1
|
Soeria-Atmadja S, Amuge P, Nanzigu S, Bbuye D, Eriksen J, Rubin J, Kekitiinwa A, Obua C, Dahl ML, Pettersson Bergstrand M, Pohanka A, Gustafsson LL, Navér L. Sub- and supratherapeutic efavirenz plasma concentrations with risk for HIV therapy failure are mainly genetically explained in Ugandan children: The prospective GENEFA cohort study. Br J Clin Pharmacol 2024. [PMID: 39380207 DOI: 10.1111/bcp.16272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/26/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
AIMS Interindividual variations in efavirenz (EFV) plasma concentrations are extensive, but paediatric data on its consequences for viral control are scarce. The aim of this study was to explore the role of genetic variation in achieving therapeutic efavirenz plasma concentrations in a cohort of Ugandan children and the linkage between genetic CYP2B6 variants, EFV plasma variability, viral resistance and viral outcome. METHODS Ninety-nine treatment-naïve children, aged 3-12 years and living with HIV, were followed for 24 weeks after ART initiation assessing mid-dose efavirenz plasma concentrations, HIV RNA, HIV drug resistance and adherence. Polymorphisms in genes coding for drug-metabolizing enzymes were genotyped. Efavirenz concentrations were determined by liquid chromatography coupled with high-resolution tandem mass spectrometry. Metabolizer phenotype was predicted from composite genotypes of CYP2B6 (c.516G>T and c.983 T>C). A mixed effects restricted maximum likelihood regression model was used to identify important factors for efavirenz exposure. RESULTS Efavirenz plasma concentrations were below the therapeutic interval (1000-4000 mg/mL) in 12-17% and above in 21-24% of measurements. Eight children had persisting subtherapeutic concentrations, five of which failed virologically and three acquired at least one new resistant mutation. Multivariate modelling explained 70% of interindividual variation in plasma concentration, with treatment duration, adherence, CYP2B6c.136A>G, and metabolizer phenotype as independent predictors of EFV concentration. In univariate analysis, metabolizer phenotype explained 50% of interindividual variation. CONCLUSIONS Metabolizer phenotype explained 50% of interindividual variation in efavirenz plasma concentration. Autoinduction was not confirmed and >33% of the concentrations were outside the therapeutic interval. Subtherapeutic concentrations worsened virological resistance and outcomes. Genotype-based dosing may help avert both sub- and supratherapeutic efavirenz plasma concentrations in Ugandan children.
Collapse
Affiliation(s)
- Sandra Soeria-Atmadja
- Department of Clinical Science, Intervention and Technology, Division of Paediatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Pauline Amuge
- Baylor College of Medicine, Children's Foundation-Uganda, Kampala, Uganda
| | - Sarah Nanzigu
- Department of Clinical Pharmacology & Therapeutics, Makerere University, Kampala, Uganda
| | - Dickson Bbuye
- Baylor College of Medicine, Children's Foundation-Uganda, Kampala, Uganda
| | - Jaran Eriksen
- Unit of Infectious Diseases/Venhälsan, Södersjukhuset, Stockholm, Sweden
- Department of Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Rubin
- Department of Clinical Science, Intervention and Technology, Division of Paediatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatrics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Celestino Obua
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Marja-Liisa Dahl
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
| | - Madeleine Pettersson Bergstrand
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
| | - Anton Pohanka
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
| | - Lars L Gustafsson
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Navér
- Department of Clinical Science, Intervention and Technology, Division of Paediatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatrics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Eniayewu O, Akinloye A, Shenkoya B, Azuka U, Bolaji O, Adejuyigbe E, Owen A, Olagunju A. Prenatal efavirenz exposure is independently associated with maternal, but not fetal CYP2B6 genotype. Pharmacogenet Genomics 2024; 34:253-260. [PMID: 38934229 PMCID: PMC7616417 DOI: 10.1097/fpc.0000000000000542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
OBJECTIVES Understanding the influence of fetal and maternal genetics on prenatal drug exposure could potentially improve benefit-risk evaluation. In this study, we investigated the impact of two functional polymorphisms in CYP2B6 on prenatal exposure to efavirenz. METHODS Dried blood spot (DBS) samples were collected from HIV-positive pregnant women ( n = 112) and their newborns ( n = 107) at delivery. They were genotyped for single nucleotide polymorphisms in CYP2B6. Efavirenz was quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS Significant correlations were observed in efavirenz concentration between maternal and newborn ( r = 0.46, R2 = 0.21, P < 0.001), and maternal and cord ( r = 0.83, R2 = 0.68, P < 0.001) samples. Median (interquartile range) newborn plasma-to-maternal plasma and cord-to-maternal plasma ratios were 0.85 (0.03-3.49) and 0.78 (0.23-1.96), respectively. Newborn efavirenz concentration in DBS varied significantly based on composite maternal CYP2B6 genotype: fast ( CYP2B6 516GG and 983TT, n = 26), 747 ng/ml (602-1060); intermediate ( CYP2B6 516GT or 983TC n = 50), 1177 ng/ml (898-1765); and slow ( CYP2B6 516GT and 983TC or 516TT or 983CC, n = 14), 3094 ng/ml (2126-3812). Composite newborn CYP2B6 genotype was, however, not significantly associated with prenatal exposure. Efavirenz concentration in newborn stratified as fast ( n = 25), intermediate ( n = 36), and slow metabolizers ( n = 19) from prenatal exposure was 999.7 (774-1285), 1240 (709-1984), and 1792 ng/ml (1201-3188), respectively. CONCLUSION The clinical relevance of the observed influence of maternal genetics on prenatal efavirenz exposure requires further investigation.
Collapse
Affiliation(s)
- Oluwasegun Eniayewu
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
- Department of Pharmaceutical and Medicinal Chemistry, University of Ilorin, Ilorin, Nigeria
| | - Abdulafeez Akinloye
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Babajide Shenkoya
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Uche Azuka
- Department of Obstetrics and Gynaecology, Federal Medical Centre, Makurdi, Nigeria
| | - Oluseye Bolaji
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Ebunoluwa Adejuyigbe
- Department of Paediatrics and Child Health, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Adeniyi Olagunju
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
3
|
Rojas-Osornio SA, Crespo-Ramírez M, Paredes-Cervantes V, Mata-Marín A, Martínez-Lara R, Pérez de la Mora M, Tesoro-Cruz E. Oral Administration of Efavirenz Dysregulates the Tph2 Gene in Brain Serotonergic Areas and Alters Weight and Mood in Mice. Pharmaceuticals (Basel) 2024; 17:801. [PMID: 38931468 PMCID: PMC11206422 DOI: 10.3390/ph17060801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Most HIV-antiretroviral drugs have adverse effects. Efavirenz (EFV) is an example of a drug with neuropsychiatric effects, such as anxiety, depression, and suicidal thoughts, in people living with HIV (PLWH). The mechanisms by which EFV causes neuropsychiatric alterations in PLWH are complex, multifactorial, and not fully understood, although several studies in animals have reported changes in brain energy metabolism, alterations in monoamine turnover, GABA, and glutamate levels, and changes in 5-HT receptors. In this report, we studied the effects of EFV on the serotonergic system in healthy mice, specifically, whether EFV results in alterations in the levels of the tryptophan hydroxylase 2 (Tph2) gene in the brain. EFV (10 mg/kg) and distilled water (1.5 µL/kg) (control group) were orally administered to the mice for 36 days. At the end of the treatment, Tph2 expression levels in mouse brains were measured, and mood was evaluated by three trials: the forced swim test, elevated plus maze, and open field test. Our results revealed dysregulation of Tph2 expression in the brainstem, amygdala, and hypothalamus in the EFV group, and 5-HT levels increased in the amygdala in the EFV group. In the behavioral tests, mice given EFV exhibited a passive avoidance response in the forced swim test and anxiety-like behavior in the elevated plus maze, and they lost weight. Herein, for the first time, we showed that EFV triggered dysregulation of the Tph2 gene in the three serotonergic areas studied; and 5-HT levels increased in the amygdala using the ELISA method. However, further studies will be necessary to clarify the increase of 5-HT in the amygdala as well as understand the paradoxical decrease in body weight with the simultaneous increase in food consumption. It will also be necessary to measure 5-HT by other techniques different from ELISA, such as HPLC.
Collapse
Affiliation(s)
| | - Minerva Crespo-Ramírez
- Division de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Vladimir Paredes-Cervantes
- Laboratorio Central, Hospital de Especialidades “Dr. Antonio Fraga Mouret” Centro Médico Nacional “La Raza” Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico;
| | - Antonio Mata-Marín
- Departamento de Infectología, Hospital de Infectología del Centro Médico Nacional “La Raza” IMSS, Mexico City 02990, Mexico;
| | - Ricardo Martínez-Lara
- Unidad de Investigación Biomédica en Inmunología e Infectología, del Hospital de Infectología del Centro Médico Nacional “La Raza” IMSS, Mexico City 02990, Mexico;
| | - Miguel Pérez de la Mora
- Division de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Emiliano Tesoro-Cruz
- Unidad de Investigación Biomédica en Inmunología e Infectología, del Hospital de Infectología del Centro Médico Nacional “La Raza” IMSS, Mexico City 02990, Mexico;
| |
Collapse
|
4
|
Twesigomwe D, Drögemöller BI, Wright GEB, Adebamowo C, Agongo G, Boua PR, Matshaba M, Paximadis M, Ramsay M, Simo G, Simuunza MC, Tiemessen CT, Lombard Z, Hazelhurst S. Characterization of CYP2B6 and CYP2A6 Pharmacogenetic Variation in Sub-Saharan African Populations. Clin Pharmacol Ther 2024; 115:576-594. [PMID: 38049200 DOI: 10.1002/cpt.3124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023]
Abstract
Genetic variation in CYP2B6 and CYP2A6 is known to impact interindividual response to antiretrovirals, nicotine, and bupropion, among other drugs. However, the full catalogue of clinically relevant pharmacogenetic variants in these genes is yet to be established, especially across African populations. This study therefore aimed to characterize the star allele (haplotype) distribution in CYP2B6 and CYP2A6 across diverse and understudied sub-Saharan African (SSA) populations. We called star alleles from 961 high-depth full genomes using StellarPGx, Aldy, and PyPGx. In addition, we performed CYP2B6 and CYP2A6 star allele frequency comparisons between SSA and other global biogeographical groups represented in the new 1000 Genomes Project high-coverage dataset (n = 2,000). This study presents frequency information for star alleles in CYP2B6 (e.g., *6 and *18; frequency of 21-47% and 2-19%, respectively) and CYP2A6 (e.g., *4, *9, and *17; frequency of 0-6%, 3-10%, and 6-20%, respectively), and predicted phenotypes (for CYP2B6), across various African populations. In addition, 50 potentially novel African-ancestry star alleles were computationally predicted by StellarPGx in CYP2B6 and CYP2A6 combined. For each of these genes, over 4% of the study participants had predicted novel star alleles. Three novel star alleles in CYP2A6 (*54, *55, and *56) and CYP2B6 apiece, and several suballeles were further validated via targeted Single-Molecule Real-Time resequencing. Our findings are important for informing the design of comprehensive pharmacogenetic testing platforms, and are highly relevant for personalized medicine strategies, especially relating to antiretroviral medication and smoking cessation treatment in Africa and the African diaspora. More broadly, this study highlights the importance of sampling diverse African ethnolinguistic groups for accurate characterization of the pharmacogene variation landscape across the continent.
Collapse
Affiliation(s)
- David Twesigomwe
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Britt I Drögemöller
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Galen E B Wright
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Centre and Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Clement Adebamowo
- Institute for Human Virology, Abuja, Nigeria
- Division of Cancer Epidemiology, Department of Epidemiology and Public Health, and the Marlene and Stewart Greenebaum Comprehensive Cancer Centre, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Godfred Agongo
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C.K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - Palwendé R Boua
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Mogomotsi Matshaba
- Botswana-Baylor Children's Clinical Centre of Excellence, Gaborone, Botswana
- Retrovirology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Maria Paximadis
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Martin C Simuunza
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Caroline T Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zané Lombard
- Division of Human Genetics, National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
5
|
Soko ND, Muyambo S, Dandara MTL, Kampira E, Blom D, Jones ESW, Rayner B, Shamley D, Sinxadi P, Dandara C. Towards Evidence-Based Implementation of Pharmacogenomics in Southern Africa: Comorbidities and Polypharmacy Profiles across Diseases. J Pers Med 2023; 13:1185. [PMID: 37623436 PMCID: PMC10455498 DOI: 10.3390/jpm13081185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/26/2023] Open
Abstract
Pharmacogenomics may improve patient care by guiding drug selection and dosing; however, this requires prior knowledge of the pharmacogenomics of drugs commonly used in a specific setting. The aim of this study was to identify a preliminary set of pharmacogenetic variants important in Southern Africa. We describe comorbidities in 3997 patients from Malawi, South Africa, and Zimbabwe. These patient cohorts were included in pharmacogenomic studies of anticoagulation, dyslipidemia, hypertension, HIV and breast cancer. The 20 topmost prescribed drugs in this population were identified. Using the literature, a list of pharmacogenes vital in the response to the top 20 drugs was constructed leading to drug-gene pairs potentially informative in translation of pharmacogenomics. The most reported morbidity was hypertension (58.4%), making antihypertensives the most prescribed drugs, particularly amlodipine. Dyslipidemia occurred in 31.5% of the participants, and statins were the most frequently prescribed as cholesterol-lowering drugs. HIV was reported in 20.3% of the study participants, with lamivudine/stavudine/efavirenz being the most prescribed antiretroviral combination. Based on these data, pharmacogenes of immediate interest in Southern African populations include ABCB1, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, SLC22A1, SLCO1B1 and UGT1A1. Variants in these genes are a good starting point for pharmacogenomic translation programs in Southern Africa.
Collapse
Affiliation(s)
- Nyarai Desiree Soko
- Platform for Pharmacogenomics Research and Translation (PREMED), University of Cape Town, South African Medical Research Council, Cape Town 7935, South Africa
- Department of Pharmaceutical Technology, School of Allied Health Sciences, Harare Institute of Technology, Harare, Zimbabwe
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
| | - Sarudzai Muyambo
- Department of Biological Sciences and Ecology, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe
| | - Michelle T. L. Dandara
- Platform for Pharmacogenomics Research and Translation (PREMED), University of Cape Town, South African Medical Research Council, Cape Town 7935, South Africa
| | - Elizabeth Kampira
- Medical Laboratory Sciences, School of Life Sciences and Health Professionals, Kamuzu University of Health Sciences (KUHES), Blantyre, Malawi
| | - Dirk Blom
- Platform for Pharmacogenomics Research and Translation (PREMED), University of Cape Town, South African Medical Research Council, Cape Town 7935, South Africa
- Division of Lipidology and Cape Heart Institute, Department of Medicine, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
| | - Erika S. W. Jones
- Platform for Pharmacogenomics Research and Translation (PREMED), University of Cape Town, South African Medical Research Council, Cape Town 7935, South Africa
- Division of Nephrology and Hypertension, Department of Medicine, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
| | - Brian Rayner
- Platform for Pharmacogenomics Research and Translation (PREMED), University of Cape Town, South African Medical Research Council, Cape Town 7935, South Africa
| | - Delva Shamley
- Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
| | - Phumla Sinxadi
- Platform for Pharmacogenomics Research and Translation (PREMED), University of Cape Town, South African Medical Research Council, Cape Town 7935, South Africa
- Division of Clinical Pharmacology, Department of Medicine, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
| | - Collet Dandara
- Department of Pharmaceutical Technology, School of Allied Health Sciences, Harare Institute of Technology, Harare, Zimbabwe
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
| |
Collapse
|
6
|
Munsami L, Schutte CM, de Villiers M, Hiesgen J. Late-onset efavirenz toxicity: A descriptive study from Pretoria, South Africa. South Afr J HIV Med 2023; 24:1439. [PMID: 36751478 PMCID: PMC9900310 DOI: 10.4102/sajhivmed.v24i1.1439] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 02/04/2023] Open
Abstract
Background The neuropsychiatric side effects of efavirenz occur mainly early during treatment and are usually mild. A lesser-known and serious complication is late-onset efavirenz toxicity causing ataxia and encephalopathy. Data regarding this condition are limited. Objectives We describe the clinical picture of late-onset efavirenz toxicity, investigate co-morbidities and report outcomes. Method This descriptive study of all patients with late-onset efavirenz toxicity was conducted over three years at Kalafong Provincial Tertiary Hospital, Pretoria, South Africa. Results Forty consecutive patients were identified. Mean age was 42.1 years, three patients (7.5%) were male and the mean efavirenz level was 49.0 μg/mL (standard deviation [s.d.]: 24.8). Cerebellar ataxia (82.5%) and encephalopathy (47.5%) were the most common presenting features (40.0% had both); four patients presented with psychosis. Presence of encephalopathy and/or cerebellar ataxia was associated with higher efavirenz levels compared with psychosis (52.1 μg/mL, s.d.: 24.1 vs 25.0 μg/mL, s.d.: 17.1). In most patients, symptoms resolved, but four patients (10.0%) died, and one patient remained ataxic. Conclusion Late-onset efavirenz toxicity typically presented with ataxia and encephalopathy, but psychosis can be the presenting feature. The outcome after withdrawal was good, but the mortality of 10.0% is concerning. Recent changes in guidelines favour dolutegravir, but many patients remain on efavirenz, and awareness of the condition is vital. What this study adds This large, single-centre study contributes to the limited data of HIV-positive patients with late-onset efavirenz toxicity and emphasises its ongoing relevance in clinical practice.
Collapse
Affiliation(s)
- Lyneshree Munsami
- Department of Neurology, Faculty of Health Science, University of Pretoria, Pretoria, South Africa
| | - Clara M. Schutte
- Department of Neurology, Faculty of Health Science, University of Pretoria, Pretoria, South Africa
| | - Maryke de Villiers
- Department of Internal Medicine, Faculty of Health Science, University of Pretoria, Pretoria, South Africa
| | - Juliane Hiesgen
- Department of Neurology, Faculty of Health Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
Munsami L, Schutte CM, de Villiers M, Hiesgen J. Late-onset efavirenz toxicity: A descriptive study from Pretoria, South Africa. South Afr J HIV Med 2022. [DOI: 10.4102/sajhivmed.v23i1.1439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
8
|
Frequency of CYP2B6 Alleles in Major Iranian Ethnicities, Affecting Response to Efavirenz. Genet Res (Camb) 2022; 2022:5754776. [PMID: 36320932 PMCID: PMC9605844 DOI: 10.1155/2022/5754776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Efavirenz is an antihuman immunodeficiency virus (HIV) drug metabolized by cytochrome P450 2B6 (CYP2B6) enzyme. Cytochrome P450 2B6 is an enzyme that in humans is encoded by the CYP2B6 gene. Polymorphisms of this gene play a crucial role in the metabolism of drugs such as Efavirenz. This study aims to evaluate the frequency of three clinically significant CYP2B6 polymorphisms (CYP2B6∗6 (516G > T), CYP2B6∗4 (785A > G), and CYP2B6∗5 (1459C > T)) in three major Iranian ethnicities. Methods One hundred forty-seven participants from three main Iranian ethnicities were included in this study. After DNA extraction, CYP2B6∗6 (516G > T), CYP2B6∗4 (785A > G), and CYP2B6∗5 (1459C > T) were genotyped using tetra-primer amplification refractory mutation system polymerase chain reaction (ARMS-PCR). Results The frequency of the mutated allele in the Iranian population for CYP2B6∗6 (516G > T) was 41.50 (95% CI: 35.81, 47.36), which was significantly lower than in Kurds (59.62, 95% CI: 45.10, 72.99). Similarly, Kurds had a higher frequency of mutated allele of CYP2B6∗5 (1459C > T) (46.15%, 95% CI: 32.23, 60.53) than in Iranians (24.49%, 95% CI: 19.68, 29.82). The frequency of A and G alleles of CYP2B6∗4 (785A > G) was 62.59% (95% CI: 56.78, 68.13) and 37.41 (95% CI: 31.87, 43.22), respectively. Conclusion Kurds are at higher risk of adverse drug reactions (ADRs) and insufficient anti-HIV response compared to other Iranians.
Collapse
|
9
|
Nthontho KC, Ndlovu AK, Sharma K, Kasvosve I, Hertz DL, Paganotti GM. Pharmacogenetics of Breast Cancer Treatments: A Sub-Saharan Africa Perspective. Pharmgenomics Pers Med 2022; 15:613-652. [PMID: 35761855 PMCID: PMC9233488 DOI: 10.2147/pgpm.s308531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Breast cancer is the most frequent cause of cancer death in low- and middle-income countries, in particular among sub-Saharan African women, where response to available anticancer treatment therapy is often limited by the recurrent breast tumours and metastasis, ultimately resulting in decreased overall survival rate. This can also be attributed to African genomes that contain more variation than those from other parts of the world. The purpose of this review is to summarize published evidence on pharmacogenetic and pharmacokinetic aspects related to specific available treatments and the known genetic variabilities associated with metabolism and/or transport of breast cancer drugs, and treatment outcomes when possible. The emphasis is on the African genetic variation and focuses on the genes with the highest strength of evidence, with a close look on CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4/5, CYP19A1, UGT1A4, UGT2B7, UGT2B15, SLC22A16, SLC38A7, FcγR, DPYD, ABCB1, and SULT1A1, which are the genes known to play major roles in the metabolism and/or elimination of the respective anti-breast cancer drugs given to the patients. The genetic variability of their metabolism could be associated with different metabolic phenotypes that may cause reduced patients' adherence because of toxicity or sub-therapeutic doses. Finally, this knowledge enhances possible personalized treatment approaches, with the possibility of improving survival outcomes in patients with breast cancer.
Collapse
Affiliation(s)
- Keneuoe Cecilia Nthontho
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - Andrew Khulekani Ndlovu
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | | | - Ishmael Kasvosve
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Daniel Louis Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| |
Collapse
|
10
|
Wonkam A, Munung NS, Dandara C, Esoh KK, Hanchard NA, Landoure G. Five Priorities of African Genomics Research: The Next Frontier. Annu Rev Genomics Hum Genet 2022; 23:499-521. [PMID: 35576571 DOI: 10.1146/annurev-genom-111521-102452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To embrace the prospects of accurately diagnosing thousands of monogenic conditions, predicting disease risks for complex traits or diseases, tailoring treatment to individuals' pharmacogenetic profiles, and potentially curing some diseases, research into African genomic variation is a scientific imperative. African genomes harbor millions of uncaptured variants accumulated over 300,000 years of modern humans' evolutionary history, with successive waves of admixture, migration, and natural selection combining with extensive ecological diversity to create a broad and exceptional genomic complexity. Harnessing African genomic complexity, therefore, will require sustained commitment and equitable collaboration from the scientific community and funding agencies. African governments must support academic public research and industrial partnerships that build the necessary genetic medicine workforce, utilize the emerging genomic big data to develop expertise in computer science and bioinformatics, and evolve national and global governance frameworks that recognize the ethical implications of data-driven genomic research and empower its application in African social, cultural, economic, and religious contexts. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; , , .,Current affiliation: McKusick-Nathans Institute of Genetic Medicine and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Nchangwi S Munung
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; , ,
| | - Collet Dandara
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; , ,
| | - Kevin K Esoh
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; , ,
| | - Neil A Hanchard
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA;
| | - Guida Landoure
- Faculty of Medicine and Odontostomatology, University of Sciences, Techniques, and Technology of Bamako, Bamako, Mali;
| |
Collapse
|
11
|
Maseng MJ, Tawe L, Thami PK, Moyo S, Kasvosve I, Novitsky V, Essex M, Russo G, Gaseitsiwe S, Paganotti GM. The role of CYP2B6 516G>T polymorphism on efavirenz/nevirapine toxicity. Implications on treatment outcomes: Lessons from Botswana. Medicine (Baltimore) 2022; 101:e29066. [PMID: 35512066 PMCID: PMC9276322 DOI: 10.1097/md.0000000000029066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/25/2022] [Indexed: 01/04/2023] Open
Abstract
The two non-nucleoside reverse transcriptase inhibitors (NNRTIs), efavirenz (EFV) and nevirapine (NVP), are currently the core antiretroviral drugs for treatment of HIV in sub-Saharan Africa including Botswana. The drugs are metabolized by Cytochrome P450 2B6 (CYP2B6) liver enzyme. The CYP2B6 gene that encodes for metabolism of these drugs is known to be highly polymorphic. One of the polymorphism in the CYP2B6 gene, 516G>T, particularly the 516T allele, is known to confer poor metabolism of EFV and NVP. This may lead to high levels of plasma drug concentrations and development of treatment toxicities, like central nervous system toxicities, and cutaneous and hepatic toxicities, for EFV and NVP, respectively. The CYP2B6 516G allele on the other hand is associated with an extensive metabolism of the two NNRTIs drugs. We sought to establish association between possible developments of NNRTIs toxicities with CYP2B6 516G>T variation in Botswana.A total of 316 peripheral blood mononuclear cells samples were used in a retrospective view. All the samples were from participants on EFV/NVP-containing regimen with known toxicity output. TaqMan Real-Time PCR approach was applied for assessing CYP2B6 516 allele variation in cases with treatment toxicity and those without. Analysis was performed by chi-square statistics and logistic regression analysis.The rate of poor metabolizers among participants with toxicity and those without toxicity was 18.4% and 15.1%, respectively. The CYP2B6 516 genotype distribution comparisons between the participants with toxicity and those without were not statistically different (chi-square = .326; P = .568).CYP2B6 516 variation was not associated with NNRTI toxicity. No other factors were associated with toxicity when considering age, baseline body mass index, baseline CD4, baseline HIV viral load and adherence. The results were discussed in the context of all the studies done in Botswana to date.
Collapse
Affiliation(s)
- Monkgomotsi J. Maseng
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, UB Campus, Block 246, Gaborone, Botswana
- Botswana-Harvard AIDS Institute Partnership, Plot 1836 North Ring Road, Gaborone, Botswana
| | - Leabaneng Tawe
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, UB Campus, Block 246, Gaborone, Botswana
- Botswana-Harvard AIDS Institute Partnership, Plot 1836 North Ring Road, Gaborone, Botswana
- Botswana-University of Pennsylvania Partnership, UB Campus, Block 244G, Gaborone, Botswana
| | - Prisca K. Thami
- Botswana-Harvard AIDS Institute Partnership, Plot 1836 North Ring Road, Gaborone, Botswana
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road Observatory, Cape Town, South Africa
| | - Sikhulile Moyo
- Botswana-Harvard AIDS Institute Partnership, Plot 1836 North Ring Road, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 677 Hungtinton Avenue, Boston, MA
| | - Ishmael Kasvosve
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, UB Campus, Block 246, Gaborone, Botswana
| | - Vladimir Novitsky
- Botswana-Harvard AIDS Institute Partnership, Plot 1836 North Ring Road, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 677 Hungtinton Avenue, Boston, MA
| | - Max Essex
- Botswana-Harvard AIDS Institute Partnership, Plot 1836 North Ring Road, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 677 Hungtinton Avenue, Boston, MA
| | - Gianluca Russo
- Department of Public Health and Infectious Disease, Faculty of Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, Italy
| | - Simani Gaseitsiwe
- Botswana-Harvard AIDS Institute Partnership, Plot 1836 North Ring Road, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 677 Hungtinton Avenue, Boston, MA
| | - Giacomo M. Paganotti
- Botswana-University of Pennsylvania Partnership, UB Campus, Block 244G, Gaborone, Botswana
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, 3120-2740 Hamilton Walk, Philadelphia, PA
- Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, UB Campus, Block 246, Gaborone, Botswana
| |
Collapse
|
12
|
Muyambo S, Ndadza A, Soko ND, Kruger B, Kadzirange G, Chimusa E, Masimirembwa CM, Ntsekhe M, Nhachi CF, Dandara C. Warfarin Pharmacogenomics for Precision Medicine in Real-Life Clinical Practice in Southern Africa: Harnessing 73 Variants in 29 Pharmacogenes. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:35-50. [PMID: 34958284 PMCID: PMC8792494 DOI: 10.1089/omi.2021.0199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pharmacogenomics is universally relevant for worldwide modern therapeutics and yet needs further development in resource-limited countries. While there is an abundance of genetic association studies in controlled medical settings, there is a paucity of studies with a naturalistic design in real-life clinical practice in patients with comorbidities and under multiple drug treatment regimens. African patients are often burdened with communicable and noncommunicable comorbidities, yet the application of pharmacogenomics in African clinical settings remains limited. Using warfarin as a model, this study aims at minimizing gaps in precision/personalized medicine research in African clinical practice. We present, therefore, pharmacogenomic profiles of a cohort of 503 black Africans (n = 252) and Mixed Ancestry (n = 251) patients from Southern Africa, on warfarin and co-prescribed drugs in a naturalized noncontrolled environment. Seventy-three (n = 73) single nucleotide polymorphisms (SNPs) in 29 pharmacogenes were characterized using a combination of allelic discrimination, Sanger sequencing, restriction fragment length polymorphism, and Sequenom Mass Array. The common comorbidities were hypertension (43-46%), heart failure (39-45%), diabetes mellitus (18%), arrhythmia (25%), and HIV infection (15%). Accordingly, the most common co-prescribed drugs were antihypertensives, antiarrhythmic drugs, antidiabetics, and antiretroviral therapy. We observed marked variation in major pharmacogenes both at interethnic levels and within African subpopulations. The Mixed Ancestry group presented a profile of genetic variants reflecting their European, Asian, and African admixture. Precision medicine requires that African populations begin to capture their own pharmacogenetic SNPs as they cannot always infer with absolute certainty from Asian and European populations. In the current historical moment of the COVID-19 pandemic, we also underscore that the spectrum of drugs interacting with warfarin will likely increase, given the systemic and cardiovascular effects of COVID-19, and the anticipated influx of COVID-19 medicines in the near future. This observational clinical pharmacogenomics study of warfarin, together with past precision medicine research, collectively, lends strong support for incorporation of pharmacogenetic profiling in clinical settings in African patients for effective and safe administration of therapeutics.
Collapse
Affiliation(s)
- Sarudzai Muyambo
- Department of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
- Department of Biological Sciences, Faculty of Science and Engineering, Bindura University of Science Education, Bindura, Zimbabwe
| | - Arinao Ndadza
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IIDMM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nyarai D. Soko
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IIDMM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Bianca Kruger
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IIDMM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Gerard Kadzirange
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Emile Chimusa
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IIDMM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Collen M. Masimirembwa
- Department of Drug Metabolism and Pharmacokinetics (DMPK), African Institute of Biomedical Sciences and Technology (AiBST), Harare, Zimbabwe
| | - Mpiko Ntsekhe
- Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Charles F.B. Nhachi
- Department of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Collet Dandara
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IIDMM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
J N, T H, J S. IPSC-derived models in Africa: An HIV perspective. Biochimie 2022; 196:153-160. [DOI: 10.1016/j.biochi.2022.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/31/2021] [Accepted: 01/21/2022] [Indexed: 12/17/2022]
|
14
|
Maseng MJ, Tawe L, Thami PK, Seatla KK, Moyo S, Martinelli A, Kasvosve I, Novitsky V, Essex M, Russo G, Gaseitsiwe S, Paganotti GM. Association of CYP2B6 Genetic Variation with Efavirenz and Nevirapine Drug Resistance in HIV-1 Patients from Botswana. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:335-347. [PMID: 33758532 PMCID: PMC7981136 DOI: 10.2147/pgpm.s289471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
Purpose CYP2B6 liver enzyme metabolizes the two non-nucleoside reverse transcriptase inhibitors Efavirenz (EFV) and Nevirapine (NVP) used in the antiretroviral therapy (ART) regimens for HIV-infected individuals. Polymorphisms of the CYP2B6 gene influence drug levels in plasma and possibly virological outcomes. The aim of this study was to explore the potential impact of CYP2B6 genotype and haplotype variation on the risk of developing EFV/NVP drug resistance mutations (DRMs) in HIV-1 patients receiving EFV-/NVP-containing regimens in Botswana. Patients and Methods Participants were a sub-sample of a larger study (Tshepo study) conducted in Gaborone, Botswana, among HIV-infected individuals taking EFV/NVP containing ART. Study samples were retrieved and assigned to cases (with DRMs) and controls (without DRMs). Four single-nucleotide polymorphisms (SNPs) in the CYP2B6 gene (−82T>C; 516G>T; 785A>G; 983T>C) were genotyped, the haplotypes reconstructed, and the metabolic score assigned. The possible association between drug resistance and several independent factors (baseline characteristics and CYP2B6 genotypes) was assessed by Binary Logistic Regression (BLR) analysis. EFV/NVP resistance status and CYP2B6 haplotypes were also analyzed using Z-test, chi-square and Fisher’s exact test statistics. Results Two hundred and twenty-seven samples were analysed (40 with DRMs, 187 without DRMs). BLR analysis showed an association between EFV/NVP resistance and CYP2B6 516G allele (OR: 2.26; 95% CI: 1.27–4.01; P=0.005). Moreover, haplotype analysis revealed that the proportion of EFV/NVP-resistant infections was higher among CYP2B6 fast than extensive/slow metabolizers (30.8% vs 16.8%; P=0.035), with the 516G allele more represented in the haplotypes of fast than extensive/slow metabolizers (100.0% vs 53.8%; P<0.001). Conclusion We demonstrated that the CYP2B6 516G allele, and even more when combined in fast metabolic haplotypes, is associated with the presence of EFV/NVP resistance, strengthening the need to assess the CYP2B6 genetic profiles in HIV-infected patients in order to improve the virologic outcomes of NNRTI containing ART.
Collapse
Affiliation(s)
- Monkgomotsi J Maseng
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana.,Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Leabaneng Tawe
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana.,Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - Prisca K Thami
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kaelo K Seatla
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana.,Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Sikhulile Moyo
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | | | - Ishmael Kasvosve
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Vladimir Novitsky
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Max Essex
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Gianluca Russo
- Department of Public Health and Infectious Disease, Faculty of Medicine, Sapienza University of Rome, Rome, Italy
| | - Simani Gaseitsiwe
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Giacomo M Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana.,Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| |
Collapse
|
15
|
Abstract
Capture the full scope of variation to improve health care, equity and medical research globally.
Collapse
|
16
|
Bessong PO, Matume ND, Tebit DM. Potential challenges to sustained viral load suppression in the HIV treatment programme in South Africa: a narrative overview. AIDS Res Ther 2021; 18:1. [PMID: 33407664 PMCID: PMC7788882 DOI: 10.1186/s12981-020-00324-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Background South Africa, with one of the highest HIV prevalences in the world, introduced the universal test and treat (UTT) programme in September 2016. Barriers to sustained viral suppression may include drug resistance in the pre-treated population, non-adherence, acquired resistance; pharmacokinetics and pharmacodynamics, and concurrent use of alternative treatments. Objective The purpose of this review is to highlight potential challenges to achieving sustained viral load suppression in South Africa (SA), a major expectation of the UTT initiative. Methodology Through the PRISMA approach, published articles from South Africa on transmitted drug resistance; adherence to ARV; host genetic factors in drug pharmacokinetics and pharmacodynamics, and interactions between ARV and herbal medicine were searched and reviewed. Results The level of drug resistance in the pre-treated population in South Africa has increased over the years, although it is heterogeneous across and within Provinces. At least one study has documented a pre-treated population with moderate (> 5%) or high (> 15%) levels of drug resistance in eight of the nine Provinces. The concurrent use of ARV and medicinal herbal preparation is fairly common in SA, and may be impacting negatively on adherence to ARV. Only few studies have investigated the association between the genetically diverse South African population and pharmacokinetics and pharmacodynamics of ARVs. Conclusion The increasing levels of drug resistant viruses in the pre-treated population poses a threat to viral load suppression and the sustainability of first line regimens. Drug resistance surveillance systems to track the emergence of resistant viruses, study the burden of prior exposure to ARV and the parallel use of alternative medicines, with the goal of minimizing resistance development and virologic failure are proposed for all the Provinces of South Africa. Optimal management of the different drivers of drug resistance in the pre-treated population, non-adherence, and acquired drug resistance will be beneficial in ensuring sustained viral suppression in at least 90% of those on treatment, a key component of the 90-90-90 strategy.
Collapse
|
17
|
Ayuso P, Neary M, Chiong J, Owen A. Meta-analysis of the effect of CYP2B6, CYP2A6, UGT2B7 and CAR polymorphisms on efavirenz plasma concentrations. J Antimicrob Chemother 2020; 74:3281-3290. [PMID: 31369088 DOI: 10.1093/jac/dkz329] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/14/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Efavirenz primary metabolism is catalysed by CYP2B6 with minor involvement of CYP2A6. Subsequently, phase I metabolites are conjugated by UGT2B7, and constitutive androstane receptor (CAR) has been shown to transcriptionally regulate many relevant enzymes and transporters. Several polymorphisms occurring in the genes coding for these proteins have been shown to impact efavirenz pharmacokinetics in some but not all studies. OBJECTIVES A meta-analysis was performed to assess the overall effect of CYP2B6 rs3745274, CYP2A6 (rs28399454, rs8192726 and rs28399433), UGT2B7 (rs28365062 and rs7439366) and NR1I3 (rs2307424 and rs3003596) polymorphisms on mid-dose efavirenz plasma concentrations. METHODS Following a literature review, pharmacokinetic parameters were compiled and a meta-analysis for these variants was performed using Review Manager and OpenMetaAnalyst. A total of 28 studies were included. RESULTS Unsurprisingly, the analysis confirmed that individuals homozygous for the T allele for CYP2B6 rs3745274 had significantly higher efavirenz concentrations than those homozygous for the G allele [weighted standard mean difference (WSMD) = 2.98; 95% CI 2.19-3.76; P < 0.00001]. A subgroup analysis confirmed ethnic differences in frequency but with a similar effect size in each ethnic group (P = 0.96). Associations with CYP2A6 and UGT2B7 variants were not statistically significant, but T homozygosity for CAR rs2307424 was associated with significantly lower efavirenz concentrations than in C homozygotes (WSMD = -0.32; 95% CI -0.59 to -0.06; P = 0.02). CONCLUSIONS This meta-analysis provides the overall effect size for the impact of CYP2B6 rs3745274 and NR1I3 rs2307424 on efavirenz pharmacokinetics. The analysis also indicates that some previous associations were not significant when interrogated across studies.
Collapse
Affiliation(s)
- Pedro Ayuso
- Infection Pharmacology Group, University of Liverpool, Liverpool, UK
| | - Megan Neary
- Infection Pharmacology Group, University of Liverpool, Liverpool, UK
| | - Justin Chiong
- Infection Pharmacology Group, University of Liverpool, Liverpool, UK
| | - Andrew Owen
- Infection Pharmacology Group, University of Liverpool, Liverpool, UK
| |
Collapse
|
18
|
Decloedt EH, Sinxadi PZ, van Zyl GU, Wiesner L, Khoo S, Joska JA, Haas DW, Maartens G. Pharmacogenetics and pharmacokinetics of CNS penetration of efavirenz and its metabolites. J Antimicrob Chemother 2020; 74:699-709. [PMID: 30535366 DOI: 10.1093/jac/dky481] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND There are limited data on the pharmacogenetics and pharmacokinetics of the CNS penetration of efavirenz. OBJECTIVES We investigated genetic polymorphisms associated with CSF concentrations of efavirenz and its metabolites and explored the relationships with neurocognitive performance. METHODS We included 47 HIV-infected South African black adults with and without HIV-associated neurocognitive disorder on efavirenz/tenofovir/emtricitabine and collected paired plasma-CSF samples. We considered 2049 SNPs, including SNPs known to affect plasma efavirenz exposure, from potentially relevant genes (ABCC5, ABCG2, ABCB1, SLCO2B1, SCLO1A2, ABCC4, CYP2B6 and CYP2A6) and 880 met a linkage disequilibrium (LD)-pruning threshold. RESULTS We identified 9 slow, 21 intermediate and 17 extensive metabolizers. The CYP2B6 983 genotype in multivariate analyses predicted log10-transformed concentrations of plasma efavirenz (β = 0.38, P = 2.7 × 10-03), plasma 7-hydroxy-efavirenz (β = 0.59, P = 3.7 × 10-03), plasma 8-hydroxy-efavirenz:efavirenz ratio (β = -0.31, P = 1.8 × 10-04) and CSF efavirenz (β = 0.36, P = 0.01). Lower plasma 7-hydroxy-efavirenz concentrations were independently associated with CYP2A6 rs10853742 (β = -0.55, P = 3.5 × 10-05), ABCB1 rs115780656 (β = -0.65, P = 4.1 × 10-05) and CYP2A6 -48A→C (β = -0.59, P = 0.01). CYP2A6 -48A→C was independently associated with higher CSF 8-hydroxy-efavirenz:efavirenz ratio (β = 0.54, P = 0.048). CYP2B6 rs2279345 polymorphism was associated with lower plasma 7-hydroxy-efavirenz:efavirenz ratio in multivariate analyses (P < 0.05). No polymorphisms were associated with CSF:plasma ratios of efavirenz, plasma or CSF concentrations of 8-hydroxy-efavirenz or neurocognitive performance. CONCLUSIONS We identified novel genetic associations with plasma efavirenz, plasma 7-hydroxy-efavirenz, plasma 7-hydroxy-efavirenz:efavirenz ratio, plasma 8-hydroxy-efavirenz:efavirenz ratio, CSF efavirenz and CSF 8-hydroxy-efavirenz:efavirenz ratio.
Collapse
Affiliation(s)
- Eric H Decloedt
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Phumla Z Sinxadi
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Gert U van Zyl
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University and National Health Laboratory Service, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Saye Khoo
- Institute of Translational Medicine, University of Liverpool and Royal Liverpool University Hospital, Liverpool, UK
| | - John A Joska
- Division of Neuropsychiatry, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - David W Haas
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Internal Medicine, Meharry Medical College, Nashville, TN, USA
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
19
|
Nguefeu Nkenfou C, Atogho Tiedeu B, Nguefeu Nkenfou C, Nji AM, Chedjou JP, Tah Fomboh C, Kouanfack C, Mbacham WF. Adverse Drug Reactions Associated with CYP 2B6 Polymorphisms in HIV/AIDS-Treated Patients in Yaoundé, Cameroon. Appl Clin Genet 2019; 12:261-268. [PMID: 31920362 PMCID: PMC6941599 DOI: 10.2147/tacg.s226318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/23/2019] [Indexed: 01/04/2023] Open
Abstract
PURPOSE The metabolism of antiretroviral drugs is subject to individual variations of the CYP 2B6 gene. The objective of this study was to evaluate the prevalence of CYP 2B6 516 G>T and 983 T>C polymorphisms and investigate their association with the development of adverse drug reactions (ADRs) in people living with HIV/AIDS in Cameroon. PATIENTS AND METHODS A total number of 122 patients, attending the Yaoundé Central Hospital HIV Day Clinic, consented to take part in this study. Blood specimens were collected and DNA was extracted using the Chelex method. Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) was performed for the detection of CYP 2B6 Single-Nucleotide Polymorphisms (SNPs). Genotype frequencies were compared between groups with or without ADRs. Logistic regression analysis was performed to assess association between genotype and adverse effects of antiretroviral therapy (ART). RESULTS Three types of metabolizers were identified: extensive, intermediate and slow. For the 516G>T polymorphism, prevalences of 8.2% GG, 65.6% GT and 26.2% TT were obtained. For the 983T>C polymorphism, 89.3% TT, 4.1% CT and 6.6% CC prevalences were obtained. Those homozygous for the wild-type allele (516GG) were less likely to develop ADR with a statistically significant difference (OR=0.885, P=0.029). For the CYP2B6 T983C SNP, homozygous mutants (CC) may present a higher risk (threefold) of developing adverse reactions (OR=2.677, P=0.164). CONCLUSION These findings demonstrate that ADRs among HIV/AIDS patients under ART may be associated with the genetic variability of the metabolizing enzyme CYP 2B6. Genotyping for this gene may guide the better administration of Efavirenz and Nevirapine to Cameroonian patients.
Collapse
Affiliation(s)
- Carine Nguefeu Nkenfou
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Barbara Atogho Tiedeu
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Celine Nguefeu Nkenfou
- Systems Biology, Chantal Biya’ International Reference Centre for Research on HIV and AIDS Prevention and Management (CBIRC), Yaoundé, Cameroon
- Department of Biology, Higher Teachers’ Training College, University of Yaoundé I, Yaoundé, Cameroon
- Molecular Biology Center Yaoundé, Yaoundé, Cameroon
| | - Akindeh M Nji
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Jean Paul Chedjou
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Calvino Tah Fomboh
- The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
- Catholic University of Yaoundé (UCAC), Yaoundé, Cameroon
| | - Charles Kouanfack
- Day Care Unit, Central Hospital Yaoundé, Yaoundé, Cameroon
- Department of Public Health, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
| | - Wilfred F Mbacham
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
- Department of Public Health, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
20
|
Cheng L, Wang Y, Li X, Feng W, Weng B, Yuan Q, Xia P, Sun F. Meta-analysis of the associations of CYP2B6-516G>T polymorphisms with efavirenz-induced central nervous system side effects and virological outcome in HIV-infected adults. THE PHARMACOGENOMICS JOURNAL 2019; 20:246-259. [PMID: 31636355 DOI: 10.1038/s41397-019-0112-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023]
Abstract
Clinical data on the relationships of cytochrome P450 (CYP2) B6 516G>T polymorphisms with efavirenz-induced central nervous system (CNS) side effects and virological response in HIV-infected adults are controversial. We sought to analyze the associations by meta-analysis. To identify eligible studies, we systematically searched PubMed, Embase, ScienceDirect, and Web of Science. The strength of the associations was measured by odds ratio (OR) and effect size (ES) with 95% confidence interval (CI). Seventeen studies comprising a total of 3598 HIV-infected adults were included. The results showed that the CYP2B6-516 GG genotype was significantly associated with a decreased risk of efavirenz-induced CNS side effects compared with the GT and TT genotypes (GG + GT vs. TT: OR = 0.60, 95% CI = 0.41-0.87, P = 0.006; GG vs. GT + TT: OR = 0.68, 95% CI = 0.51-0.91, P = 0.008; GG vs. GT: OR = 0.70, 95% CI = 0.51-0.94, P = 0.018), and there was no significant association between the genetic variants GT and TT (GT vs. TT: OR = 0.82, 95% CI = 0.54-1.26, P = 0.372). However, there was no significant association between CYP2B6-516 GG and GT + TT genotypes in virological response (GT + TT vs. GG: ES = 1.06, 95% CI = 0.95-1.18, P = 0.321; OR = 1.01, 95% CI = 0.65-1.58, P = 0.963). Taken together, our results demonstrated that compared with the normal efavirenz clearance genotype CYP2B6-516 GG, the slow and very slow efavirenz clearance genotypes GT and TT were significantly associated with an increased risk of efavirenz-induced CNS side effects but not an increased virological response. To promote the tolerance of efavirenz, it is better to adjust the dosage of efavirenz according to the polymorphisms of CYP2B6-516 in HIV-infected adults.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Pharmacy, the First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yu Wang
- Department of Pharmacy, the First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiaoyu Li
- Department of Pharmacy, Handan Branch Hospital of the 980th Hospital of PLA, Handan, 056001, China
| | - Wei Feng
- Department of Pharmacy, the First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Bangbi Weng
- Department of Pharmacy, the First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qian Yuan
- Department of Pharmacy, the First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peiyuan Xia
- Department of Pharmacy, the First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Fengjun Sun
- Department of Pharmacy, the First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
21
|
Tshabalala S, Choudhury A, Beeton-Kempen N, Martinson N, Ramsay M, Mancama D. Targeted ultra-deep sequencing of a South African Bantu-speaking cohort to comprehensively map and characterize common and novel variants in 65 pharmacologically-related genes. Pharmacogenet Genomics 2019; 29:167-178. [PMID: 31162291 PMCID: PMC6675649 DOI: 10.1097/fpc.0000000000000380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/16/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND African populations are characterised by high genetic diversity, which provides opportunities for discovering and elucidating novel variants of clinical importance, especially those affecting therapeutic outcome. Significantly more knowledge is however needed before such populations can take full advantage of the advances in precision medicine. Coupled with the need to concisely map and better understand the pharmacological implications of genetic diversity in populations of sub-Sharan African ancestry, the aim of this study was to identify and characterize known and novel variants present within 65 important absorption, distribution, metabolism and excretion genes. PATIENTS AND METHODS Targeted ultra-deep next-generation sequencing was used to screen a cohort of 40 South African individuals of Bantu ancestry. RESULTS We identified a total of 1662 variants of which 129 are novel. Moreover, out of the 1662 variants 22 represent potential loss-of-function variants. A high level of allele frequency differentiation was observed for variants identified in this study when compared with other populations. Notably, on the basis of prior studies, many appear to be pharmacologically important in the pharmacokinetics of a broad range of drugs, including antiretrovirals, chemotherapeutic drugs, antiepileptics, antidepressants, and anticoagulants. An in-depth analysis was undertaken to interrogate the pharmacogenetic implications of this genetic diversity. CONCLUSION Despite the new insights gained from this study, the work illustrates that a more comprehensive understanding of population-specific differences is needed to facilitate the development of pharmacogenetic-based interventions for optimal drug therapy in patients of African ancestry.
Collapse
Affiliation(s)
- Sibongile Tshabalala
- Division of Human Genetics, National Health Laboratory Service, School of Pathology, Faculty of Health Sciences
- Sydney Brenner Institute for Molecular Bioscience (SBIMB), Faculty of Health Sciences
- CSIR Biosciences Unit, Pretoria, South Africa
| | - Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience (SBIMB), Faculty of Health Sciences
| | | | - Neil Martinson
- Perinatal HIV Research Unit, Baragwanath Hospital and Faculty of Health Sciences
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg
| | - Michèle Ramsay
- Division of Human Genetics, National Health Laboratory Service, School of Pathology, Faculty of Health Sciences
- Sydney Brenner Institute for Molecular Bioscience (SBIMB), Faculty of Health Sciences
| | | |
Collapse
|
22
|
Rubin LH, Saylor D, Nakigozi G, Nakasujja N, Robertson K, Kisakye A, Batte J, Mayanja R, Anok A, Lofgren SM, Boulware DR, Dastgheyb R, Reynolds SJ, Quinn TC, Gray RH, Wawer MJ, Sacktor N. Heterogeneity in neurocognitive change trajectories among people with HIV starting antiretroviral therapy in Rakai, Uganda. J Neurovirol 2019; 25:800-813. [PMID: 31218522 DOI: 10.1007/s13365-019-00768-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/03/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022]
Abstract
Considerable heterogeneity exists in patterns of neurocognitive change in people with HIV (PWH). We examined heterogeneity in neurocognitive change trajectories from HIV diagnosis to 1-2 years post-antiretroviral therapy (ART). In an observational cohort study in Rakai, Uganda, 312 PWH completed a neuropsychological (NP) test battery at two-time points (ART-naïve, 1-2 years post-ART initiation). All NP outcomes were used in a latent profile analysis to identify subgroups of PWH with similar ART-related neurocognitive change profiles. In a subset, we examined subgroup differences pre-ART on cytokine and neurodegenerative biomarkers CSF levels. We identified four ART-related change subgroups: (1) decline-only (learning, memory, fluency, processing speed, and attention measures), (2) mixed (improvements in learning and memory but declines in attention and executive function measures), (3) no-change, or (4) improvement-only (learning, memory, and attention measures). ART-related NP outcomes that are most likely to change included learning, memory, and attention. Motor function measures were unchanged. Subgroups differed on eight of 34 pre-ART biomarker levels including interleukin (IL)-1β, IL-6, IL-13, interferon-γ, macrophage inflammatory protein-1β, matrix metalloproteinase (MMP)-3, MMP-10, and platelet-derived growth factor-AA. The improvement-only and mixed subgroups showed lower levels on these markers versus the no-change subgroup. These findings provide support for the need to disentangle heterogeneity in ART-related neurocognitive changes, to focus on higher-order cognitive processes (learning, memory, attention) as they were most malleable to change, and to better understand why motor function remained unchanged despite ART treatment. Group differences in pre-ART CSF levels provide preliminary evidence of biological plausibility of neurocognitive phenotyping.
Collapse
Affiliation(s)
- Leah H Rubin
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street/Meyer 6-113, Baltimore, MD, 21287-7613, USA. .,Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Deanna Saylor
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street/Meyer 6-113, Baltimore, MD, 21287-7613, USA
| | | | | | - Kevin Robertson
- Department of Neurology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | | | - James Batte
- Rakai Health Sciences Program, Kalisizo, Uganda
| | | | - Aggrey Anok
- Rakai Health Sciences Program, Kalisizo, Uganda
| | | | | | - Raha Dastgheyb
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street/Meyer 6-113, Baltimore, MD, 21287-7613, USA
| | - Steven J Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA.,Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas C Quinn
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA.,Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ronald H Gray
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Maria J Wawer
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ned Sacktor
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street/Meyer 6-113, Baltimore, MD, 21287-7613, USA
| |
Collapse
|
23
|
Dandara C, Masimirembwa C, Haffani YZ, Ogutu B, Mabuka J, Aklillu E, Bolaji O. African Pharmacogenomics Consortium: Consolidating pharmacogenomics knowledge, capacity development and translation in Africa: Consolidating pharmacogenomics knowledge, capacity development and translation in Africa. AAS Open Res 2019; 2:19. [PMID: 32382701 PMCID: PMC7194139 DOI: 10.12688/aasopenres.12965.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
The African Pharmacogenomics Consortium (APC) was formally launched on the 6th September 2018. This white paper outlines its vision, and objectives towards addressing challenges of conducting and applying pharmacogenomics in Africa and identifies opportunities for advancement of individualized drugs use on the continent. Africa, especially south of the Sahara, is beset with a huge burden of infectious diseases with much co-morbidity whose multiplicity and intersection are major challenges in achieving the sustainable development goals (SDG), SDG3, on health and wellness. The profile of drugs commonly used in African populations lead to a different spectrum of adverse drug reactions (ADRs) when compared to other parts of the world. Coupled with the genetic diversity among Africans, the APC is established to promote pharmacogenomics research and its clinical implementation for safe and effective use of medicine in the continent. Variation in the way patients respond to treatment is mainly due to differences in activity of enzymes and transporters involved in pathways associated with each drug’s disposition. Knowledge of pharmacogenomics, therefore, helps in identifying genetic variants in these proteins and their functional effects. Africa needs to consolidate its pharmacogenomics expertise and technological platforms to bring pharmacogenomics to use.
Collapse
Affiliation(s)
- Collet Dandara
- Pathology & Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | | | - Yosr Z Haffani
- Higher Institute of Biotechnology Sidi Thabet, Manouba University, Ariana, LR17ES03, Tunisia
| | - Bernhards Ogutu
- Centre for Research in Therapeutic Sciences, Strathmore University, Nairobi, Kenya
| | - Jenniffer Mabuka
- Secretariat, The African Academy of Sciences (AAS), Nairobi, Kenya
| | - Eleni Aklillu
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Oluseye Bolaji
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | |
Collapse
|
24
|
Mazanderani AH, Murray TY, Sherman GG, Snyman T, George J, Avenant T, Goga AE, Pepper MS, du Plessis N. Non-nucleoside reverse transcriptase inhibitor levels among HIV-exposed uninfected infants at the time of HIV PCR testing - findings from a tertiary healthcare facility in Pretoria, South Africa. J Int AIDS Soc 2019; 22:e25284. [PMID: 31215757 PMCID: PMC6582367 DOI: 10.1002/jia2.25284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION To date, very little programmatic data has been published regarding serial antiretroviral (ARV) levels in infants exposed to maternal treatment and/or infant prophylaxis during the first months of life. Such data provide the opportunity to describe the proportion of infants exposed to virologically suppressive levels of ARVs and to gauge adherence to the prevention of mother-to-child transmission of HIV (PMTCT) programme. METHODS From August 2014 to January 2016, HIV-exposed infants born at Kalafong Provincial Tertiary Hospital in Pretoria, South Africa were enrolled as part of an observational cohort study. Plasma samples from HIV-exposed uninfected infants were obtained at birth, 6-weeks, 10-weeks and 14-weeks of age and quantitative efavirenz (EFV) and nevirapine (NVP) drug level testing performed using liquid chromatography-mass spectrometry, irrespective of maternal ARV regimen. Descriptive analysis of EFV and NVP levels in relation to self-reported maternal and infant ARV exposure was performed. EFV levels >500 ng/mL and NVP levels >100 ng/mL were reported based on studies suggesting that trough levels above these thresholds are associated with virological suppression and PMTCT respectively. RESULTS Among 66 infants exposed to maternal EFVin utero, 29 (44%) had virologically suppressive plasma EFV levels at birth, with a median level of 1665 ng/mL (IQR: 1094 to 3673). Among infants who were exclusively breastfed at 6-, 10- and 14 weeks, 13/48 (27%), 5/25 (25%) and 0/21 (0%) had virologically suppressive EFV levels. Among 64 infants whose mothers reported administering daily infant NVP at time of their 6-week HIV PCR test, only 45 (70%) had NVP levels above the minimum prophylactic trough level. CONCLUSIONS During the first 10-weeks after delivery, a quarter of breastfed infants born to women on an EFV-containing treatment regimen maintained virologically suppressive EFV plasma levels. This finding highlights the importance of both careful monitoring of ARV side effects and repeat HIV PCR after the first few months of life among HIV-exposed uninfected infants. As 30% of infants had inadequate NVP plasma levels at 6-weeks of age, adherence counselling to caregivers regarding infant prophylaxis needs to be enhanced to further reduce mother-to-child transmission of HIV.
Collapse
Affiliation(s)
- Ahmad Haeri Mazanderani
- Centre for HIV & STIsNational Institute for Communicable DiseasesNational Health Laboratory ServiceJohannesburgSouth Africa
- Department of Medical VirologyFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Tanya Y Murray
- Centre for HIV & STIsNational Institute for Communicable DiseasesNational Health Laboratory ServiceJohannesburgSouth Africa
- Paediatric HIV DiagnosticsWits Health ConsortiumJohannesburgSouth Africa
| | - Gayle G Sherman
- Centre for HIV & STIsNational Institute for Communicable DiseasesNational Health Laboratory ServiceJohannesburgSouth Africa
- Paediatric HIV DiagnosticsWits Health ConsortiumJohannesburgSouth Africa
- Department of Paediatrics & Child HealthFaculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Tracy Snyman
- Department of Chemical PathologyNational Health Laboratory Service and University of WitwatersrandJohannesburgSouth Africa
| | - Jaya George
- Department of Chemical PathologyNational Health Laboratory Service and University of WitwatersrandJohannesburgSouth Africa
| | - Theunis Avenant
- Paediatric Infectious Diseases DivisionDepartment of PaediatricsKalafong Provincial Tertiary HospitalPretoriaSouth Africa
- Department of Paediatrics and Child HealthFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Ameena E Goga
- Department of Paediatrics and Child HealthFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Health Systems Research UnitSouth African Medical Research CouncilCape TownSouth Africa
| | - Michael S Pepper
- Institute for Cellular and Molecular MedicineDepartment of ImmunologySAMRC Extramural Unit for Stem Cell Research and TherapyFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Nicolette du Plessis
- Paediatric Infectious Diseases DivisionDepartment of PaediatricsKalafong Provincial Tertiary HospitalPretoriaSouth Africa
- Department of Paediatrics and Child HealthFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Vitamin D (VitD) deficiency is highly prevalent among HIV-infected individuals. Given the overlapping risk for several chronic disease and immunomodulatory outcomes from both long-standing HIV and VitD deficiency, there is great interest in clarifying the clinical role of VitD for this population. RECENT FINDINGS Recent studies have expanded our knowledge regarding the epidemiology and mechanisms of VitD deficiency-associated outcomes in the setting of HIV. Clinical trials focusing on VitD supplementation have demonstrated a positive impact on bone mineral density in subgroups of HIV-infected individuals initiating ART or on suppressive ART regimens; however, significant heterogeneity exists between studies and data are less consistent with other clinical outcomes. Further research is needed to clarify uncertainly in several domains, including identifying patients at greatest risk for poor outcomes from VitD deficiency, standardizing definitions and measurement techniques, and better quantifying the benefits and risks of VitD supplementation across different demographic strata for skeletal and extra-skeletal outcomes.
Collapse
Affiliation(s)
- Evelyn Hsieh
- Section of Rheumatology, Yale School of Medicine, 300 Cedar Street, TAC S-525, PO Box 208031, New Haven, CT, 06517, USA.
| | - Michael T Yin
- Division of Infectious Diseases, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
26
|
Peko SM, Gueye NSG, Vouvoungui C, Koukouikila-Koussounda F, Kobawila SC, Nderu D, Velavan TP, Ntoumi F. Cytochrome P450 CYP2B6*6 distribution among Congolese individuals with HIV, Tuberculosis and Malaria infection. Int J Infect Dis 2019; 82:111-116. [PMID: 30818046 DOI: 10.1016/j.ijid.2019.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The cytochrome P450 CYP2B6*6 (CYP2B6 c.516G>T; rs3745274) is one of the genetic factors that alters the drug metabolism in antimalarial, antiretroviral and TB first-line drugs. In Central African populations, the distribution of the CYP2B6*6 variant is poorly documented. This study investigated the distribution of CYP2B6 c.516G>T variant among Congolese individuals. METHODS A total of 418 patients with HIV-1 mono-infection, HIV-1 and Tuberculosis coinfection and symptomatic P. falciparum malaria were genotyped for the CYP2B6 c.516G>T SNP using Restriction Fragment Length Polymorphism (RFLP). The allele frequencies and genotype distributions were determined. RESULTS The CYP2B6 c.516G>T was successfully analysed in 69% (288/418) of the study participants. Among the investigated individuals, the distribution of the major allele CYP2B6*G was 45% and the minor CYP2B6*T allele was 55%. Significant differences in genotype distribution were also observed among the studied individuals. The CYP2B6*GG (rapid metabolizer) genotype was observed in 17% (49/288) followed by CYP2B6*GT (intermediate metabolizer) 55% (159/288) and CYP2B6*TT (poor metabolizers) 28% (80/288). CONCLUSION This study contributes to increasing understanding on population pharmacogenetics and may help policy makers regulate treatment guidelines in the Congolese population with a high burden of HIV, Malaria and TB.
Collapse
Affiliation(s)
- Simon Marie Peko
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Congo; Faculty of Sciences and Technology, University Marien Ngouabi, Brazzaville, Congo.
| | - Nerly Shirère Gampio Gueye
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Congo; Faculty of Sciences and Technology, University Marien Ngouabi, Brazzaville, Congo.
| | - Christevy Vouvoungui
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Congo; Faculty of Sciences and Technology, University Marien Ngouabi, Brazzaville, Congo.
| | - Félix Koukouikila-Koussounda
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Congo; Faculty of Sciences and Technology, University Marien Ngouabi, Brazzaville, Congo.
| | | | - David Nderu
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
| | - Thirumalaisamy P Velavan
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Congo; Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Faculty of Medicine, Duy Tan University, Da Nang, Vietnam.
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Congo; Faculty of Sciences and Technology, University Marien Ngouabi, Brazzaville, Congo; Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
27
|
Suarez-Kurtz G, Aklillu E, Saito Y, Somogyi AA. Conference report: pharmacogenomics in special populations at WCP2018. Br J Clin Pharmacol 2019; 85:467-475. [PMID: 30537134 DOI: 10.1111/bcp.13828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
The 18th World Congress of Basic and Clinical Pharmacology (WCP2018), coordinated by IUPHAR and hosted by the Japanese Pharmacological Society and the Japanese Society of Clinical Pharmacology and Therapeutics, was held in July 2018 at the Kyoto International Conference Center, in Kyoto, Japan. Having as its main theme 'Pharmacology for the Future: Science, Drug Development and Therapeutics', WCP2018 was attended by over 4500 delegates, representing 78 countries. The present report is an overview of a symposium at WCP2018, entitled Pharmacogenomics in Special Populations, organized by IUPHAR´s Pharmacogenetics/Genomics (PGx) section. The PGx section congregates distinguished scientists from different continents, covering expertise from basic research, to clinical implementation and ethical aspects of PGx, and one of its major activities is the coordination of symposia and workshops to foster exchange of PGx knowledge (https://iuphar.org/sections-subcoms/pharmacogenetics-genomics/). The symposium attracted a large audience to listen to presentations covering various areas of research and clinical adoption of PGx in Oceania, Africa, Latin America and Asia.
Collapse
Affiliation(s)
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yoshiro Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kawasaki, Japan
| | - Andrew A Somogyi
- Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| |
Collapse
|
28
|
Risk Factors and Pathogenesis of HIV-Associated Neurocognitive Disorder: The Role of Host Genetics. Int J Mol Sci 2018; 19:ijms19113594. [PMID: 30441796 PMCID: PMC6274730 DOI: 10.3390/ijms19113594] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
Neurocognitive impairments associated with human immunodeficiency virus (HIV) infection remain a considerable health issue for almost half the people living with HIV, despite progress in HIV treatment through combination antiretroviral therapy (cART). The pathogenesis and risk factors of HIV-associated neurocognitive disorder (HAND) are still incompletely understood. This is partly due to the complexity of HAND diagnostics, as phenotypes present with high variability and change over time. Our current understanding is that HIV enters the central nervous system (CNS) during infection, persisting and replicating in resident immune and supporting cells, with the subsequent host immune response and inflammation likely adding to the development of HAND. Differences in host (human) genetics determine, in part, the effectiveness of the immune response and other factors that increase the vulnerability to HAND. This review describes findings from studies investigating the role of human host genetics in the pathogenesis of HAND, including potential risk factors for developing HAND. The similarities and differences between HAND and Alzheimer's disease are also discussed. While some specific variations in host genes regulating immune responses and neurotransmission have been associated with protection or risk of HAND development, the effects are generally small and findings poorly replicated. Nevertheless, a few specific gene variants appear to affect the risk for developing HAND and aid our understanding of HAND pathogenesis.
Collapse
|
29
|
O'Connell KS, Swart M, McGregor NW, Dandara C, Warnich L. Pharmacogenetics of Antiretroviral Drug Response and Pharmacokinetic Variations in Indigenous South African Populations. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:589-597. [PMID: 30235109 DOI: 10.1089/omi.2018.0117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Interindividual and interethnic differences in response to antiretroviral drugs (ARVs) are influenced by genetic variation. The few genomic studies conducted among African-Americans and African ethnic groups do not reflect the extensive genetic diversity within African populations. ARVs are widely used in Africa. Therefore, genomic characterization of African populations is required before genotype-guided dosing becomes possible. The aim of this study was to determine and report on the frequency of genetic variants in genes implicated in metabolism and transport of ARVs in South African populations. The study comprised 48 self-reported South African Colored (SAC) and 296 self-reported Black African (BA) individuals. Allele and genotype frequency distributions for 93 variants contributing to metabolism and transport of ARVs were compared between groups, and other global populations. Fifty-three variants had significant differences in allele and genotype frequencies when comparing SAC and BA groups. Thirteen of these have strong clinical annotations, affecting efavirenz and tenofovir pharmacokinetics. This study provides a summary of the genetic variation within genes implicated in metabolism and transport of ARVs in indigenous South African populations. The observed differences between indigenous population groups, and between these groups and global populations, demonstrate that data generated from specific African populations cannot be used to infer genetic diversity within other populations on the continent. These results highlight the need for comprehensive characterization of genetic variation within indigenous African populations, and the clinical utility of these variants in ARV dosing for global precision medicine. Population pharmacogenetics is a nascent field of global health and warrants further research and education.
Collapse
Affiliation(s)
- Kevin S O'Connell
- 1 Systems Genetics Working Group, Department of Genetics, Stellenbosch University , Stellenbosch, South Africa
| | - Marelize Swart
- 2 Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Nathaniel W McGregor
- 1 Systems Genetics Working Group, Department of Genetics, Stellenbosch University , Stellenbosch, South Africa
| | - Collet Dandara
- 2 Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Louise Warnich
- 1 Systems Genetics Working Group, Department of Genetics, Stellenbosch University , Stellenbosch, South Africa
| |
Collapse
|
30
|
Dalwadi DA, Ozuna L, Harvey BH, Viljoen M, Schetz JA. Adverse Neuropsychiatric Events and Recreational Use of Efavirenz and Other HIV-1 Antiretroviral Drugs. Pharmacol Rev 2018; 70:684-711. [DOI: 10.1124/pr.117.013706] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
31
|
Polymorphisms in cytochrome P450 are associated with extensive efavirenz pharmacokinetics and CNS toxicities in an HIV cohort in Botswana. THE PHARMACOGENOMICS JOURNAL 2018; 18:678-688. [PMID: 29855606 PMCID: PMC6151142 DOI: 10.1038/s41397-018-0028-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 04/03/2018] [Accepted: 04/13/2018] [Indexed: 01/11/2023]
Abstract
Inter-individual variability in efavirenz (EFV) pharmacokinetics and dynamics are dominantly driven by the polymorphism in cytochrome P450 (CYP) isoenzyme 2B6 516G>T. We hypothesized that additional CYP polymorphisms mediate the relationship between CYP2B6 516G>T, EFV metabolism, and clinical events. We investigated 21 SNPs in 814 HIV-infected adults initiating EFV-based therapy in Botswana for population pharmacokinetics, CNS toxicities, and treatment outcomes. Two SNPs (rs28399499 and rs28399433) showed reduced apparent oral EFV clearance. Four SNPs (rs2279345, rs4803417, rs4802101, and rs61663607) showed extensive clearance. Composite CYP2B-mediated EFV metabolism was significantly associated with CNS toxicity (p=0.04), with extensive metabolizers reporting more and slow and very slow metabolizers reporting less toxicity after one month compared to intermediate metabolizers. Composite CYP2B6 metabolism was not associated with composite early treatment failure. In conclusion, our data suggest that CNS-related toxicities might not be solely the result of super-therapeutic parent EFV concentrations in HIV-infected individuals in patients of African ancestry.
Collapse
|
32
|
Stillemans G, Belkhir L, Hesselink DA, Haufroid V, Elens L. Pharmacogenetic associations with cytochrome P450 in antiretroviral therapy: what does the future hold? Expert Opin Drug Metab Toxicol 2018; 14:601-611. [PMID: 29775551 DOI: 10.1080/17425255.2018.1478964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Several antiretroviral drugs used to treat infection with the human immunodeficiency virus (HIV) are substrates of enzymes belonging to the cytochrome P450 (CYP) superfamily, which are polymorphically expressed. It may therefore be useful to take into account the genetic variation in these enzymes to predict the likelihood of anti-HIV treatment success, toxicity and the potential for drug-drug interactions. Areas covered: In this manuscript, the authors discuss the current state of knowledge regarding pharmacogenetic associations between CYP and all major antiretrovirals, as well as the importance of these associations. Expert opinion: While many pharmacogenetic associations for CYP have been described in the literature, replication studies are sometimes lacking. The implementation of this knowledge in clinical practice also remains difficult. Further efforts are required both to expand this field of knowledge and to enable its use in everyday clinical practice.
Collapse
Affiliation(s)
- Gabriel Stillemans
- a Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics , Louvain Drug Research Institute, Université catholique de Louvain , Brussels , Belgium.,b Louvain centre for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique , Université catholique de Louvain , Brussels , Belgium
| | - Leila Belkhir
- b Louvain centre for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique , Université catholique de Louvain , Brussels , Belgium.,c AIDS Reference Center, Department of Internal Medicine , Cliniques universitaires Saint-Luc, Université catholique de Louvain , Brussels , Belgium
| | - Dennis A Hesselink
- d Department of Internal Medicine, Division of Nephrology and Transplantation and Rotterdam Transplant Group. Erasmus MC , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Vincent Haufroid
- b Louvain centre for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique , Université catholique de Louvain , Brussels , Belgium.,e Department of Clinical Chemistry , Cliniques universitaires Saint-Luc , Brussels , Belgium
| | - Laure Elens
- a Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics , Louvain Drug Research Institute, Université catholique de Louvain , Brussels , Belgium.,b Louvain centre for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique , Université catholique de Louvain , Brussels , Belgium
| |
Collapse
|
33
|
Reay R, Dandara C, Viljoen M, Rheeders M. CYP2B6 Haplotype Predicts Efavirenz Plasma Concentration in Black South African HIV-1-Infected Children: A Longitudinal Pediatric Pharmacogenomic Study. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:465-473. [PMID: 28816644 DOI: 10.1089/omi.2017.0078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
South Africa has the highest burden of the human immunodeficiency virus (HIV) infection globally. Efavirenz (EFV), a frequently used drug against HIV infection, displays a relationship between drug concentration and pharmacodynamics effects clinically. However, haplotype-based genetic variation in drug metabolism in a pediatric sample has been little considered in a longitudinal long-term context. CYP2B6 plays a key role in variation of EFV plasma concentration through altered drug metabolism. We report here on a prospective clinical pharmacogenomics/pharmacokinetic study of Bantu-speaking children, importantly, over a period of 24 months post-initiation of EFV-based treatment in South Africa. We characterized the HIV-1-infected children (n = 60) for the CYP2B6 c.516G>T, c.785A>G, c.983T>C, and c.1459C>T single nucleotide polymorphisms (SNPs). These SNPs were determined using polymerase chain reaction/restricted fragment length polymorphism and SNaPshot genotyping. Longitudinal mid-dose EFV plasma concentrations were determined by LC-MS/MS and association analyses with genotypes and haplotypes at 1, 3, and 24 months were performed. The CYP2B6 c.516T/T genotype showed significantly higher EFV plasma concentrations (p < 0.001) compared to non 516T-allele carriers at all three time points. The minor allele frequencies (MAF) for CYP2B6 c.516T, c.785G, c.983C, and c.1459T were 0.410, 0.408, 0.110, and 0.000 respectively. Haplotypes were constructed using CYP2B6 c.516G>T,-c.785A>G and c.983T>C. The haplotype T-G-T presented with significantly increased EFV plasma concentrations compared to the reference G-A-T haplotype at 1, 3, and 24 months (p = 0.009; p = 0.003; p = 0.001), suggesting that the T-G-T haplotype predisposes a risk of EFV plasma concentrations >4 μg/mL. The clinical implications of these pharmacogenomics observations for EFV toxicity and treatment resistance warrant further future research.
Collapse
Affiliation(s)
- Riaan Reay
- 1 Division of Pharmacology, Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North-West University , Potchefstroom, South Africa
| | - Collet Dandara
- 2 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Michelle Viljoen
- 1 Division of Pharmacology, Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North-West University , Potchefstroom, South Africa
| | - Malie Rheeders
- 1 Division of Pharmacology, Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North-West University , Potchefstroom, South Africa
| |
Collapse
|
34
|
Chetty M, Cain T, Wedagedera J, Rostami-Hodjegan A, Jamei M. Application of Physiologically Based Pharmacokinetic (PBPK) Modeling Within a Bayesian Framework to Identify Poor Metabolizers of Efavirenz (PM), Using a Test Dose of Efavirenz. Front Pharmacol 2018; 9:247. [PMID: 29636682 PMCID: PMC5881162 DOI: 10.3389/fphar.2018.00247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/06/2018] [Indexed: 01/11/2023] Open
Abstract
Poor metabolisers of CYP2B6 (PM) require a lower dose of efavirenz because of serious adverse reactions resulting from the higher plasma concentrations associated with a standard dose. Treatment discontinuation is a common consequence in patients experiencing these adverse reactions. Such patients benefit from appropriate dose reduction, where efficacy can be achieved without the serious adverse reactions. PMs are usually identified by genotyping. However, in countries with limited resources genotyping is unaffordable. Alternative cost-effective methods of identifying a PM will be highly beneficial. This study was designed to determine whether a plasma concentration corresponding to a 600 mg test dose of efavirenz can be used to identify a PM. A physiologically based pharmacokinetic (PBPK) model was used to simulate the concentration-time profiles of a 600 mg dose of efavirenz in extensive metabolizers (EM), intermediate metabolizers (IM), and PM of CYP2B6. Simulated concentration-time data were used in a Bayesian framework to determine the probability of identifying a PM, based on plasma concentrations of efavirenz at a specific collection time. Results indicated that there was a high likelihood of differentiating a PM from other phenotypes by using a 24 h plasma concentration. The probability of correctly identifying a PM phenotype was 0.82 (true positive), while the probability of not identifying any other phenotype as a PM (false positive) was 0.87. A plasma concentration >1,000 ng/mL at 24 h post-dose is likely to be from a PM. Further verification of these findings using clinical studies is recommended.
Collapse
Affiliation(s)
- Manoranjenni Chetty
- Simcyp Ltd. (Certara), Blades Enterprise Centre, Sheffield, United Kingdom
- *Correspondence: Manoranjenni Chetty
| | - Theresa Cain
- Simcyp Ltd. (Certara), Blades Enterprise Centre, Sheffield, United Kingdom
| | - Janak Wedagedera
- Simcyp Ltd. (Certara), Blades Enterprise Centre, Sheffield, United Kingdom
| | - Amin Rostami-Hodjegan
- Simcyp Ltd. (Certara), Blades Enterprise Centre, Sheffield, United Kingdom
- Manchester Pharmacy School, Manchester University, Manchester, United Kingdom
| | - Masoud Jamei
- Simcyp Ltd. (Certara), Blades Enterprise Centre, Sheffield, United Kingdom
| |
Collapse
|
35
|
Tawe L, Motshoge T, Ramatlho P, Mutukwa N, Muthoga CW, Dongho GBD, Martinelli A, Peloewetse E, Russo G, Quaye IK, Paganotti GM. Human cytochrome P450 2B6 genetic variability in Botswana: a case of haplotype diversity and convergent phenotypes. Sci Rep 2018; 8:4912. [PMID: 29559695 PMCID: PMC5861095 DOI: 10.1038/s41598-018-23350-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 03/09/2018] [Indexed: 01/11/2023] Open
Abstract
Identification of inter-individual variability for drug metabolism through cytochrome P450 2B6 (CYP2B6) enzyme is important for understanding the differences in clinical responses to malaria and HIV. This study evaluates the distribution of CYP2B6 alleles, haplotypes and inferred metabolic phenotypes among subjects with different ethnicity in Botswana. A total of 570 subjects were analyzed for CYP2B6 polymorphisms at position 516 G > T (rs3745274), 785 A > G (rs2279343) and 983 T > C (rs28399499). Samples were collected in three districts of Botswana where the population belongs to Bantu (Serowe/Palapye and Chobe) and San-related (Ghanzi) ethnicity. The three districts showed different haplotype composition according to the ethnic background but similar metabolic inferred phenotypes, with 59.12%, 34.56%, 2.10% and 4.21% of the subjects having, respectively, an extensive, intermediate, slow and rapid metabolic profile. The results hint at the possibility of a convergent adaptation of detoxifying metabolic phenotypes despite a different haplotype structure due to the different genetic background. The main implication is that, while there is substantial homogeneity of metabolic inferred phenotypes among the country, the response to drugs metabolized via CYP2B6 could be individually associated to an increased risk of treatment failure and toxicity. These are important facts since Botswana is facing malaria elimination and a very high HIV prevalence.
Collapse
Affiliation(s)
- Leabaneng Tawe
- University of Botswana, Department of Medical Laboratory Sciences, Gaborone, Botswana.,Botswana-University of Pennsylvania Partnership, Gaborone, Botswana.,Sub-Saharan African Network for TB/HIV Research Excellence at Botswana-Harvard Partnership, Gaborone, Botswana
| | - Thato Motshoge
- University of Botswana, Department of Biological Sciences, Gaborone, Botswana
| | - Pleasure Ramatlho
- University of Botswana, Department of Biological Sciences, Gaborone, Botswana
| | - Naledi Mutukwa
- University of Botswana, Department of Pathology, Gaborone, Botswana
| | | | - Ghyslaine Bruna Djeunang Dongho
- Sapienza University of Rome, Department of Infectious Diseases and Public Health, Rome, Italy.,Evangelical University of Cameroon, Department of Biomedical Sciences, Bandjoun, Cameroon
| | - Axel Martinelli
- Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.,King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Elias Peloewetse
- University of Botswana, Department of Biological Sciences, Gaborone, Botswana
| | - Gianluca Russo
- Sapienza University of Rome, Department of Infectious Diseases and Public Health, Rome, Italy
| | - Isaac Kweku Quaye
- University of Namibia, Department of Biochemistry, Windhoek, Namibia
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana. .,University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA. .,University of Botswana, Department of Biomedical Sciences, Gaborone, Botswana.
| |
Collapse
|
36
|
Soeria-Atmadja S, Österberg E, Gustafsson LL, Dahl ML, Eriksen J, Rubin J, Navér L. Genetic variants in CYP2B6 and CYP2A6 explain interindividual variation in efavirenz plasma concentrations of HIV-infected children with diverse ethnic origin. PLoS One 2017; 12:e0181316. [PMID: 28886044 PMCID: PMC5590735 DOI: 10.1371/journal.pone.0181316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 06/29/2017] [Indexed: 12/13/2022] Open
Abstract
Background Approximately 2.6 million children live with HIV globally, and efavirenz (EFV) is one of the most widely used antiretroviral agents for HIV treatment in children and adults. There are concerns about the appropriateness of current EFV dosing and it has been discussed whether EFV dosing should be adapted according to genotype in children as suggested for adults. Aim To investigate if pediatric EFV dosing should be guided by genetic variation in drug metabolizing enzymes rather than by body weight. Method EFV plasma concentrations measured for clinical purposes from all children less than 18 years old at Karolinska University Hospital, Stockholm, Sweden, treated with EFV were collected retrospectively. They were genotyped for eleven polymorphisms in genes coding for drug-metabolizing enzymes and P-glycoprotein, of potential importance for EFV disposition. Data on country of origin, sex, age, weight, HIV RNA, viral resistance patterns, CD4 cells, adherence to treatment, subjective health status and adverse events were collected from their medical records. Results Thirty-six patients and 182 (mean 5 samples/patient) EFV plasma concentration measurements from children of African, Asian and Latin American origin were included. EFV plasma concentration varied 21-fold between measurements (n = 182) (0.85–19.3 mg/L) and 9-fold measured as mean EFV plasma concentration across the subjects (1.55–13.4 mg/L). A multivariate mixed-effects restricted maximum likelihood regression model, including multiple gene polymorphisms, identified CYP2B6*6 T/T (p < 0.0005), CYP2B6*11 G/G (p < 0.0005), CYP2A6*9 A/C (p = 0.001) genotypes, age at treatment initiation (p = 0.002) and time from treatment initiation (p < 0.0005) as independent factors significantly related to loge concentration/(dose/weight). The contribution of the model to the intra- and interindividual variation were 6 and 75%, respectively (Bryk/Raudenbush R-squared level). Conclusion Genetic polymorphisms in CYP2B6 and CYP2A6 explained a significant proportion of variability in EFV plasma concentration in HIV-infected children in a multi-ethnic outpatient clinic. Knowledge about individual variants in key drug metabolizing enzyme genes could improve clinical safety and genotype directed dosing could achieve more predictable EFV plasma concentrations in HIV-infected children.
Collapse
Affiliation(s)
- Sandra Soeria-Atmadja
- Department of Pediatrics, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Emma Österberg
- Department of Pediatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Lars L Gustafsson
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marja-Liisa Dahl
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jaran Eriksen
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Rubin
- Department of Pediatrics, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Lars Navér
- Department of Pediatrics, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Disease burden and the role of pharmacogenomics in African populations. GLOBAL HEALTH EPIDEMIOLOGY AND GENOMICS 2017; 2:e1. [PMID: 29868213 PMCID: PMC5870420 DOI: 10.1017/gheg.2016.21] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 12/15/2022]
Abstract
Background The burden of communicable and non-communicable diseases in Sub-Saharan Africa poses a challenge in achieving quality healthcare. Although therapeutic drugs have generally improved health, their efficacy differs from individual to individual. Variability in treatment response is mainly because of genetic variants that affect the pharmacokinetics and pharmacodynamics of drugs. Method The intersection of disease burden and therapeutic intervention is reviewed, and the status of pharmacogenomics knowledge in African populations is explored. Results The most commonly studied variants with pharmacogenomics relevance are discussed, especially in genes coding for enzymes that affect the response to drugs used for HIV, malaria, sickle cell disease and cardiovascular diseases. Conclusions The genetically diverse African population is likely to benefit from a pharmacogenomics-based healthcare approach, especially with respect to reduction of drug side effects, and separation of responders and non-responders leading to optimized drug choices and doses for each patient.
Collapse
|
38
|
Abstract
After the introduction of highly active antiretroviral therapy in the 1990s, the perception of the diagnosis of HIV infection gradually shifted from a 'death sentence' to a chronic disease requiring long-term treatment. The host genetic variability has been shown to play a relevant role in both antiretroviral drugs bioavailability and adverse effects susceptibility. Knowledge about pharmacogenetics role in HIV infection treatment has largely increased over the last years, and is reviewed in the present report, as well as future perspectives for the inclusion of pharmacogenetics information in the directing of HIV infection treatment.
Collapse
Affiliation(s)
- Vanessa S Mattevi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Carmela Fs Tagliari
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
39
|
Pharmacokinetic, Pharmacogenetic, and Other Factors Influencing CNS Penetration of Antiretrovirals. AIDS Res Treat 2016; 2016:2587094. [PMID: 27777797 PMCID: PMC5061948 DOI: 10.1155/2016/2587094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/21/2016] [Indexed: 12/22/2022] Open
Abstract
Neurological complications associated with the human immunodeficiency virus (HIV) are a matter of great concern. While antiretroviral (ARV) drugs are the cornerstone of HIV treatment and typically produce neurological benefit, some ARV drugs have limited CNS penetration while others have been associated with neurotoxicity. CNS penetration is a function of several factors including sieving role of blood-brain and blood-CSF barriers and activity of innate drug transporters. Other factors are related to pharmacokinetics and pharmacogenetics of the specific ARV agent or mediated by drug interactions, local inflammation, and blood flow. In this review, we provide an overview of the various factors influencing CNS penetration of ARV drugs with an emphasis on those commonly used in sub-Saharan Africa. We also summarize some key associations between ARV drug penetration, CNS efficacy, and neurotoxicity.
Collapse
|
40
|
Gwaza L, Gordon J, Welink J, Potthast H, Leufkens H, Stahl M, García-Arieta A. Interchangeability between first-line generic antiretroviral products prequalified by WHO using adjusted indirect comparisons. Antivir Ther 2016; 22:135-144. [PMID: 27646863 DOI: 10.3851/imp3089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND The scaling-up of access to antiretroviral therapy, particularly in low- to middle-income countries, was facilitated by the introduction and widespread use of generic antiretroviral medicines and fixed-dose combinations. Generic medicines are approved by regulatory authorities based on the demonstration of bioequivalence with the innovator or reference product, as well as meeting quality standards. In clinical practice, however, it is not unusual for generics to be interchanged between each other. This study investigated the differences in bioavailability between WHO-prequalified first-line antiretroviral generics by means of adjusted indirect comparisons to ensure interchangeability between these generics. METHODS Data on 34 products containing emtricitabine, tenofovir disoproxil fumarate, lamivudine and efavirenz in single formulations or fixed-dose combinations were included in the analysis. The 90% CI for the adjusted indirect comparisons was calculated using the homoscedastic method that uses the conventional t-test, and assumes homogeneity of variances between the studies and small sample sizes. The combined standard deviation of both bioequivalence studies was calculated from the variability of each individual study. RESULTS The adjusted indirect comparisons between generics showed that the differences, expressed as 90% CIs, are less than 30%. Confidence in the interchangeability of two generic products was reduced if the mean difference between the test and reference in the original studies is more than 10%. CONCLUSIONS From a bioequivalence perspective, the generic antiretroviral medicines prequalified by WHO are interchangeable with the reference, as well as between each other without safety or efficacy concerns.
Collapse
Affiliation(s)
- Luther Gwaza
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht, the Netherlands.,Medicines Control Authority of Zimbabwe, Harare, Zimbabwe
| | - John Gordon
- Division of Biopharmaceutics Evaluation, Bureau of Pharmaceutical Sciences, Therapeutic Products Directorate, Health Canada, Ottawa, Canada
| | - Jan Welink
- Medicines Evaluation Board, Utrecht, the Netherlands
| | - Henrike Potthast
- Sub department of Biostatistics and Pharmacokinetics, Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Hubert Leufkens
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht, the Netherlands.,Medicines Evaluation Board, Utrecht, the Netherlands
| | - Matthias Stahl
- The Prequalification of Medicines Programme Quality Assurance and Safety: Medicines, Essential Medicines and Health Products, World Health Organization, Geneva, Switzerland
| | - Alfredo García-Arieta
- División de Farmacología y Evaluación Clínica, Departamento de Medicamentos de Uso Humano, Agencia Española de Medicamentos y Productos Sanitarios, Madrid, Spain
| |
Collapse
|
41
|
Masimirembwa C, Dandara C, Leutscher PDC. Rolling out Efavirenz for HIV Precision Medicine in Africa: Are We Ready for Pharmacovigilance and Tackling Neuropsychiatric Adverse Effects? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:575-580. [PMID: 27627692 DOI: 10.1089/omi.2016.0120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The introduction of antiretroviral therapy (ART) led to huge reductions in human immunodeficiency virus (HIV)-related deaths, turning HIV-infection into a chronic condition. Attention is now turning to quality of life for patients on lifelong ART treatment, reflecting on the safety of antiretroviral drugs. In sub-Saharan Africa, efavirenz (EFV) forms the preferred first-line ART but adverse drug events have also been reported. We express our concern on EFV-based regimens being part of mass rollout programs without full attention to toxicities. EFV is associated with various neuropsychiatric adverse events (AEs). If EFV use is not monitored, a huge burden of neuropsychiatric AEs and elevated risk of drug resistance due to nonadherence are likely to follow. A monumental EFV-based ART regimen rollout program, through the UNAIDS 90-90-90 and option B plus programs/approaches, is planned, which will more than double the number of patients on EFV-containing ART. According to this ambitious treatment target, by 2020, 90% of all people living with HIV will know their HIV status; 90% of all people with diagnosed HIV infection will receive sustained ART; and 90% of all people receiving ART will have viral suppression. On the other hand, HIV patients of African origin are predisposed to developing EFV-induced neuropsychiatric AEs due to specific CYP2B6 genetic variants causing impaired metabolism of EFV. It is our considered opinion that the potential quantitative and qualitative burden of EFV-induced neuropsychiatric AEs, which can vary from person-to-person and between populations, deserve special attention and action during the ART rollout program. We here make a case for Africa in particular where we project the burden of neuropsychiatric AEs to be greatest. We advocate for surveillance of neuropsychiatric AEs due to EFV therapy, incorporation of pharmacogenetics testing for CYP2B6 to assist in EFV dosing, and measurement of plasma EFV concentration, as a three-pronged rational therapeutic drug monitoring strategy to guide EFV treatment toward precision medicine.
Collapse
Affiliation(s)
- Collen Masimirembwa
- 1 Department of Drug Metabolism and Pharmacokinetics & Medical Analytics, African Institute of Biomedical Science and Technology , Harare, Zimbabwe .,2 Division of Clinical Pharmacology, Department of Medicine, University of Cape Town , Cape Town, South Africa
| | - Collet Dandara
- 3 Division of Human Genetics, Department of Pathology, Faculty of Healthy Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | | |
Collapse
|
42
|
Stingl JC. Pharmacogenetic biomarkers for companion and complementary diagnostics: challenges for clinical practice and regulation. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1223526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Evans J, Swart M, Soko N, Wonkam A, Huzair F, Dandara C. A Global Health Diagnostic for Personalized Medicine in Resource-Constrained World Settings: A Simple PCR-RFLP Method for Genotyping CYP2B6 g.15582C>T and Science and Policy Relevance for Optimal Use of Antiretroviral Drug Efavirenz. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 19:332-8. [PMID: 26415139 DOI: 10.1089/omi.2015.0039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The use of pharmacogenomics (PGx) knowledge in treatment of individual patients is becoming a common phenomenon in the developed world. However, poorly resourced countries have thus far been constrained for three main reasons. First, the cost of whole genome sequencing is still considerably high in comparison to other (non-genomics) diagnostics in the developing world where both science and social dynamics create a dynamic and fragile healthcare ecosystem. Second, studies correlating genomic differences with drug pharmacokinetics and pharmacodynamics have not been consistent, and more importantly, often not indexed to impact on societal end-points, beyond clinical practice. Third, ethics regulatory frames over PGx testing require improvements based on nested accountability systems and in ways that address the user community needs. Thus, CYP2B6 is a crucial enzyme in the metabolism of antiretroviral drugs, efavirenz and nevirapine. More than 40 genetic variants have been reported, but only a few contribute to differences in plasma EFV and NVP concentrations. The most widely reported CYP2B6 variants affecting plasma drug levels include c.516G>T, c.983T>C, and to a lesser extent, g.15582C>T, which should be considered in future PGx tests. While the first two variants are easily characterized, the g.15582C>T detection has been performed primarily by sequencing, which is costly, labor intensive, and requires access to barely available expertise in the developing world. We report here on a simple, practical PCR-RFLP method with vast potentials for use in resource-constrained world regions to detect the g.15582C>T variation among South African and Cameroonian persons. The effects of CYP2B6 g.15582C>T on plasma EFV concentration were further evaluated among HIV/AIDS patients. We report no differences in the frequency of the g.15582T variant between the South African (0.08) and Cameroonian (0.06) groups, which are significantly lower than reported in Asians (0.39) and Caucasians (0.31). The g.15582C/T and T/T genotypes were associated with significantly reduced EFV levels (p=0.006). This article additionally presents the policy relevance of the PGX global health diagnostics and therefore, collectively makes an original interdisciplinary contribution to the field of integrative biology and personalized medicine in developing world. Such studies are, in fact, broadly important because resource-constrained regions exist not only in developing world but also in major geographical parts of the G20 nations and the developed countries.
Collapse
Affiliation(s)
- Jonathan Evans
- 1 Pharmacogenetics and Cancer Research Group, Division of Human Genetics, Department of Clinical Laboratory Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Marelize Swart
- 1 Pharmacogenetics and Cancer Research Group, Division of Human Genetics, Department of Clinical Laboratory Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Nyarai Soko
- 1 Pharmacogenetics and Cancer Research Group, Division of Human Genetics, Department of Clinical Laboratory Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Ambroise Wonkam
- 1 Pharmacogenetics and Cancer Research Group, Division of Human Genetics, Department of Clinical Laboratory Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Farah Huzair
- 2 Science, Technology and Innovation Studies, School of Social and Political Science, University of Edinburgh , Edinburgh, United Kingdom
| | - Collet Dandara
- 1 Pharmacogenetics and Cancer Research Group, Division of Human Genetics, Department of Clinical Laboratory Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| |
Collapse
|
44
|
Röhrich CR, Drögemöller BI, Ikediobi O, van der Merwe L, Grobbelaar N, Wright GE, McGregor N, Warnich L. CYP2B6*6 and CYP2B6*18 Predict Long-Term Efavirenz Exposure Measured in Hair Samples in HIV-Positive South African Women. AIDS Res Hum Retroviruses 2016; 32:529-38. [PMID: 26655325 DOI: 10.1089/aid.2015.0048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Long-term exposure to efavirenz (EFV) measured in hair samples may predict response to antiretroviral treatment (ART). Polymorphisms in CYP2B6 are known to alter EFV levels. The aim of this study was to assess the relationship between CYP2B6 genotype, EFV levels measured in hair, and virological outcomes on ART in a real-world setting. We measured EFV levels in hair from HIV-positive South African females who had been receiving EFV-based treatment for at least 3 months from the South African Black (SAB) (n = 81) and Cape Mixed Ancestry (CMA) (n = 53) populations. Common genetic variation in CYP2B6 was determined in 15 individuals from each population using bidirectional Sanger sequencing. Prioritized variants (n = 16) were subsequently genotyped in the entire patient cohort (n = 134). The predictive value of EFV levels in hair and selected variants in CYP2B6 on virological treatment outcomes was assessed. Previously described alleles (CYP2B6*2, CYP2B6*5, CYP2B6*6, CYP2B6*17, and CYP2B6*18), as well as two novel alleles (CYP2B6*31 and CYP2B6*32), were detected in this study. Compared to noncarriers, individuals homozygous for CYP2B6*6 had ∼109% increased EFV levels in hair (p = .016) and CYP2B6*18 heterozygotes demonstrated 82% higher EFV hair levels (p = .0006). This study confirmed that alleles affecting CYP2B6 metabolism and subsequent EFV exposure are present at significant frequencies in both the SAB and CMA populations. Furthermore, this study demonstrated that the use of hair samples for testing EFV concentrations may be a useful tool in determining long-term drug exposure in resource-limited countries.
Collapse
Affiliation(s)
- Carola R. Röhrich
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | | | - Ogechi Ikediobi
- Departments of Pharmacy, University of California San Francisco, UCSF, San Francisco, California
| | - Lize van der Merwe
- Department of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg, South Africa
- Department of Statistics, University of Western Cape, Bellville, South Africa
| | | | - Galen E.B. Wright
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Nathaniel McGregor
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
- Department of Psychiatry, Stellenbosch University, Tygerberg, South Africa
| | - Louise Warnich
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
45
|
Mpeta B, Kampira E, Castel S, Mpye KL, Soko ND, Wiesner L, Smith P, Skelton M, Lacerda M, Dandara C. Differences in genetic variants in lopinavir disposition among HIV-infected Bantu Africans. Pharmacogenomics 2016; 17:679-90. [PMID: 27142945 DOI: 10.2217/pgs.16.14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Variability in lopinavir (LPV) plasma concentration among patients could be due to genetic polymorphisms. This study set to evaluate significance of variants in CYP3A4/5, SLCO1B1 and ABCC2 on LPV plasma concentration among African HIV-positive patients. MATERIALS & METHODS Eighty-six HIV-positive participants on ritonavir (LPV/r) were genetically characterized and LPV plasma concentration determined. RESULTS & DISCUSSION LPV plasma concentrations differed >188-fold (range 0.0206-38.6 µg/ml). Both CYP3A4*22 and SLCO1B1 rs4149056G (c.521C) were not observed in this cohort. CYP3A4*1B, CYP3A5*3, CYP3A5*6 and ABCC2 c.1249G>A which have been associated with LPV plasma concentration, showed no significant association. CONCLUSION These findings highlight the need to include African groups in genomics research to identify variants of pharmacogenomics significance.
Collapse
Affiliation(s)
- Bafokeng Mpeta
- Division of Human Genetics, Department of Pathology (formerly Clinical Laboratory Sciences) & Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Elizabeth Kampira
- Malawi College of Health Sciences, University of Malawi, Blantyre, Malawi
| | - Sandra Castel
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Keleabetswe L Mpye
- Division of Human Genetics, Department of Pathology (formerly Clinical Laboratory Sciences) & Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Nyarai D Soko
- Division of Human Genetics, Department of Pathology (formerly Clinical Laboratory Sciences) & Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Peter Smith
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Michelle Skelton
- Division of Human Genetics, Department of Pathology (formerly Clinical Laboratory Sciences) & Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Miguel Lacerda
- Department of Statistical Sciences, Faculty of Science, University of Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology (formerly Clinical Laboratory Sciences) & Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| |
Collapse
|
46
|
Pinillos F, Dandara C, Swart M, Strehlau R, Kuhn L, Patel F, Coovadia A, Abrams E. Case report: Severe central nervous system manifestations associated with aberrant efavirenz metabolism in children: the role of CYP2B6 genetic variation. BMC Infect Dis 2016; 16:56. [PMID: 26831894 PMCID: PMC4735961 DOI: 10.1186/s12879-016-1381-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/25/2016] [Indexed: 01/11/2023] Open
Abstract
Background Efavirenz, widely used as part of antiretroviral drug regimens in the treatment of paediatric human immunodeficiency virus infection, has central nervous system side effects. We describe four children presenting with serious, persistent central nervous system adverse events who were found to have elevated plasma efavirenz concentrations as a result of carrying CYP2B6 single nucleotide polymorphisms, known to play a role in the metabolism of EFV. None of the children had a CYP2B6 wildtype haplotype. We believe this is the first case of cerebellar dysfunction associated with efavirenz use to be described in children. Case presentation Four black African children, between the ages of 4 and 8 years presenting between 1 and 20 months post-efavirenz initiation, are described. Cerebellar dysfunction, generalised seizures and absence seizures were the range of presenting abnormalities. Plasma efavirenz levels ranged from 20-60 mg/L, 5–15 times the upper limit of the suggested reference range. All abnormal central nervous system manifestations abated after efavirenz discontinuation. Conclusion Efavirenz toxicity should always be considered in human immunodeficiency virus-infected children with unexplained central nervous system abnormalities. Our findings further our understanding of the impact of genetic variants on antiretroviral pharmacokinetics in children across various ethnic groups. Screening for potential EFV-toxicity based on the CYP2B6 c.516 SNP alone, may not be adequate.
Collapse
Affiliation(s)
- Francoise Pinillos
- Empilweni Services and Research Unit (ESRU), Rahima Moosa Mother and Child Hospital, Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Collet Dandara
- Pharmacogenetics and Cancer Research Group, Division of Human Genetics, Department of Pathology & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Marelize Swart
- Pharmacogenetics and Cancer Research Group, Division of Human Genetics, Department of Pathology & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Renate Strehlau
- Empilweni Services and Research Unit (ESRU), Rahima Moosa Mother and Child Hospital, Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Louise Kuhn
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons; and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Faeezah Patel
- Empilweni Services and Research Unit (ESRU), Rahima Moosa Mother and Child Hospital, Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ashraf Coovadia
- Empilweni Services and Research Unit (ESRU), Rahima Moosa Mother and Child Hospital, Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Elaine Abrams
- ICAP, Mailman School of Public Health, and College of Physicians & Surgeons Columbia University, 722 W168th street, New York, NY, 10032, USA.
| |
Collapse
|
47
|
Swart M, Evans J, Skelton M, Castel S, Wiesner L, Smith PJ, Dandara C. An Expanded Analysis of Pharmacogenetics Determinants of Efavirenz Response that Includes 3'-UTR Single Nucleotide Polymorphisms among Black South African HIV/AIDS Patients. Front Genet 2016; 6:356. [PMID: 26779253 PMCID: PMC4703773 DOI: 10.3389/fgene.2015.00356] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/10/2015] [Indexed: 01/11/2023] Open
Abstract
Introduction: Efavirenz (EFV) is a non-nucleoside reverse transcriptase inhibitor prescribed as part of first-line highly active antiretroviral therapy (HAART) in South Africa. Despite administration of fixed doses of EFV, inter-individual variability in plasma concentrations has been reported. Poor treatment outcomes such as development of adverse drug reactions or treatment failure have been linked to EFV plasma concentrations outside the therapeutic range (1–4 μg/mL) in some studies. The drug metabolizing enzyme (DME), CYP2B6, is primarily responsible for EFV metabolism with minor contributions by CYP1A2, CYP2A6, CYP3A4, CYP3A5, and UGT2B7. DME coding genes are also regulated by microRNAs through targeting the 3′-untranslated region. Expanded analysis of 30 single nucleotide polymorphisms (SNPs), including those in the 3′-UTR, was performed to identify pharmacogenetics determinants of EFV plasma concentrations in addition to CYP2B6 c.516G>T and c.983T>C SNPs. Methods: SNPs in CYP1A2, CYP2B6, UGT2B7, and NR1I2 (PXR) were selected for genotyping among 222 Bantu-speaking South African HIV-infected patients receiving EFV-containing HAART. This study is a continuation of earlier pharmacogenetics studies emphasizing the role of genetic variation in the 3′-UTR of genes which products are either pharmacokinetic or pharmacodynamic targets of EFV. Results: Despite evaluating thirty SNPs, CYP2B6 c.516G>T and c.983T>C SNPs remain the most prominent predictors of EFV plasma concentration. Conclusion: We have shown that CYP2B6 c.516G>T and c.983T>C SNPs are the most important predictors of EFV plasma concentration after taking into account all other SNPs, including genetic variation in the 3′-UTR, and variables affecting EFV metabolism.
Collapse
Affiliation(s)
- Marelize Swart
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| | - Jonathan Evans
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| | - Michelle Skelton
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| | - Sandra Castel
- Division of Clinical Pharmacology, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| | - Peter J Smith
- Division of Clinical Pharmacology, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| |
Collapse
|
48
|
Russo G, Paganotti GM, Soeria-Atmadja S, Haverkamp M, Ramogola-Masire D, Vullo V, Gustafsson LL. Pharmacogenetics of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in resource-limited settings: Influence on antiretroviral therapy response and concomitant anti-tubercular, antimalarial and contraceptive treatments. INFECTION GENETICS AND EVOLUTION 2015; 37:192-207. [PMID: 26602158 DOI: 10.1016/j.meegid.2015.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 01/11/2023]
Abstract
The burden of human immunodeficiency virus (HIV) is mainly concentrated to resources-limited countries where the response to available antiretroviral therapy is often limited by the occurrence of toxicity or by the emergence of HIV drug resistance. Efavirenz and nevirapine are the antiretroviral drugs most prescribed in resources-limited countries as part of antiretroviral combination therapy. Their metabolism and conjugation are largely influenced by enzymatic genetic polymorphisms. The genetic variability of their metabolism could be associated to different metabolic phenotypes causing reduced patients' adherence because of toxicity or drug-drug interactions with concomitant therapies. The purpose of this review is to summarize published evidence on pharmacogenetic and pharmacokinetic aspects related to efavirenz and nevirapine, the influence of concomitant anti-tubercular, anti-malarial or contraceptive treatments, and the impact of human genetic variation and drug-drug interaction on the virologic and immunologic response to antiretroviral therapy in resources-limited countries.
Collapse
Affiliation(s)
- Gianluca Russo
- Department of Public Health and Infectious Diseases, University "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, P.O. Box AC 157 ACH, Gaborone, Botswana; Medical Education Partnership Laboratory, c/o Faculty of Medicine, University of Botswana, Pvt Bag 00713, Gaborone, Botswana.
| | - Sandra Soeria-Atmadja
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, B57, SE-141 86, Stockholm, Sweden
| | - Miriam Haverkamp
- Botswana-University of Pennsylvania Partnership, P.O. Box AC 157 ACH, Gaborone, Botswana
| | - Doreen Ramogola-Masire
- Botswana-University of Pennsylvania Partnership, P.O. Box AC 157 ACH, Gaborone, Botswana
| | - Vincenzo Vullo
- Department of Public Health and Infectious Diseases, University "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy
| | - Lars Lennart Gustafsson
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, SE-141 86, Stockholm, Sweden
| |
Collapse
|
49
|
Mukonzo JK, Nanzigu S, Waako P, Ogwal-Okeng J, Gustafson LL, Aklillu E. CYP2B6 genotype, but not rifampicin-based anti-TB cotreatments, explains variability in long-term efavirenz plasma exposure. Pharmacogenomics 2015; 15:1423-35. [PMID: 25303294 DOI: 10.2217/pgs.14.73] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIM We investigated the effects of rifampicin-based anti-TB treatment on plasma efavirenz exposure and the implications of CYP2B6 genotype. PATIENTS & METHODS Antiretroviral therapy-naive Ugandan HIV patients without (n = 157) or with TB coinfection (n = 106) were enrolled and treated with efavirenz-based highly active antiretroviral therapy alone or with rifampicin-based anti-TB therapy, respectively. Efavirenz plasma concentration was determined on day 3 and weeks 1, 2, 8, 12, 16, 20, 24, 28 and 32. RESULTS Rifampicin-based anti-TB cotreatment reduced plasma efavirenz exposure during the first 2 weeks (p < 0.05), but no significant effect was observed afterwards. Although not significant, rifampicin-based anti-TB cotreatment inconsistently increased efavirenz exposure over time, which was reduced immediately after completing anti-TB therapy. CYP2B6*6, *11 and ABCB1 c.4036A>G genotypes were significant predictors of efavirenz plasma exposure. CONCLUSION Plasma efavirenz exposure is mainly influenced by CYP2B6 genotype, but not by rifampicin cotreatment. Therefore, no efavirenz dosage adjustment during rifampicin cotreatment is required in Ugandans.
Collapse
Affiliation(s)
- Jackson K Mukonzo
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, C-168 SE-141 86 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
50
|
Gengiah TN, Botha JH, Yende-Zuma N, Naidoo K, Abdool Karim SS. Efavirenz dosing: influence of drug metabolizing enzyme polymorphisms and concurrent tuberculosis treatment. Antivir Ther 2015; 20:297-306. [PMID: 25318122 DOI: 10.3851/imp2877] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Rifampicin-based tuberculosis (TB) treatment alters efavirenz (EFV) clearance. Polymorphisms in important drug metabolizing enzymes and the implications for EFV dosing were investigated. METHODS Trough EFV concentrations (Cmin) were measured in 54 South African black patients. During TB treatment, EFV dose was 600 mg in patients <50 kg or 800 mg if ≥50 kg. Off TB treatment it was 600 mg. Polymorphisms in CYP2B6, CYP2A6 and UGT2B7 enzymes were sequenced. A multivariate generalized estimating equations model was fitted to assess predictors of high median EFV Cmin. RESULTS During TB treatment, median EFV Cmin was 3.2 (IQR 2.6-6.3) µg/ml and 3.3 (2.4-9.5) µg/ml in the 800 mg and 600 mg groups, respectively. After TB treatment EFV Cmin was 2.0 (1.4-3.5) µg/ml. Minor allele frequencies for CYP2B6 516G→T, 785A→G, 983T→C, UGT2B7-372G→A, CYP2A6*9B and CYP2A6*17 were 0.31, 0.33, 0.23, 0.29, 0.10 and 0.02, respectively. Haplotypes CYP2B6*6 and CYP2B6*18 were found in 38.9% and 25.9% of patients, respectively. Polymorphisms in all three CYP2B6 genes studied (516T-785G-983C) were present in 11.1% of patients and in this group median EFV Cmin was 19.2 (IQR 9.5-20) µg/ml during and 4.7 (IQR 3.5-5.6) µg/ml after TB treatment. The presence of TB treatment and composite genotypes CYP2B6 516 GT/TT, CYP2B6 983 TC/CC and CYP2A6*9B carrier status predicted median EFV Cmin>4 µg/ml. Adverse events due to high EFV concentrations were rare. CONCLUSIONS Because polymorphisms of EFV metabolizing enzymes are frequent and are associated with elevated EFV concentrations in this population, EFV dose increases are unnecessary when concomitant rifampicin-containing TB treatment is prescribed.
Collapse
Affiliation(s)
- Tanuja N Gengiah
- CAPRISA - Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa.
| | | | | | | | | |
Collapse
|