNA modification in white blood cells from MZ twins discordant for MDD. Data originated from three geographical regions: UK, Australia and the Netherlands. Ninety-seven MZ pairs (194 individuals) discordant for MDD were included. Different methods to address non independently-and-identically distributed (non-i.i.d.) data were evaluated. Machine-learning methods with feature selection centered on support vector machine and random forest were used to build a classifier to predict cases and controls based on epivariations. The most informative variants were mapped to genes and carried forward for network analysis. A mixture approach using principal component analysis (PCA) and Bayes methods allowed to combine the three studies and to leverage the increased predictive power provided by the larger sample. A machine-learning algorithm with feature reduction classified affected from non-affected twins above chance levels in an independent training-testing design. Network analysis revealed gene networks centered on the PPAR-γ (NR1C3) and C-MYC gene hubs interacting through the AP-1 (c-Jun) transcription factor. PPAR-γ (NR1C3) is a drug target for pioglitazone, which has been shown to reduce depression symptoms in patients with MDD. Using a data-driven approach we were able to overcome challenges of non-i.i.d. data when combining epigenetic studies from MZ twins discordant for MDD. Individually, the studies yielded negative results but when combined classification of the disease state from blood epigenome alone was possible. Network analysis revealed genes and gene networks that support the inflammation hypothesis of MDD.
Collapse
Affiliation(s)
- K Malki
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre at the Institute of Psychiatry, Psychology and Neuroscience, London, UK,King's College London, MRC Social, Genetic and Developmental Psychiatry Centre at the Institute of Psychiatry, Psychology and Neuroscience, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK. E-mail:
| | - E Koritskaya
- Department of Computer Science, University College London, London, UK
| | - F Harris
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre at the Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - K Bryson
- Department of Computer Science, University College London, London, UK
| | - M Herbster
- Department of Computer Science, University College London, London, UK
| | - M G Tosto
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre at the Institute of Psychiatry, Psychology and Neuroscience, London, UK,Laboratory for Cognitive Investigations and Behavioural Genetics Tomsk State University, Tomsk, Russia
| |
Collapse
|
14
|
Maternal alterations in the proteome of the medial prefrontal cortex in rat. J Proteomics 2016; 153:65-77. [PMID: 27233742 DOI: 10.1016/j.jprot.2016.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 12/14/2022]
Abstract
Proteomic differences between rat dams and control mothers deprived of their pups immediately after delivery were investigated in the medial prefrontal cortex (mPFC). A 2-D DIGE minimal dye technique combined with LC-MS/MS identified 32 different proteins that showed significant changes in expression in the mPFC, of which, 25 were upregulated and 7 were downregulated in dams. The identity of one significantly increased protein, the small heat-shock protein alpha-crystallin B chain (Cryab), was confirmed via Western blot analysis. Alpha-crystallin B chain was distributed in scattered cells in the mPFC, as demonstrated by immunohistochemistry. Furthermore, it was found to be localized in parvalbumin-containing neurons using double labeling. The elevation of its mRNA level in rat dams was also demonstrated via RT-PCR. The functional classification of the altered proteins was conducted using the UniProt and Gene Ontology protein databases. The identified proteins predominantly participate in synaptic transport and plasticity, neuron development, oxidative stress and apoptosis, and cytoskeleton organization. A common regulator and target analysis of these proteins determined using the Elsevier Pathway Studio Platform suggests that protein level changes associated with pup nursing are driven by growth factors and cytokines, while the MAP kinase pathway was identified as a common target. A high proportion of the proteins that were found to be altered in the mPFC are associated with depression. BIOLOGICAL SIGNIFICANCE The behavior and emotional state of females change robustly when they become mothers. The brain, which governs these changes, may also undergo molecular alterations in mothers. As no proteomics approaches have been applied regarding maternal changes in the brain, we addressed this issue in the mPFC as this brain area is the uppermost cortical center of maternal control and the associated mood changes. The high number of protein-level alterations found between mothers taking care of their litter and those without pups indicates that pup nursing is associated with cortical protein-level changes. Alterations in proteins participating in synaptic transport, plasticity and neuron development suggest neuroplastic changes in the maternal brain. In turn, the relatively high number of altered proteins in the mPFC associated with depression suggests that the physiological effects of the protein-level alterations in the maternal mPFC could promote the incidence of postpartum depression. Cryab, a protein confirmed to be increased during maternal behaviors, was selectively found in parvalbumin cells, which, as fast-spiking interneurons, are associated with depression. The function of Cryab should be further investigated to establish whether it can be used to identify drug targets for future drug development.
Collapse
|
15
|
Chen LM, Zhang AP, Wang FF, Tan CX, Gao Y, Huang CX, Zhang Y, Jiang L, Zhou CN, Chao FL, Zhang L, Tang Y. Running exercise protects the capillaries in white matter in a rat model of depression. J Comp Neurol 2016; 524:3577-3586. [PMID: 27075416 DOI: 10.1002/cne.24017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 11/08/2022]
Abstract
Running has been shown to improve depressive symptoms when used as an adjunct to medication. However, the mechanisms underlying the antidepressant effects of running are not fully understood. Changes of capillaries in white matter have been discovered in clinical patients and depression model rats. Considering the important part of white matter in depression, running may cause capillary structural changes in white matter. Chronic unpredictable stress (CUS) rats were provided with a 4-week running exercise (from the fifth week to the eighth week) for 20 minutes each day for 5 consecutive days each week. Anhedonia was measured by a behavior test. Furthermore, capillary changes were investigated in the control group, the CUS/Standard group, and the CUS/Running group using stereological methods. The 4-week running increased sucrose consumption significantly in the CUS/Running group and had significant effects on the total volume, total length, and total surface area of the capillaries in the white matter of depression rats. These results demonstrated that exercise-induced protection of the capillaries in white matter might be one of the structural bases for the exercise-induced treatment of depression. It might provide important parameters for further study of the vascular mechanisms of depression and a new research direction for the development of clinical antidepressant means. J. Comp. Neurol. 524:3577-3586, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lin-Mu Chen
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, P.R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Ai-Pin Zhang
- Department of Endocrinology, First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Fei-Fei Wang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, P.R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Chuan-Xue Tan
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, P.R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yuan Gao
- Department of Geriatrics, First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Chun-Xia Huang
- Department of Physiology, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yi Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, P.R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Lin Jiang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, P.R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Chun-Ni Zhou
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, P.R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Feng-Lei Chao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, P.R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, P.R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, P.R. China. .,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, P.R. China.
| |
Collapse
|
16
|
Piechota M, Golda S, Ficek J, Jantas D, Przewlocki R, Korostynski M. Regulation of alternative gene transcription in the striatum in response to antidepressant drugs. Neuropharmacology 2015; 99:328-36. [PMID: 26254862 DOI: 10.1016/j.neuropharm.2015.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/21/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022]
Abstract
The mechanisms that control the selection of transcription initiation and termination sites in response to pharmacological stimulation of neuronal cells are poorly understood. We used next-generation sequencing and bioinformatics to construct a genome-wide inventory of protein-coding and non-coding transcripts altered by antidepressant treatment. We analyzed available ChIP-seq data to identify mechanisms that control drug-inducible expression of alternative gene variants in the brain. We identified 153 transcripts of various biotypes regulated in the mouse striatum in response to tranylcypromine or mianserin (at a 0.1% FDR threshold). Five drug-responsive gene patterns are enriched in protein-coding variants (77%), regulated by different sets of transcriptional factors (including SRF/CREB1 and GR/CTCF) and expressed in separate cellular compartments of the brain. We found that alterations mediated by proximal promoters in neurons are more specific in the selection of regulated transcriptional isoforms compared with enhancer-dependent alterations in glia. The change in transcriptional programs, from housekeeping to inducible, provides cells with the resource of functionally distinct proteins. We conclude that the regulation of drug-induced brain plasticity may occur at the level of transcripts rather than genes. The expression of specific isoforms in response to antidepressants may constitute a trigger that initiates the long-lasting effects of these drugs.
Collapse
Affiliation(s)
- Marcin Piechota
- Department of Molecular Neuropharmacology, Institute of Pharmacology PAS, Krakow, Poland
| | - Slawomir Golda
- Department of Molecular Neuropharmacology, Institute of Pharmacology PAS, Krakow, Poland
| | - Joanna Ficek
- Department of Molecular Neuropharmacology, Institute of Pharmacology PAS, Krakow, Poland
| | - Danuta Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology PAS, Krakow, Poland
| | - Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Institute of Pharmacology PAS, Krakow, Poland; Department of Neurobiology and Neuropsychology, IPS, UJ, Krakow, Poland
| | - Michal Korostynski
- Department of Molecular Neuropharmacology, Institute of Pharmacology PAS, Krakow, Poland.
| |
Collapse
|
17
|
Varney S, Polston KF, Jessen T, Carneiro AMD. Mice lacking integrin β3 expression exhibit altered response to chronic stress. Neurobiol Stress 2015; 2:51-58. [PMID: 26634222 PMCID: PMC4664197 DOI: 10.1016/j.ynstr.2015.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Recent studies indicate multiple roles for integrin αvβ3 in adult neurons, including response to pharmacological agents such as cocaine and selective serotonin reuptake inhibitors. In this study, we examined the role of the integrin β3 gene (Itgb3) in the response to environmental stimuli by subjecting Itgb3+/+ and Itgb3-/- mice to unpredictable chronic mild stressors. We found that genetic abrogation of integrin β3 expression elicits an exaggerated vulnerability to chronic unpredictable stress in the open field test. In this test, chronic stress elicited significant decreases in stereotypic behavior and horizontal locomotor activity, including increases in anxiety behaviors. Mild chronic stress led to reductions in dopamine turnover in midbrains of Itgb3+/+, but not Itgb3-/- mice, suggesting a disruption of stress-dependent regulation of DA homeostasis. Chronic stress elicited altered synaptic expression of syntaxin and synaptophysin in midbrains of Itgb3-/- mice, when compared to Itgb3+/+. Semi-quantitative Western blot studies revealed that the synaptic expression, but not total tissue expression, of multiple signaling proteins is correlated with integrin αv levels in the midbrain. Moreover, loss of integrin β3 expression modifies this correlation network. Together, these findings demonstrate that Itgb3-/- mice display a pattern of changes indicating disrupted regulation of midbrain synaptic systems involved in conferring resilience to mild stressors.
Collapse
Affiliation(s)
- Seth Varney
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | - Keith F Polston
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | - Tammy Jessen
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | - Ana M D Carneiro
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| |
Collapse
|
18
|
Malki K, Mineur YS, Tosto MG, Campbell J, Karia P, Jumabhoy I, Sluyter F, Crusio WE, Schalkwyk LC. Pervasive and opposing effects of Unpredictable Chronic Mild Stress (UCMS) on hippocampal gene expression in BALB/cJ and C57BL/6J mouse strains. BMC Genomics 2015; 16:262. [PMID: 25879669 PMCID: PMC4412144 DOI: 10.1186/s12864-015-1431-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/03/2015] [Indexed: 01/03/2023] Open
Abstract
Background BALB/cJ is a strain susceptible to stress and extremely susceptible to a defective hedonic impact in response to chronic stressors. The strain offers much promise as an animal model for the study of stress related disorders. We present a comparative hippocampal gene expression study on the effects of unpredictable chronic mild stress on BALB/cJ and C57BL/6J mice. Affymetrix MOE 430 was used to measure hippocampal gene expression from 16 animals of two different strains (BALB/cJ and C57BL/6J) of both sexes and subjected to either unpredictable chronic mild stress (UCMS) or no stress. Differences were statistically evaluated through supervised and unsupervised linear modelling and using Weighted Gene Coexpression Network Analysis (WGCNA). In order to gain further understanding into mechanisms related to stress response, we cross-validated our results with a parallel study from the GENDEP project using WGCNA in a meta-analysis design. Results The effects of UCMS are visible through Principal Component Analysis which highlights the stress sensitivity of the BALB/cJ strain. A number of genes and gene networks related to stress response were uncovered including the Creb1 gene. WGCNA and pathway analysis revealed a gene network centered on Nfkb1. Results from the meta-analysis revealed a highly significant gene pathway centred on the Ubiquitin C (Ubc) gene. All pathways uncovered are associated with inflammation and immune response. Conclusions The study investigated the molecular mechanisms underlying the response to adverse environment in an animal model using a GxE design. Stress-related differences were visible at the genomic level through PCA analysis highlighting the high sensitivity of BALB/cJ animals to environmental stressors. Several candidate genes and gene networks reported are associated with inflammation and neurogenesis and could serve to inform candidate gene selection in human studies and provide additional insight into the pathology of Major Depressive Disorder. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1431-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karim Malki
- MRC SGDP Centre, King's College London at the Institute of Psychiatry, PO80, DeCrespigny Park, London, UK.
| | - Yann S Mineur
- Present address: Department of Psychiatry, Yale School of Medicine, New Haven, USA. .,Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA, USA.
| | - Maria Grazia Tosto
- MRC SGDP Centre, King's College London at the Institute of Psychiatry, PO80, DeCrespigny Park, London, UK. .,Department of Psychology, Tomsk State University, Tomsk, Russia.
| | | | - Priya Karia
- MRC SGDP Centre, King's College London at the Institute of Psychiatry, PO80, DeCrespigny Park, London, UK.
| | - Irfan Jumabhoy
- MRC SGDP Centre, King's College London at the Institute of Psychiatry, PO80, DeCrespigny Park, London, UK.
| | - Frans Sluyter
- MRC SGDP Centre, King's College London at the Institute of Psychiatry, PO80, DeCrespigny Park, London, UK.
| | - Wim E Crusio
- Present address: University of Bordeaux, Institute for Cognitive and Integrative Neuroscience (INCIA), Bordeaux, France. .,Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA, USA.
| | | |
Collapse
|
19
|
Differential and converging molecular mechanisms of antidepressants' action in the hippocampal dentate gyrus. Neuropsychopharmacology 2015; 40:338-49. [PMID: 25035085 PMCID: PMC4443946 DOI: 10.1038/npp.2014.176] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/19/2014] [Accepted: 07/11/2014] [Indexed: 01/07/2023]
Abstract
Major depression is a highly prevalent, multidimensional disorder. Although several classes of antidepressants (ADs) are currently available, treatment efficacy is limited, and relapse rates are high; thus, there is a need to find better therapeutic strategies. Neuroplastic changes in brain regions such as the hippocampal dentate gyrus (DG) accompany depression and its amelioration with ADs. In this study, the unpredictable chronic mild stress (uCMS) rat model of depression was used to determine the molecular mediators of chronic stress and the targets of four ADs with different pharmacological profiles (fluoxetine, imipramine, tianeptine, and agomelatine) in the hippocampal DG. All ADs, except agomelatine, reversed the depression-like behavior and neuroplastic changes produced by uCMS. Chronic stress induced significant molecular changes that were generally reversed by fluoxetine, imipramine, and tianeptine. Fluoxetine primarily acted on neurons to reduce the expression of pro-inflammatory response genes and increased a set of genes involved in cell metabolism. Similarities were found between the molecular actions and targets of imipramine and tianeptine that activated pathways related to cellular protection. Agomelatine presented a unique profile, with pronounced effects on genes related to Rho-GTPase-related pathways in oligodendrocytes and neurons. These differential molecular signatures of ADs studied contribute to our understanding of the processes implicated in the onset and treatment of depression-like symptoms.
Collapse
|
20
|
Malki K, Tosto MG, Jumabhoy I, Lourdusamy A, Sluyter F, Craig I, Uher R, McGuffin P, Schalkwyk LC. Integrative mouse and human mRNA studies using WGCNA nominates novel candidate genes involved in the pathogenesis of major depressive disorder. Pharmacogenomics 2014; 14:1979-90. [PMID: 24279853 DOI: 10.2217/pgs.13.154] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIM This study aims to identify novel genes associated with major depressive disorder and pharmacological treatment response using animal and human mRNA studies. MATERIALS & METHODS Weighted gene coexpression network analysis was used to uncover genes associated with stress factors in mice and to inform mRNA probe set selection in a post-mortem study of depression. RESULTS A total of 171 genes were found to be differentially regulated in response to both early and late stress protocols in a mouse study. Ten human genes, orthologous to mouse genes differentially expressed by stress, were also found to be dysregulated in depressed cases in a human post-mortem brain study from the Stanley Foundation Brain Collection. CONCLUSION Several novel genes associated with depression were uncovered, including NOVA1 and USP9X. Moreover, we found further evidence in support of hippocampal neurogenesis and peripheral inflammation in major depressive disorder.
Collapse
Affiliation(s)
- Karim Malki
- King's College London, MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tyler CR, Solomon BR, Ulibarri AL, Allan AM. Fluoxetine treatment ameliorates depression induced by perinatal arsenic exposure via a neurogenic mechanism. Neurotoxicology 2014; 44:98-109. [PMID: 24952232 DOI: 10.1016/j.neuro.2014.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 05/30/2014] [Accepted: 06/09/2014] [Indexed: 12/31/2022]
Abstract
Several epidemiological studies have reported an association between arsenic exposure and increased rates of psychiatric disorders, including depression, in exposed populations. We have previously demonstrated that developmental exposure to low amounts of arsenic induces depression in adulthood along with several morphological and molecular aberrations, particularly associated with the hippocampus and the hypothalamic-pituitary-adrenal (HPA) axis. The extent and potential reversibility of this toxin-induced damage has not been characterized to date. In this study, we assessed the effects of fluoxetine, a selective serotonin reuptake inhibitor antidepressant, on adult animals exposed to arsenic during development. Perinatal arsenic exposure (PAE) induced depressive-like symptoms in a mild learned helplessness task and in the forced swim task after acute exposure to a predator odor (2,4,5-trimethylthiazoline, TMT). Chronic fluoxetine treatment prevented these behaviors in both tasks in arsenic-exposed animals and ameliorated arsenic-induced blunted stress responses, as measured by corticosterone (CORT) levels before and after TMT exposure. Morphologically, chronic fluoxetine treatment reversed deficits in adult hippocampal neurogenesis (AHN) after PAE, specifically differentiation and survival of neural progenitor cells. Protein expression of BDNF, CREB, the glucocorticoid receptor (GR), and HDAC2 was significantly increased in the dentate gyrus of arsenic animals after fluoxetine treatment. This study demonstrates that damage induced by perinatal arsenic exposure is reversible with chronic fluoxetine treatment resulting in restored resiliency to depression via a neurogenic mechanism.
Collapse
Affiliation(s)
- Christina R Tyler
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Benjamin R Solomon
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Adam L Ulibarri
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Andrea M Allan
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
22
|
Malki K, Keers R, Tosto MG, Lourdusamy A, Carboni L, Domenici E, Uher R, McGuffin P, Schalkwyk LC. The endogenous and reactive depression subtypes revisited: integrative animal and human studies implicate multiple distinct molecular mechanisms underlying major depressive disorder. BMC Med 2014; 12:73. [PMID: 24886127 PMCID: PMC4046519 DOI: 10.1186/1741-7015-12-73] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/10/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Traditional diagnoses of major depressive disorder (MDD) suggested that the presence or absence of stress prior to onset results in either 'reactive' or 'endogenous' subtypes of the disorder, respectively. Several lines of research suggest that the biological underpinnings of 'reactive' or 'endogenous' subtypes may also differ, resulting in differential response to treatment. We investigated this hypothesis by comparing the gene-expression profiles of three animal models of 'reactive' and 'endogenous' depression. We then translated these findings to clinical samples using a human post-mortem mRNA study. METHODS Affymetrix mouse whole-genome oligonucleotide arrays were used to measure gene expression from hippocampal tissues of 144 mice from the Genome-based Therapeutic Drugs for Depression (GENDEP) project. The study used four inbred mouse strains and two depressogenic 'stress' protocols (maternal separation and Unpredictable Chronic Mild Stress) to model 'reactive' depression. Stress-related mRNA differences in mouse were compared with a parallel mRNA study using Flinders Sensitive and Resistant rat lines as a model of 'endogenous' depression. Convergent genes differentially expressed across the animal studies were used to inform candidate gene selection in a human mRNA post-mortem case control study from the Stanley Brain Consortium. RESULTS In the mouse 'reactive' model, the expression of 350 genes changed in response to early stresses and 370 in response to late stresses. A minimal genetic overlap (less than 8.8%) was detected in response to both stress protocols, but 30% of these genes (21) were also differentially regulated in the 'endogenous' rat study. This overlap is significantly greater than expected by chance. The VAMP-2 gene, differentially expressed across the rodent studies, was also significantly altered in the human study after correcting for multiple testing. CONCLUSIONS Our results suggest that 'endogenous' and 'reactive' subtypes of depression are associated with largely distinct changes in gene-expression. However, they also suggest that the molecular signature of 'reactive' depression caused by early stressors differs considerably from that of 'reactive' depression caused by late stressors. A small set of genes was consistently dysregulated across each paradigm and in post-mortem brain tissue of depressed patients suggesting a final common pathway to the disorder. These genes included the VAMP-2 gene, which has previously been associated with Axis-I disorders including MDD, bipolar depression, schizophrenia and with antidepressant treatment response. We also discuss the implications of our findings for disease classification, personalized medicine and case-control studies of MDD.
Collapse
Affiliation(s)
- Karim Malki
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Robert Keers
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Maria Grazia Tosto
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
- Department of Psychology, University of York, York, UK
| | | | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Enrico Domenici
- Center of Excellence for Drug Discovery in Neuroscience, GlaxoSmithKline Medicines Research Centre, Verona, Italy
- Current address: Pharma Research and Early Development, F. Hoffmann–La Roche, Basel, Switzerland
| | - Rudolf Uher
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Peter McGuffin
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Leonard C Schalkwyk
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| |
Collapse
|
23
|
β-asarone reverses chronic unpredictable mild stress-induced depression-like behavior and promotes hippocampal neurogenesis in rats. Molecules 2014; 19:5634-49. [PMID: 24786848 PMCID: PMC6270931 DOI: 10.3390/molecules19055634] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/08/2014] [Accepted: 04/17/2014] [Indexed: 11/17/2022] Open
Abstract
In this study, we investigated the influence of β-asarone, the major ingredient of Acorus tatarinowii Schott, on depressive-like behavior induced by the chronic unpredictable mild stresses (CUMS) paradigm and to clarify the underlying mechanisms. The results show that β-asarone treatment partially reversed the CUMS-induced depression-like behaviors in both the forced swim and sucrose preference tests. The behavioral effects were associated with increased hippocampal neurogenesis indicated by bromodeoxyuridine (BrdU) immunoreactivity. β-Asarone treatment significantly increased the expression of brain-derived neurotrophic factor (BDNF) at levels of transcription and translation. Moreover, CUMS caused significant reduction in ERK1/2 and CREB phosphorylation, both of which were partially attenuated by β-asarone administration. It is important to note that β-asarone treatment had no effect on total levels or phosphorylation state of any of the proteins examined in ERK1/2-CREB pathway in no stress rats, suggesting that β-asarone acts in a stress-dependent manner to block ERK1/2-CREB signaling. We did not observe a complete reversal of depression-like behaviors to control levels by β-asarone. To our knowledge, the present study is the first to demonstrate that adult neurogenesis is involved in the antidepressant-like behavioral effects of β-asarone, suggesting that β-asarone is a promising candidate for the treatment of depression.
Collapse
|
24
|
Mamdani F, Berlim M, Beaulieu MM, Turecki G. Pharmacogenomic predictors of citalopram treatment outcome in major depressive disorder. World J Biol Psychiatry 2014; 15:135-44. [PMID: 23530732 PMCID: PMC5293541 DOI: 10.3109/15622975.2013.766762] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES A significant proportion of patients with major depressive disorder (MDD) do not improve following treatment with first-line antidepressants and, currently, there are no objective indicators of predictors of antidepressant response. The aim of this study was to investigate pre-treatment peripheral gene expression differences between future remitters and non-responders to citalopram treatment and identify potential pharmacogenomic predictors of response. METHODS We conducted a gene expression study using Affymetrix HG-U133 Plus2 microarrays in peripheral blood samples from untreated individuals with MDD (N = 77), ascertained at a community outpatient clinic, prior to an 8-week treatment with citalopram. Gene expression differences were assessed between remitters and non-responders to treatment. Technical validation of significant probesets was carried out by qRT-PCR. RESULTS A total of 434 probesets displayed significant correlation to change in score and 33 probesests were differentially expressed between eventual remitters and non-responders. Probesets for SMAD 7 (SMA- and MAD-related protein 7) and SIGLECP3 (sialic acid-binding immunoglobulin-like lectin, pseudogene 3) were the most significant differentially expressed genes following FDR correction, and both were down-regulated in individuals who responded to treatment. CONCLUSIONS These findings point to SMAD7 and SIGLECP3 as candidate predictive biomarkers of antidepressant response.
Collapse
Affiliation(s)
- Firoza Mamdani
- McGill Group for Suicide Studies, Depressive Disorders Program, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Marcelo Berlim
- McGill Group for Suicide Studies, Depressive Disorders Program, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Marie-Martine Beaulieu
- McGill Group for Suicide Studies, Depressive Disorders Program, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Depressive Disorders Program, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada,Corresponding Author: Gustavo Turecki MD. Phd, McGill Group for Suicide Studies, Douglas Mental Health University Institute, 6875 LaSalle Blvd., Verdun, Quebec, Canada, H4H 1R3
| |
Collapse
|
25
|
Kovacs D, Gonda X, Petschner P, Edes A, Eszlari N, Bagdy G, Juhasz G. Antidepressant treatment response is modulated by genetic and environmental factors and their interactions. Ann Gen Psychiatry 2014; 13:17. [PMID: 25053968 PMCID: PMC4106212 DOI: 10.1186/1744-859x-13-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/30/2014] [Indexed: 12/28/2022] Open
Abstract
Although there is a wide variety of antidepressants with different mechanisms of action available, the efficacy of treatment is not satisfactory. Genetic factors are presumed to play a role in differences in medication response; however, available evidence is controversial. Even genome-wide association studies failed to identify genes or regions which would consequently influence treatment response. We conducted a literature review in order to uncover possible mechanisms concealing the direct effects of genetic variants, focusing mainly on reports from large-scale studies including STAR*D or GENDEP. We observed that inclusion of environmental factors, gene-environment and gene-gene interactions in the model improves the probability of identifying genetic modulator effects of antidepressant response. It could be difficult to determine which allele of a polymorphism is the risk factor for poor treatment outcome because depending on the acting environmental factors different alleles could be advantageous to improve treatment response. Moreover, genetic variants tend to show better association with certain intermediate phenotypes linked to depression because these are more objective and detectable than traditional treatment outcomes. Thus, detailed modeling of environmental factors and their interactions with different genetic pathways could significantly improve our understanding of antidepressant efficacy. In addition, the complexity of depression itself demands a more comprehensive analysis of symptom trajectories if we are to extract useful information which could be used in the personalization of antidepressant treatment.
Collapse
Affiliation(s)
- Dávid Kovacs
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary ; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, 1089 Budapest, Hungary
| | - Xénia Gonda
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary ; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, 1089 Budapest, Hungary ; Department of Clinical and Theoretical Mental Health, Kutvolgyi Clinical Center, Semmelweis University, 1125 Budapest, Hungary
| | - Péter Petschner
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary ; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, 1089 Budapest, Hungary
| | - Andrea Edes
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary ; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, 1089 Budapest, Hungary
| | - Nóra Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary ; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, 1089 Budapest, Hungary
| | - György Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary ; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, 1089 Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary ; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, 1089 Budapest, Hungary ; Neuroscience and Psychiatry Unit, School of Community Based Medicine, Faculty of Medical and Human Sciences, The University of Manchester, UK and Manchester Academic Health Sciences Centre, M13 9PT Manchester, UK
| |
Collapse
|
26
|
Powell TR, Tansey KE, Breen G, Farmer AE, Craig IW, Uher R, McGuffin P, D'Souza UM, Schalkwyk LC. ATP-binding cassette sub-family F member 1 (ABCF1) is identified as a putative therapeutic target of escitalopram in the inflammatory cytokine pathway. J Psychopharmacol 2013; 27:609-15. [PMID: 23719290 DOI: 10.1177/0269881113490329] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The inflammatory cytokine pathway may be a potential therapeutic target for major depressive disorder (MDD). Previous reports suggest that antidepressants have anti-inflammatory properties and can cause a reduction in proinflammatory cytokines. Recent evidence suggests this might be mediated at the level of the transcriptome. The current study investigated the transcription of 86 genes in the inflammatory cytokine pathway both at baseline and after eight weeks of escitalopram treatment in MDD patients who were either clinical responders (n=25) or non-responders (n=21), using a subset of samples in the Genome-Based Therapeutic Drugs for Depression project (GENDEP). Changes in expression between baseline and eight weeks of treatment were assessed using two-tailed t-tests. To establish if any significant expression changes related to clinical response, the magnitude of the relative expression change between baseline and eight weeks of treatment was established and binary logistic regressions were used to compare differences between responders and non-responders. ATP-binding cassette sub-family F member 1 (ABCF1), a translational regulator of the inflammatory cytokine pathway showed a significant increase in expression after escitalopram treatment which was significantly greater in responders compared to non-responders, suggesting that ABCF1 may play a role in mediating antidepressant response.
Collapse
Affiliation(s)
- Timothy R Powell
- MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Meeting report of the European mouse complex genetics network SYSGENET. Mamm Genome 2013; 24:190-7. [PMID: 23673683 DOI: 10.1007/s00335-013-9458-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
Abstract
The second scientific meeting of the European systems genetics network for the study of complex genetic human disease using genetic reference populations (SYSGENET) took place at the Center for Cooperative Research in Biosciences in Bilbao, Spain, December 10-12, 2012. SYSGENET is funded by the European Cooperation in the Field of Scientific and Technological Research (COST) and represents a network of scientists in Europe that use mouse genetic reference populations (GRPs) to identify complex genetic factors influencing disease phenotypes (Schughart, Mamm Genome 21:331-336, 2010). About 50 researchers working in the field of systems genetics attended the meeting, which consisted of 27 oral presentations, a poster session, and a management committee meeting. Participants exchanged results, set up future collaborations, and shared phenotyping and data analysis methodologies. This meeting was particularly instrumental for conveying the current status of the US, Israeli, and Australian Collaborative Cross (CC) mouse GRP. The CC is an open source project initiated nearly a decade ago by members of the Complex Trait Consortium to aid the mapping of multigenetic traits (Threadgill, Mamm Genome 13:175-178, 2002). In addition, representatives of the International Mouse Phenotyping Consortium were invited to exchange ongoing activities between the knockout and complex genetics communities and to discuss and explore potential fields for future interactions.
Collapse
|