1
|
Derivry L, Callot D, Gana I, Oualha M, Klifa R, Bougnoux ME, Lanternier F, Benaboud S, Vedrenne-Cloquet M. Drug-drug interaction and inadequate exposure to voriconazole in critically ill patients with multiple organ failure: A pediatric case study. Therapie 2024; 79:616-619. [PMID: 38729827 DOI: 10.1016/j.therap.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/04/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Affiliation(s)
- Lucille Derivry
- Service de réanimation et surveillance continue médicochirurgicales pédiatrique, hôpital Necker-Enfants-Malades, AP-HP, Université Paris Cité, 75000 Paris, France
| | - Delphine Callot
- Centre régional de pharmacovigilance, service de pharmacologie clinique, hôpital Cochin, AP-HP, Université Paris Cité, 75000 Paris, France
| | - Inès Gana
- EA7323, évaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, université Paris Cité, 75000 Paris, France; Service de pharmacologie clinique, hôpital Cochin, AP-HP, université Paris Cité, 75000 Paris, France
| | - Mehdi Oualha
- Service de réanimation et surveillance continue médicochirurgicales pédiatrique, hôpital Necker-Enfants-Malades, AP-HP, Université Paris Cité, 75000 Paris, France; EA7323, évaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, université Paris Cité, 75000 Paris, France
| | - Roman Klifa
- Service de réanimation pédiatrique, hôpital universitaire Pellegrin, université de Bordeaux, 33000 Bordeaux, France
| | - Marie-Elisabeth Bougnoux
- Service de mycologie-parasitologie, hôpital Necker-Enfants-Malades, AP-HP, université Paris Cité, 75000 Paris, France
| | - Fanny Lanternier
- Service de maladies infectieuses et tropicales, hôpital Necker-Enfants-Malades, AP-HP, université Paris Cité, 75000 Paris, France
| | - Sihem Benaboud
- EA7323, évaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, université Paris Cité, 75000 Paris, France; Service de pharmacologie clinique, hôpital Cochin, AP-HP, université Paris Cité, 75000 Paris, France
| | - Meryl Vedrenne-Cloquet
- Service de réanimation et surveillance continue médicochirurgicales pédiatrique, hôpital Necker-Enfants-Malades, AP-HP, Université Paris Cité, 75000 Paris, France.
| |
Collapse
|
2
|
Wang Y, Ye Q, Li P, Huang L, Qi Z, Chen W, Zhan Q, Wang C. Renal Replacement Therapy as a New Indicator of Voriconazole Clearance in a Population Pharmacokinetic Analysis of Critically Ill Patients. Pharmaceuticals (Basel) 2024; 17:665. [PMID: 38931333 PMCID: PMC11206427 DOI: 10.3390/ph17060665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
AIMS The pharmacokinetic (PK) profiles of voriconazole in intensive care unit (ICU) patients differ from that in other patients. We aimed to develop a population pharmacokinetic (PopPK) model to evaluate the effects of using extracorporeal membrane oxygenation (ECMO) and continuous renal replacement therapy (CRRT) and those of various biological covariates on the voriconazole PK profile. METHODS Modeling analyses of the PK parameters were conducted using the nonlinear mixed-effects modeling method (NONMEM) with a two-compartment model. Monte Carlo simulations (MCSs) were performed to observe the probability of target attainment (PTA) when receiving CRRT or not under different dosage regimens, different stratifications of quick C-reactive protein (qCRP), and different minimum inhibitory concentration (MIC) ranges. RESULTS A total of 408 critically ill patients with 746 voriconazole concentration-time data points were included in this study. A two-compartment population PK model with qCRP, CRRT, creatinine clearance rate (CLCR), platelets (PLT), and prothrombin time (PT) as fixed effects was developed using the NONMEM. CONCLUSIONS We found that qCRP, CRRT, CLCR, PLT, and PT affected the voriconazole clearance. The most commonly used clinical regimen of 200 mg q12h was sufficient for the most common sensitive pathogens (MIC ≤ 0.25 mg/L), regardless of whether CRRT was performed and the level of qCRP. When the MIC was 0.5 mg/L, 200 mg q12h was insufficient only when the qCRP was <40 mg/L and CRRT was performed. When the MIC was ≥2 mg/L, a dose of 300 mg q12h could not achieve ≥ 90% PTA, necessitating the evaluation of a higher dose.
Collapse
Affiliation(s)
- Yuqiong Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China; (Y.W.); (C.W.)
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Qinghua Ye
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Pengmei Li
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China;
| | - Linna Huang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Zhijiang Qi
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Wenqian Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China;
| | - Qingyuan Zhan
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China; (Y.W.); (C.W.)
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Chen Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China; (Y.W.); (C.W.)
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
3
|
Novy E, Roger C, Roberts JA, Cotta MO. Pharmacokinetic and pharmacodynamic considerations for antifungal therapy optimisation in the treatment of intra-abdominal candidiasis. Crit Care 2023; 27:449. [PMID: 37981676 PMCID: PMC10659066 DOI: 10.1186/s13054-023-04742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
Intra-abdominal candidiasis (IAC) is one of the most common of invasive candidiasis observed in critically ill patients. It is associated with high mortality, with up to 50% of deaths attributable to delays in source control and/or the introduction of antifungal therapy. Currently, there is no comprehensive guidance on optimising antifungal dosing in the treatment of IAC among the critically ill. However, this form of abdominal sepsis presents specific pharmacokinetic (PK) alterations and pharmacodynamic (PD) challenges that risk suboptimal antifungal exposure at the site of infection in critically ill patients. This review aims to describe the peculiarities of IAC from both PK and PD perspectives, advocating an individualized approach to antifungal dosing. Additionally, all current PK/PD studies relating to IAC are reviewed in terms of strength and limitations, so that core elements for the basis of future research can be provided.
Collapse
Affiliation(s)
- Emmanuel Novy
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus Herston, Brisbane, QLD, 4029, Australia
- Department of Anaesthesiology, Critical Care and Peri-Operative Medicine, University Hospital of Nancy, Nancy, France
- Université de Lorraine, SIMPA, 54500, Nancy, France
| | - Claire Roger
- Department of Anesthesiology, Critical Care, Pain and Emergency Medicine, Nimes University Hospital, Place du Professeur Robert Debré, 30029, Nîmes Cedex 9, France
- UR UM103 IMAGINE, Univ Montpellier, Montpellier, France
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus Herston, Brisbane, QLD, 4029, Australia.
- Department of Anesthesiology, Critical Care, Pain and Emergency Medicine, Nimes University Hospital, Place du Professeur Robert Debré, 30029, Nîmes Cedex 9, France.
- Department of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia.
| | - Menino Osbert Cotta
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus Herston, Brisbane, QLD, 4029, Australia
| |
Collapse
|
4
|
Lyster H, Shekar K, Watt K, Reed A, Roberts JA, Abdul-Aziz MH. Antifungal Dosing in Critically Ill Patients on Extracorporeal Membrane Oxygenation. Clin Pharmacokinet 2023; 62:931-942. [PMID: 37300631 PMCID: PMC10338597 DOI: 10.1007/s40262-023-01264-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2023] [Indexed: 06/12/2023]
Abstract
Extracorporeal membrane oxygenation (ECMO) is an established advanced life support system, providing temporary cardiac and/or respiratory support in critically ill patients. Fungal infections are associated with increased mortality in patients on ECMO. Antifungal drug dosing for critically ill patients is highly challenging because of altered pharmacokinetics (PK). PK changes during critical illness; in particular, the drug volume of distribution (Vd) and clearance can be exacerbated by ECMO. This article discusses the available literature to inform adequate dosing of antifungals in this patient population. The number of antifungal PK studies in critically ill patients on ECMO is growing; currently available literature consists of case reports and studies with small sample sizes providing inconsistent findings, with scant or no data for some antifungals. Current data are insufficient to provide definitive empirical drug dosing guidance and use of dosing strategies derived from critically patients not on ECMO is reasonable. However, due to high PK variability, therapeutic drug monitoring should be considered where available in critically ill patients receiving ECMO to prevent subtherapeutic or toxic antifungal exposures.
Collapse
Affiliation(s)
- Haifa Lyster
- Royal Brompton and Harefield Hospitals, Part of Guy's and St Thomas' NHS Foundation Trust, London, UK
- University of Portsmouth, Portsmouth, UK
| | - Kiran Shekar
- Adult Intensive Care Services and Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Kevin Watt
- School of Pharmacy, University of Waterloo, 10 Victoria St S. Kitchener, Waterloo, ON, N2G 1C5, Canada
- Department of Paediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Anna Reed
- Royal Brompton and Harefield Hospitals, Part of Guy's and St Thomas' NHS Foundation Trust, London, UK
- Imperial College London, London, SW3 6NP, UK
| | - Jason A Roberts
- Faculty of Medicine, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia.
- Herston Infectious Diseases (HeIDI), Metro North Health, Brisbane, QLD, Australia.
- Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Australia.
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France.
| | - Mohd-Hafiz Abdul-Aziz
- Faculty of Medicine, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| |
Collapse
|
5
|
Ashok A, Mangalore RP, Morrissey CO. Azole Therapeutic Drug Monitoring and its Use in the Management of Invasive Fungal Disease. CURRENT FUNGAL INFECTION REPORTS 2022. [DOI: 10.1007/s12281-022-00430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Li H, Li M, Yan J, Gao L, Zhou L, Wang Y, Li Q, Wang J, Chen T, Wang T, Zheng J, Qiang W, Zhang Y, Shi Q. Voriconazole therapeutic drug monitoring in critically ill patients improves efficacy and safety of antifungal therapy. Basic Clin Pharmacol Toxicol 2020; 127:495-504. [PMID: 32639669 DOI: 10.1111/bcpt.13465] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022]
Abstract
Since voriconazole plasma trough concentration (VPC) is related to its efficacy and adverse events, therapeutic drug monitoring (TDM) is recommended to perform. However, there is no report about the data of voriconazole TDM in critically ill patients in China. This retrospective study was performed to determine whether voriconazole TDM was associated with treatment response and/or voriconazole adverse events in critically ill patients, and to identify the potential risk factors associated with VPC. A total of 216 critically ill patients were included. Patients were divided into two groups: those underwent voriconazole TDM (TDM group, n = 125) or did not undergo TDM (non-TDM group, n = 91). The clinical response and adverse events were recorded and compared. Furthermore, in TDM group, multivariate logistic regression analysis was performed to identify the possible risk factors resulting in the variability in initial VPC. The complete response in the TDM group was significantly higher than that in the non-TDM group (P = .012). The incidence of adverse events strongly associated with voriconazole in the non-TDM group was significantly higher than that in the TDM group (19.8% vs 9.6%; P = .033). The factors, including age (OR 0.934, 95% CI: 0.906-0.964), male (OR 5.929, 95% CI: 1.524-23.062), serum albumin level (OR 1.122, 95% CI: 1.020-1.234), diarrhoea (OR 4.953, 95% CI: 1.495-16.411) and non-intravenous administration (OR 4.763, 95% CI: 1.576-14.39), exerted the greatest effects on subtherapeutic VPC (VPC < 1.5 mg/L) in multivariate analysis. Intravenous administration (OR 7.657, 95% CI: 1.957-29.968) was a significant predictor of supratherapeutic VPC (VPC > 4.0 mg/L). TDM can result in a favourable clinical efficacy and a lower incidence of adverse events strongly associated with voriconazole in critically ill patients. Subtherapeutic VPC was closely related to younger age, male, hyperalbuminaemia, diarrhoea and non-intravenous administration, and intravenous administration was a significant predictor of supratherapeutic VPC.
Collapse
Affiliation(s)
- Hao Li
- Department of Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mo Li
- Department of Statistical Sciences and Operation Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Jinqi Yan
- Department of Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lan Gao
- Department of Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Linjing Zhou
- Department of Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Wang
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qi Li
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jin Wang
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tianjun Chen
- Department of Respiratory Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Taotao Wang
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Zheng
- Department of Clinical Research Center, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wei Qiang
- Department of Endocrinology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yongjian Zhang
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qindong Shi
- Department of Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Jović Z, Janković SM, Ružić Zečević D, Milovanović D, Stefanović S, Folić M, Milovanović J, Kostić M. Clinical Pharmacokinetics of Second-Generation Triazoles for the Treatment of Invasive Aspergillosis and Candidiasis. Eur J Drug Metab Pharmacokinet 2019; 44:139-157. [PMID: 30284178 DOI: 10.1007/s13318-018-0513-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Second-generation triazoles were developed in response to the quest for more efficacious and safer therapeutic options for the treatment of severe systemic aspergillosis and candidiasis. These agents include voriconazole, posaconazole, isavuconazole, and ravuconazole. The aim of this review was to present and compare the pharmacokinetic characteristics of second-generation triazoles for the treatment of invasive aspergillosis and candidiasis, emphasizing their clinical implications. The MEDLINE, Scopus, EBSCO, Google Scholar, and SCIndeks databases were searched using advanced search options, including the names of second-generation triazoles and pharmacokinetic terms as keywords. The intravenous administration of voriconazole, posaconazole, and isavuconazole results in stable pharmacokinetics of these drugs, with mostly predictable variations influenced by common and usually known factors in routine clinical settings. The high oral bioavailability of isavuconazole and, to some extent, voriconazole makes them suitable for intravenous-to-oral switch strategies. Except for intravenous voriconazole (due to the accumulation of the toxic vehicle hydroxypropyl betadex), dose reduction of second-generation triazoles is not needed in patients with renal failure; patients with hepatic insufficiency require dose reduction only in advanced disease stages. The introduction of therapeutic drug monitoring could aid attempts to optimize the blood concentrations of triazoles and other drugs that are known to or that possibly interact, thus increasing treatment efficacy and safety. There is a need for new studies that are designed to provide useful data on second-generation triazole pharmacokinetics, particularly in special circumstances such as central nervous system and ocular infections, infections in newborns and infants, and in subjects with genetic polymorphisms of metabolizing enzymes.
Collapse
Affiliation(s)
- Zorica Jović
- Faculty of Medicine, University of Niš, Niš, Serbia
| | - Slobodan M Janković
- Faculty of Medical Sciences, University of Kragujevac, Zmaj Jovina Street, 30, Kragujevac, 34000, Serbia.
| | - Dejana Ružić Zečević
- Faculty of Medical Sciences, University of Kragujevac, Zmaj Jovina Street, 30, Kragujevac, 34000, Serbia
| | - Dragan Milovanović
- Faculty of Medical Sciences, University of Kragujevac, Zmaj Jovina Street, 30, Kragujevac, 34000, Serbia
| | - Srđan Stefanović
- Faculty of Medical Sciences, University of Kragujevac, Zmaj Jovina Street, 30, Kragujevac, 34000, Serbia
| | - Marko Folić
- Faculty of Medical Sciences, University of Kragujevac, Zmaj Jovina Street, 30, Kragujevac, 34000, Serbia
| | - Jasmina Milovanović
- Faculty of Medical Sciences, University of Kragujevac, Zmaj Jovina Street, 30, Kragujevac, 34000, Serbia
| | - Marina Kostić
- Faculty of Medical Sciences, University of Kragujevac, Zmaj Jovina Street, 30, Kragujevac, 34000, Serbia
| |
Collapse
|
8
|
Roger C, Sasso M, Lefrant JY, Muller L. Antifungal Dosing Considerations in Patients Undergoing Continuous Renal Replacement Therapy. CURRENT FUNGAL INFECTION REPORTS 2018. [DOI: 10.1007/s12281-018-0305-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Bellmann R, Smuszkiewicz P. Pharmacokinetics of antifungal drugs: practical implications for optimized treatment of patients. Infection 2017; 45:737-779. [PMID: 28702763 PMCID: PMC5696449 DOI: 10.1007/s15010-017-1042-z] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/25/2017] [Indexed: 02/08/2023]
Abstract
Introduction Because of the high mortality of invasive fungal infections (IFIs), appropriate exposure to antifungals appears to be crucial for therapeutic efficacy and safety. Materials and methods This review summarises published pharmacokinetic data on systemically administered antifungals focusing on co-morbidities, target-site penetration, and combination antifungal therapy. Conclusions and discussion Amphotericin B is eliminated unchanged via urine and faeces. Flucytosine and fluconazole display low protein binding and are eliminated by the kidney. Itraconazole, voriconazole, posaconazole and isavuconazole are metabolised in the liver. Azoles are substrates and inhibitors of cytochrome P450 (CYP) isoenzymes and are therefore involved in numerous drug–drug interactions. Anidulafungin is spontaneously degraded in the plasma. Caspofungin and micafungin undergo enzymatic metabolism in the liver, which is independent of CYP. Although several drug–drug interactions occur during caspofungin and micafungin treatment, echinocandins display a lower potential for drug–drug interactions. Flucytosine and azoles penetrate into most of relevant tissues. Amphotericin B accumulates in the liver and in the spleen. Its concentrations in lung and kidney are intermediate and relatively low myocardium and brain. Tissue distribution of echinocandins is similar to that of amphotericin. Combination antifungal therapy is established for cryptococcosis but controversial in other IFIs such as invasive aspergillosis and mucormycosis.
Collapse
Affiliation(s)
- Romuald Bellmann
- Clinical Pharmacokinetics Unit, Division of Intensive Care and Emergency Medicine, Department of Internal Medicine I, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Piotr Smuszkiewicz
- Department of Anesthesiology, Intensive Therapy and Pain Treatment, University Hospital, Poznań, Poland
| |
Collapse
|
10
|
Ruiz J, Favieres C, Broch MJ, Villarreal E, Gordon M, Quinzá A, Castellanos Ortega Á, Ramirez P. Individualised antimicrobial dosing in critically ill patients undergoing continuous renal replacement therapy: focus on total drug clearance. Eur J Hosp Pharm 2017; 25:123-126. [PMID: 31157005 DOI: 10.1136/ejhpharm-2016-001114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 11/03/2022] Open
Abstract
Background Continuous renal replacement therapy (CRRT) is common practice in critical care patients with acute renal failure. Objectives To evaluate the adequacy of antimicrobial doses calculated based on the total drug clearance and dose recommended by different guides in critically ill patients undergoing CRRT. Methods Retrospective observational study. Patients admitted to a critical care unit during May 2014 to May 2016 and subjected to CRRT were included. The recommended dose was established as the product of the usual dose of the drug by total drug clearance. Results 177 antimicrobial agents, used in 64 patients were analysed; 45 (25.4%) antimicrobials were given in an insufficient dose (<20%) according to the theoretical calculation. Following the recommendations in the revised guidelines, between 10% and 20% of antimicrobials were given in insufficient doses. A higher success rate of treatment in those patients not receiving a low drug dosage was seen (35.2% vs 24.0%). Conclusions There is a great disparity between the antimicrobial dose prescribed, recommended and calculated based on drug clearance in critically ill patients undergoing CRRT.
Collapse
Affiliation(s)
- Jesus Ruiz
- Intensive Care Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Cassandra Favieres
- Pharmacy Depatment, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Maria Jesús Broch
- Intensive Care Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Esther Villarreal
- Intensive Care Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Monica Gordon
- Intensive Care Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Adrián Quinzá
- Intensive Care Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Paula Ramirez
- Intensive Care Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
11
|
Jager NGL, van Hest RM, Lipman J, Taccone FS, Roberts JA. Therapeutic drug monitoring of anti-infective agents in critically ill patients. Expert Rev Clin Pharmacol 2016; 9:961-79. [PMID: 27018631 DOI: 10.1586/17512433.2016.1172209] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Initial adequate anti-infective therapy is associated with significantly improved clinical outcomes for patients with severe infections. However, in critically ill patients, several pathophysiological and/or iatrogenic factors may affect the pharmacokinetics of anti-infective agents leading to suboptimal drug exposure, in particular during the early phase of therapy. Therapeutic drug monitoring (TDM) may assist to overcome this problem. We discuss the available evidence on the use of TDM in critically ill patient populations for a number of anti-infective agents, including aminoglycosides, β-lactams, glycopeptides, antifungals and antivirals. Also, we present the available evidence on the practices of anti-infective TDM and describe the potential utility of TDM to improve treatment outcome in critically ill patients with severe infections. For aminoglycosides, glycopeptides and voriconazole, beneficial effects of TDM have been established on both drug effectiveness and potential side effects. However, for other drugs, therapeutic ranges need to be further defined to optimize treatment prescription in this setting.
Collapse
Affiliation(s)
- Nynke G L Jager
- a Department of Pharmacy , Academic Medical Center , Amsterdam , The Netherlands
| | - Reinier M van Hest
- a Department of Pharmacy , Academic Medical Center , Amsterdam , The Netherlands
| | - Jeffrey Lipman
- b Burns Trauma and Critical Care Research Centre , The University of Queensland , Brisbane , Australia.,c Departments of Pharmacy and Intensive Care , Royal Brisbane and Women's Hospital , Brisbane , Australia
| | - Fabio S Taccone
- d Department of Intensive Care, Hopital Erasme , Université Libre de Bruxelles (ULB) , Brussels , Belgium
| | - Jason A Roberts
- b Burns Trauma and Critical Care Research Centre , The University of Queensland , Brisbane , Australia.,c Departments of Pharmacy and Intensive Care , Royal Brisbane and Women's Hospital , Brisbane , Australia.,e School of Pharmacy , The University of Queensland , Brisbane , Australia
| |
Collapse
|
12
|
Chen W, Xie H, Liang F, Meng D, Rui J, Yin X, Zhang T, Xiao X, Cai S, Liu X, Li Y. Population Pharmacokinetics in China: The Dynamics of Intravenous Voriconazole in Critically Ill Patients with Pulmonary Disease. Biol Pharm Bull 2016; 38:996-1004. [PMID: 26133710 DOI: 10.1248/bpb.b14-00768] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pharmacokinetic research in China on the use of voriconazole in critically ill adult patients with different pulmonary diseases remains to be explored. This study evaluated the population pharmacokinetics of the use of voriconazole (VRC) in critically ill patients to determine covariate effects on VRC pharmacokinetics by NONMEM, which could further optimize VRC dosing in this population. A one-compartment model with first-order absorption and elimination best fit the data, giving 4.28 L/h clearance and 93.4 L volume of distribution of VRC. The model variability, described as an approximate percentage coefficient of interindividual variability in clearance and volume of distribution, was 72.94% and 26.50%, respectively. A significant association between Cmin and drug response or grade 2 hepatotoxicity was observed (p=0.002, <0.001, respectively, 1.5-4.0 µg/mL) via logistic multivariate regression. Monte Carlo simulations at 100, 150, 200, and 250 mg dosage predicted effectiveness at 45.99%, 99.76%, 98.76%, and 67.75% within the 1.5-4.0 µg/mL range, suggesting that a 150 or 200 mg intravenous dose twice daily is best suited to achieve the target steady state trough concentration range in critically ill patients with pulmonary disease.
Collapse
Affiliation(s)
- Wenying Chen
- The First Affiliated Hospital of Guangzhou Medical University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kiser TH, Fish DN, Aquilante CL, Rower JE, Wempe MF, MacLaren R, Teitelbaum I. Evaluation of sulfobutylether-β-cyclodextrin (SBECD) accumulation and voriconazole pharmacokinetics in critically ill patients undergoing continuous renal replacement therapy. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:32. [PMID: 25645660 PMCID: PMC4338618 DOI: 10.1186/s13054-015-0753-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/19/2015] [Indexed: 01/28/2023]
Abstract
Introduction Intravenous (IV) voriconazole is not recommended in patients with creatinine clearance <50 ml/min to avoid potentially toxic accumulation of sulfobutylether-β-cyclodextrin (SBECD). The purpose of this study was to evaluate the pharmacokinetics of SBECD, voriconazole, and voriconazole N-oxide in critically ill patients undergoing continuous renal replacement therapy (CRRT) and to determine if CRRT removes SBECD sufficiently to allow for the use of IV voriconazole without significant risk of SBECD accumulation. Methods This prospective, open-label pharmacokinetic study enrolled patients >18 years old receiving IV voriconazole for a known or suspected invasive fungal infection while undergoing CRRT. Serial blood and effluent samples were collected on days 1, 3, 5, 7, and every 3 to 5 days thereafter. SBECD, voriconazole, and voriconazole N-oxide plasma and effluent concentrations were measured by liquid chromatography-tandem mass spectrometry. Pharmacokinetic, pharmacodynamic, and pharmacogenetic analyses were conducted. Results Ten patients (mean ± standard deviation (SD)) 53 ± 11 years old, 50% male, 81 ± 14 kg, with Acute Physiologic and Chronic Health Evaluation II (APACHE II) scores of 31.5 ± 3.8 were evaluated. All patients underwent continuous venovenous hemofiltration (CVVH) with a median predilution replacement fluid rate of 36 (interquartile range (IQR) 32 to 37) ml/kg/hr and total ultrafiltration rate of 38 (IQR 34 to 39) ml/kg/hr. Mean ± SD voriconazole and SBECD dosages administered were 8.1 ± 2.1 mg/kg/day and 129 ± 33 mg/kg/day, respectively. Voriconazole plasma trough concentrations were >1 mg/L in all patients with CVVH accounting for only 15% of the total body clearance. CVVH accounted for 86% of the total body clearance of SBECD with the majority of the dose being recovered in the effluent. Minimal increases in dose normalized SBECD area under the concentration-time curve from 0 to 12 hours (AUC0-12) (4,484 ± 4,368 to 4,553 ± 2,880 mg*hr/L; P = 0.97) were observed after study day 1. Conclusions CVVH effectively removed SBECD at a rate similar to the ultrafiltration rate. Voriconazole clearance by CVVH was not clinically significant. Standard dosages of IV voriconazole can be utilized in patients undergoing CVVH without significant risk of SBECD accumulation. Trial registration ClinicalTrials.gov NCT01101386. Registered 6 April 2010. Electronic supplementary material The online version of this article (doi:10.1186/s13054-015-0753-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tyree H Kiser
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 E Montview Blvd, Mail Stop C238, Aurora, CO, 80045, USA.
| | - Douglas N Fish
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 E Montview Blvd, Mail Stop C238, Aurora, CO, 80045, USA.
| | - Christina L Aquilante
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 E Montview Blvd, Mail Stop C238, Aurora, CO, 80045, USA.
| | - Joseph E Rower
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 E Montview Blvd, Mail Stop C238, Aurora, CO, 80045, USA.
| | - Michael F Wempe
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 E Montview Blvd, Mail Stop C238, Aurora, CO, 80045, USA.
| | - Robert MacLaren
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 E Montview Blvd, Mail Stop C238, Aurora, CO, 80045, USA.
| | - Isaac Teitelbaum
- Department of Medicine, University of Colorado Anschutz Medical Campus, 12605 E 16th Ave, Box F774, Aurora, CO, 80045, USA.
| |
Collapse
|
14
|
Honoré PM, Jacobs R, Joannes-Boyau O, De Waele E, Van Gorp V, Boer W, Spapen HD. Con: Dialy- and continuous renal replacement (CRRT) trauma during renal replacement therapy: still under-recognized but on the way to better diagnostic understanding and prevention. Nephrol Dial Transplant 2014; 28:2723-7; discussion 2727-8. [PMID: 24169609 DOI: 10.1093/ndt/gft086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dialy- and continuous renal replacement (CRRT) trauma are still un(der)recognized conditions that may be encountered during blood purification therapy. This particular form of trauma requires timely identification, a better understanding of pathophysiology and a definition of at-risk groups to prevent or correct any associated unwarranted effects. Among others, progress in the knowledge of antimicrobial pharmacokinetic/pharmacodynamic (PK/PD) behaviour during CRRT to obtain more efficient antimicrobial therapy with less side-effects is one key example of limiting CRRT trauma. Optimal anticipation and prevention of CRRT trauma will preserve the safe use of CRRT in haemodynamically unstable critically ill patients with acute kidney injury (AKI), especially in septic patients who are at the greatest risk.
Collapse
Affiliation(s)
- Patrick M Honoré
- Internist-Nephrologist-Intensivist Universitair Ziekenhuis Brussel, Vrije Universitieit Brussel, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
15
|
Azanza JR, Sádaba B, Gómez-Guíu A. Farmacología de los antifúngicos en el tratamiento de la aspergilosis. Rev Iberoam Micol 2014; 31:255-61. [DOI: 10.1016/j.riam.2014.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/15/2014] [Indexed: 11/26/2022] Open
|
16
|
Bassetti M, Righi E, De Pascale G, De Gaudio R, Giarratano A, Mazzei T, Morace G, Petrosillo N, Stefani S, Antonelli M. How to manage aspergillosis in non-neutropenic intensive care unit patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:458. [PMID: 25167934 PMCID: PMC4220091 DOI: 10.1186/s13054-014-0458-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Invasive aspergillosis has been mainly reported among immunocompromised patients during prolonged periods of neutropenia. Recently, however, non-neutropenic patients in the ICU population have shown an increasing risk profile for aspergillosis. Associations with chronic obstructive pulmonary disease and corticosteroid therapy have been frequently documented in this cohort. Difficulties in achieving a timely diagnosis of aspergillosis in non-neutropenic patients is related to the non-specificity of symptoms and to lower yields with microbiological tests compared to neutropenic patients. Since high mortality rates are typical of invasive aspergillosis in critically ill patients, a high level of suspicion and prompt initiation of adequate antifungal treatment are mandatory. Epidemiology, risk factors, diagnostic algorithms, and different approaches in antifungal therapy for invasive aspergillosis in non-neutropenic patients are reviewed.
Collapse
|
17
|
Kielstein JT, David S. Pro: Renal replacement trauma or Paracelsus 2.0. Nephrol Dial Transplant 2013; 28:2728-2733. [DOI: 10.1093/ndt/gft049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
|