1
|
Lafioniatis A, Samara AA, Makaritsis PK, Dafopoulos S, Sotiriou S, Dafopoulos K. Understanding the Role of Female Genital Tract Microbiome in Recurrent Implantation Failure. J Clin Med 2024; 13:3173. [PMID: 38892884 PMCID: PMC11172434 DOI: 10.3390/jcm13113173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The realization of the role of the microbiome of the female reproductive tract in health and disease has opened numerous possibilities for the scientific examination of the intertwining role between the human host and its microbiota. The imbalance in the composition of the microbial communities of the vagina and uterus is now recognized as a risk factor for many complications in pregnancy and according to the data from numerous studies, it is possible for this imbalance to play a crucial role in creating a hostile endometrial environment, and therefore, contributing to the etiology of recurrent implantation failure. Nevertheless, our current understanding of these complicated biological phenomena is far from complete, and in the future, there needs to be a systematic and thorough investigation of the diagnosis and therapy of this condition. This will enable scientists who engage in the field of assisted reproduction technologies to accurately identify and cure women in whom dysbiosis hinders the achievement of a healthy pregnancy.
Collapse
Affiliation(s)
- Anastasios Lafioniatis
- Department of Obstetrics and Gynecology, University Hospital of Larissa, 41110 Larissa, Greece; (A.L.); (P.K.M.); (S.D.); (K.D.)
| | - Athina A. Samara
- Department of Obstetrics and Gynecology, University Hospital of Larissa, 41110 Larissa, Greece; (A.L.); (P.K.M.); (S.D.); (K.D.)
- Department of Embryology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Peter K. Makaritsis
- Department of Obstetrics and Gynecology, University Hospital of Larissa, 41110 Larissa, Greece; (A.L.); (P.K.M.); (S.D.); (K.D.)
| | - Stefanos Dafopoulos
- Department of Obstetrics and Gynecology, University Hospital of Larissa, 41110 Larissa, Greece; (A.L.); (P.K.M.); (S.D.); (K.D.)
| | - Sotirios Sotiriou
- Department of Embryology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Konstantinos Dafopoulos
- Department of Obstetrics and Gynecology, University Hospital of Larissa, 41110 Larissa, Greece; (A.L.); (P.K.M.); (S.D.); (K.D.)
| |
Collapse
|
2
|
Xiao L, Zuo Z, Zhao F. Microbiome in Female Reproductive Health: Implications for Fertility and Assisted Reproductive Technologies. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzad005. [PMID: 38862423 PMCID: PMC11104452 DOI: 10.1093/gpbjnl/qzad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 06/13/2024]
Abstract
The microbiome plays a critical role in the process of conception and the outcomes of pregnancy. Disruptions in microbiome homeostasis in women of reproductive age can lead to various pregnancy complications, which significantly impact maternal and fetal health. Recent studies have associated the microbiome in the female reproductive tract (FRT) with assisted reproductive technology (ART) outcomes, and restoring microbiome balance has been shown to improve fertility in infertile couples. This review provides an overview of the role of the microbiome in female reproductive health, including its implications for pregnancy outcomes and ARTs. Additionally, recent advances in the use of microbial biomarkers as indicators of pregnancy disorders are summarized. A comprehensive understanding of the characteristics of the microbiome before and during pregnancy and its impact on reproductive health will greatly promote maternal and fetal health. Such knowledge can also contribute to the development of ARTs and microbiome-based interventions.
Collapse
Affiliation(s)
- Liwen Xiao
- CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Beijing Institutes of Life Science/Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenqiang Zuo
- Beijing Institutes of Life Science/Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangqing Zhao
- CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Beijing Institutes of Life Science/Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Muraoka A, Yokoi A, Kajiyama H. Emerging bacterial factors for understanding pathogenesis of endometriosis. iScience 2024; 27:108739. [PMID: 38269103 PMCID: PMC10805679 DOI: 10.1016/j.isci.2023.108739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The pathogenesis of endometriosis is a complex process, and recent research has introduced novel hypotheses in this field. This review summarizes recent studies on the pathogenesis of endometriosis. We focused on several classical hypotheses, as well as their interactions with the microenvironment of hormonal dependence and immunosuppression. Furthermore, we highlighted the emergence of bacterial factors associated with endometriosis. Recent advances in next-generation sequencing (NGS) have revealed the presence and detailed distribution of these bacteria as well as the involvement of specific bacteria in pathogenesis. These factors alter the microenvironment in the early stages of endometriosis development, leading to lesion formation. Understanding the mechanisms underlying the early development of endometriosis from a new perspective would be helpful for the development of novel therapeutic agents for endometriosis.
Collapse
Affiliation(s)
- Ayako Muraoka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Nagoya University Institute for Advanced Research, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Japan Science and Technology Agency (JST), FOREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
4
|
Wang R, Wang M, Zeng Q, Wang L, Zhang Q, Pu S, Ma X, Wang J, Pan Y. Correlation between microbial characteristics and reproductive status of the yak uterus based on macrogenomic analysis. BMC Vet Res 2024; 20:4. [PMID: 38172906 PMCID: PMC10763020 DOI: 10.1186/s12917-023-03845-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
INTRODUCTION This study aimed to investigate the microbial characteristics of yak uteri collected using intrauterine cotton swabs (CS) during different reproductive stages and the correlation of these microbial characteristics with reproductive status. METHODS We used a macrogenomic approach to analyze the functional aspects of different microorganisms in samples collected during the pre-estrus, estrus, late estrus, and diestrus stages. RESULTS The results revealed the presence of 1293 microbial genera and 3401 microbial species in the uteri of yaks at different reproductive stages. The dominant bacterial species varied across the different periods, with Micrococcus and Proteus being dominant during pre-estrus; Pseudomonas, Clostridium, Flavobacterium, Bacillus, and Staphylococcus during estrus; Acinetobacter, Bacillus and Proteus during late estrus; and Pseudomonas, Escherichia coli, and Proteus during diestrus. DISCUSSION The primary functions of these bacteria are enriched in various metabolic pathways, including carbohydrate and amino acid metabolism, intracellular transport and secretion, post-translational protein modification, and drug resistance. These findings suggest that the microbial diversity in the uterus of yaks plays a crucial role in reproductive regulation and can help prevent reproductive tract-related diseases.
Collapse
Affiliation(s)
- Rui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Libin Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Qian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Sisi Pu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xin Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Jinglei Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China.
| |
Collapse
|
5
|
Samarra A, Flores E, Bernabeu M, Cabrera-Rubio R, Bäuerl C, Selma-Royo M, Collado MC. Shaping Microbiota During the First 1000 Days of Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:1-28. [PMID: 39060728 DOI: 10.1007/978-3-031-58572-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Given that the host-microbe interaction is shaped by the immune system response, it is important to understand the key immune system-microbiota relationship during the period from conception to the first years of life. The present work summarizes the available evidence concerning human reproductive microbiota, and also, the microbial colonization during early life, focusing on the potential impact on infant development and health outcomes. Furthermore, we conclude that some dietary strategies including specific probiotics and other-biotics could become potentially valuable tools to modulate the maternal-neonatal microbiota during this early critical window of opportunity for targeted health outcomes throughout the entire lifespan.
Collapse
Affiliation(s)
- Anna Samarra
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Eduard Flores
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Manuel Bernabeu
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Raul Cabrera-Rubio
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Christine Bäuerl
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Marta Selma-Royo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain.
| |
Collapse
|
6
|
Don EE, Mijatovic V, Huirne JAF. Infertility in patients with uterine fibroids: a debate about the hypothetical mechanisms. Hum Reprod 2023; 38:2045-2054. [PMID: 37771247 PMCID: PMC10628498 DOI: 10.1093/humrep/dead194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/08/2023] [Indexed: 09/30/2023] Open
Abstract
Fibroids are benign tumours of the myometrium and are the most common gynaecologic abnormality. Although most fibroids are asymptomatic, they can cause symptoms like heavy menstrual bleeding, pelvic pain, sexual dysfunction, pressure complaints, and infertility. The association between fibroids and infertility has been debated for decades. It is generally acknowledged that the closer the fibroid is to the uterine cavity and the endometrium lining, the more unfavourable effect it might have on fertility, reducing the odds for successful implantation and gestation. Based on the limited available literature, we propose and discuss seven hypotheses on the underlying mechanism by which fibroids may reduce fertility. (i) Fibroids can cause sexual dysfunction, as fibroids can cause dyspareunia, pelvic pain, and prolonged and heavy menstrual bleeding, which could interfere with sexual arousal and as a consequence the frequency of intercourse, resulting in a reduced probability of conception. (ii) Mechanical compression by fibroids on theinterstitial part of the fallopian tubes or deformation of uterine cavity could disturb oocyte and sperm transport. (iii) Fibroids can disturb peristalsis of the junctional zone in the myometrium, which could negatively influence oocyte and sperm transport as well as implantation. In addition, fibroids could induce a detrimental environment for implantation in other ways, by: (iv) changing the vagino-uterine microbiome; (v) disturbing the levels of inflammation and autophagy; (vi) inducing molecular changes in the endometrium; and (vii) inducing aberrant angiogenesis and altering the endometrial blood supply. After the discussion of these hypotheses, the implication of the influence of fibroids on early pregnancy loss is discussed. Surgical fibroid treatment is not tailored nor focussed on the pathophysiology of the fibroid; consequently it may be accompanied by recurrence of fibroids and risks of complications. Unravelling the pathogenic mechanisms about how fibroids influence fertility is essential to evolve classic surgical fibroid treatment. Instead of treatment of fibroid-related symptoms, the research should supports development of fibroid-targeted (pharmaceutical) treatment that is compatible with an active wish to become pregnant.
Collapse
Affiliation(s)
- Emma E Don
- Department of Obstetrics and Gynecology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Velja Mijatovic
- Department of Obstetrics and Gynecology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Judith A F Huirne
- Department of Obstetrics and Gynecology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Cimadomo D, Rienzi L, Conforti A, Forman E, Canosa S, Innocenti F, Poli M, Hynes J, Gemmell L, Vaiarelli A, Alviggi C, Ubaldi FM, Capalbo A. Opening the black box: why do euploid blastocysts fail to implant? A systematic review and meta-analysis. Hum Reprod Update 2023; 29:570-633. [PMID: 37192834 DOI: 10.1093/humupd/dmad010] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/22/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND A normal chromosomal constitution defined through PGT-A assessing all chromosomes on trophectoderm (TE) biopsies represents the strongest predictor of embryo implantation. Yet, its positive predictive value is not higher than 50-60%. This gap of knowledge on the causes of euploid blastocysts' reproductive failure is known as 'the black box of implantation'. OBJECTIVE AND RATIONALE Several embryonic, maternal, paternal, clinical, and IVF laboratory features were scrutinized for their putative association with reproductive success or implantation failure of euploid blastocysts. SEARCH METHODS A systematic bibliographical search was conducted without temporal limits up to August 2021. The keywords were '(blastocyst OR day5 embryo OR day6 embryo OR day7 embryo) AND (euploid OR chromosomally normal OR preimplantation genetic testing) AND (implantation OR implantation failure OR miscarriage OR abortion OR live birth OR biochemical pregnancy OR recurrent implantation failure)'. Overall, 1608 items were identified and screened. We included all prospective or retrospective clinical studies and randomized-controlled-trials (RCTs) that assessed any feature associated with live-birth rates (LBR) and/or miscarriage rates (MR) among non-mosaic euploid blastocyst transfer after TE biopsy and PGT-A. In total, 41 reviews and 372 papers were selected, clustered according to a common focus, and thoroughly reviewed. The PRISMA guideline was followed, the PICO model was adopted, and ROBINS-I and ROB 2.0 scoring were used to assess putative bias. Bias across studies regarding the LBR was also assessed using visual inspection of funnel plots and the trim and fill method. Categorical data were combined with a pooled-OR. The random-effect model was used to conduct the meta-analysis. Between-study heterogeneity was addressed using I2. Whenever not suitable for the meta-analysis, the included studies were simply described for their results. The study protocol was registered at http://www.crd.york.ac.uk/PROSPERO/ (registration number CRD42021275329). OUTCOMES We included 372 original papers (335 retrospective studies, 30 prospective studies and 7 RCTs) and 41 reviews. However, most of the studies were retrospective, or characterized by small sample sizes, thus prone to bias, which reduces the quality of the evidence to low or very low. Reduced inner cell mass (7 studies, OR: 0.37, 95% CI: 0.27-0.52, I2 = 53%), or TE quality (9 studies, OR: 0.53, 95% CI: 0.43-0.67, I2 = 70%), overall blastocyst quality worse than Gardner's BB-grade (8 studies, OR: 0.40, 95% CI: 0.24-0.67, I2 = 83%), developmental delay (18 studies, OR: 0.56, 95% CI: 0.49-0.63, I2 = 47%), and (by qualitative analysis) some morphodynamic abnormalities pinpointed through time-lapse microscopy (abnormal cleavage patterns, spontaneous blastocyst collapse, longer time of morula formation I, time of blastulation (tB), and duration of blastulation) were all associated with poorer reproductive outcomes. Slightly lower LBR, even in the context of PGT-A, was reported among women ≥38 years (7 studies, OR: 0.87, 95% CI: 0.75-1.00, I2 = 31%), while obesity was associated with both lower LBR (2 studies, OR: 0.66, 95% CI: 0.55-0.79, I2 = 0%) and higher MR (2 studies, OR: 1.8, 95% CI: 1.08-2.99, I2 = 52%). The experience of previous repeated implantation failures (RIF) was also associated with lower LBR (3 studies, OR: 0.72, 95% CI: 0.55-0.93, I2 = 0%). By qualitative analysis, among hormonal assessments, only abnormal progesterone levels prior to transfer were associated with LBR and MR after PGT-A. Among the clinical protocols used, vitrified-warmed embryo transfer was more effective than fresh transfer (2 studies, OR: 1.56, 95% CI: 1.05-2.33, I2 = 23%) after PGT-A. Lastly, multiple vitrification-warming cycles (2 studies, OR: 0.41, 95% CI: 0.22-0.77, I2 = 50%) or (by qualitative analysis) a high number of cells biopsied may slightly reduce the LBR, while simultaneous zona-pellucida opening and TE biopsy allowed better results than the Day 3 hatching-based protocol (3 studies, OR: 1.41, 95% CI: 1.18-1.69, I2 = 0%). WIDER IMPLICATIONS Embryo selection aims at shortening the time-to-pregnancy, while minimizing the reproductive risks. Knowing which features are associated with the reproductive competence of euploid blastocysts is therefore critical to define, implement, and validate safer and more efficient clinical workflows. Future research should be directed towards: (i) systematic investigations of the mechanisms involved in reproductive aging beyond de novo chromosomal abnormalities, and how lifestyle and nutrition may accelerate or exacerbate their consequences; (ii) improved evaluation of the uterine and blastocyst-endometrial dialogue, both of which represent black boxes themselves; (iii) standardization/automation of embryo assessment and IVF protocols; (iv) additional invasive or preferably non-invasive tools for embryo selection. Only by filling these gaps we may finally crack the riddle behind 'the black box of implantation'.
Collapse
Affiliation(s)
- Danilo Cimadomo
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Laura Rienzi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Alessandro Conforti
- Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy
| | - Eric Forman
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University Irving Medical Centre, New York, NY, USA
| | | | - Federica Innocenti
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Maurizio Poli
- Centrum voor Kinderwens, Dijklander Hospital, Purmerend, The Netherlands
- Juno Genetics, Rome, Italy
| | - Jenna Hynes
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University Irving Medical Centre, New York, NY, USA
| | - Laura Gemmell
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University Irving Medical Centre, New York, NY, USA
| | - Alberto Vaiarelli
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Carlo Alviggi
- Department of Public Health, Federico II University, Naples, Italy
| | | | | |
Collapse
|
8
|
van Heule M, Monteiro HF, Bazzazan A, Scoggin K, Rolston M, El-Sheikh Ali H, Weimer BC, Ball B, Daels P, Dini P. Characterization of the equine placental microbial population in healthy pregnancies. Theriogenology 2023; 206:60-70. [PMID: 37187056 DOI: 10.1016/j.theriogenology.2023.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
In spite of controversy, recent studies present evidence that a microbiome is present in the human placenta. However, there is limited information about a potential equine placental microbiome. In the present study, we characterized the microbial population in the equine placenta (chorioallantois) of healthy prepartum (280 days of gestation, n = 6) and postpartum (immediately after foaling, 351 days of gestation, n = 11) mares, using 16S rDNA sequencing (rDNA-seq). In both groups, the majority of bacteria belonged to the phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidota. The five most abundant genera were Bradyrhizobium, an unclassified Pseudonocardiaceae, Acinetobacter, Pantoea, and an unclassified Microbacteriaceae. Alpha diversity (p < 0.05) and beta diversity (p < 0.01) were significantly different between pre- and postpartum samples. Additionally, the abundance of 7 phyla and 55 genera was significantly different between pre- and postpartum samples. These differences suggest an effect of the caudal reproductive tract microbiome on the postpartum placental microbial DNA composition, since the passage of the placenta through the cervix and vagina during normal parturition had a significant influence on the composition of the bacteria found in the placenta when using 16S rDNA-seq. These data support the hypothesis that bacterial DNA is present in healthy equine placentas and opens the possibility for further exploration of the impact of the placental microbiome on fetal development and pregnancy outcome.
Collapse
Affiliation(s)
- Machteld van Heule
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Hugo Fernando Monteiro
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Ali Bazzazan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kirsten Scoggin
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Matthew Rolston
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
| | - Hossam El-Sheikh Ali
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA; Theriogenology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Bart C Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Department of Population Health and Reproduction, 100K Pathogen Genome Project, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Barry Ball
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Peter Daels
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Pouya Dini
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
9
|
Characterization of the Endometrial Microbiome in Patients with Recurrent Implantation Failure. Microorganisms 2023; 11:microorganisms11030741. [PMID: 36985314 PMCID: PMC10054712 DOI: 10.3390/microorganisms11030741] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
An abnormal endometrial microbiota has been associated with implantation failure; therefore, it may be important to evaluate it in order to improve reproductive outcomes in infertile patients. The main objective of our study was to compare the endometrial microbiome of patients with recurrent implantation failure (RIF) and control patients undergoing assisted reproduction treatment (ART). A prospective cohort study including forty-five patients with their own or donated gametes. The endometrial microbiome was analysed by massive sequencing of the bacterial 16S rRNA gene. Different bacterial communities were detected in RIF and control patients. Lactobacillus stands out as the most frequent genus, with 92.27% in RIF patients and 97.96% in control patients, and significant differences were reported between the two groups (p = 0.002). No significant differences were found regarding alpha diversity index. In beta diversity analysis, a significant trend was observed in the separation of the bacterial community between established groups (p < 0.07). Relative abundance analysis identified genera Prevotella (p < 0.001), Streptococcus (p < 0.001), Bifidobacterium (p = 0.002), Lactobacillus (p = 0.002) and Dialister (p = 0.003). Our results demonstrated the existence of an endometrial microbiota characteristic of RIF patients and showed that there might be a relationship between population of the endometrial microbiome and embryo implantation failure, providing us the possibility to improve clinical results in this patients.
Collapse
|
10
|
Lebedeva OP, Popov VN, Syromyatnikov MY, Starkova NN, Maslov AY, Kozarenko ON, Gryaznova MV. Female reproductive tract microbiome and early miscarriages. APMIS 2023; 131:61-76. [PMID: 36511842 PMCID: PMC10107729 DOI: 10.1111/apm.13288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Miscarriage is one of the main causes of reproductive loss, which can lead to a number of physical and psychological complications and other long-term consequences. However, the role of vaginal and uterine microbiome in such complications is poorly understood. To review the published data on the function of the female reproductive tract microbiome in the pathogenesis of early miscarriages. The articles published over the past 20 years and deposited in PubMed, Google Academy, Scopus, Elibrary, ResearchGate, and EBSCO databases were analyzed. The review presents new data on the impact of the vaginal and uterine microbiome on the local immunity, including defense against sexually transmitted infections, and its association with other factors of miscarriages. The studies on the microbiome of non-pregnant women with recurrent miscarriages in the anamnesis, patients undergoing IVF, and pregnant women with miscarriages, as well as new directions in the microbiome research are discussed. The majority of studies have demonstrated that the dominant species of the vaginal and uterine microbiome in patients with early miscarriages are non-Lactobacillus bacteria. As many of these bacteria have not previously been detected by cultural studies and their role in obstetric complications is not well defined, further research on the female reproductive tract microbiome, including the microbiome of the cervix uteri, is needed to develop new approaches for the prognosis and prevention of miscarriages.
Collapse
Affiliation(s)
- Olga P Lebedeva
- Department of Obstetrics and Gynecology, Belgorod National Research University, Belgorod, Russia.,Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Vasily N Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, Russia.,Department of Genetics, Cytology, and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Mikhail Y Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, Russia.,Department of Genetics, Cytology, and Bioengineering, Voronezh State University, Voronezh, Russia
| | | | - Alexander Y Maslov
- Department of Genetics, Albert Einstein College, New York City, NY, USA.,Laboratory of Applied Genomic Technologies, Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Olesya N Kozarenko
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, Russia.,Female Health Department, Yakovlevo Central District Hospital, Belgorod Region, Russia
| | - Mariya V Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, Russia.,Department of Genetics, Cytology, and Bioengineering, Voronezh State University, Voronezh, Russia
| |
Collapse
|
11
|
Covarrubias A, Aguilera-Olguín M, Carrasco-Wong I, Pardo F, Díaz-Astudillo P, Martín SS. Feto-placental Unit: From Development to Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:1-29. [PMID: 37466767 DOI: 10.1007/978-3-031-32554-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The placenta is an intriguing organ that allows us to survive intrauterine life. This essential organ connects both mother and fetus and plays a crucial role in maternal and fetal well-being. This chapter presents an overview of the morphological and functional aspects of human placental development. First, we describe early human placental development and the characterization of the cell types found in the human placenta. Second, the human placenta from the second trimester to the term of gestation is reviewed, focusing on the morphology and specific pathologies that affect the placenta. Finally, we focus on the placenta's primary functions, such as oxygen and nutrient transport, and their importance for placental development.
Collapse
Affiliation(s)
- Ambart Covarrubias
- Health Sciences Faculty, Universidad San Sebastián, Concepción, Chile
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Macarena Aguilera-Olguín
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile
- Cellular Signalling and Differentiation Laboratory (CSDL), Medicine and Science Faculty, Universidad San Sebastián, Santiago, Chile
| | - Ivo Carrasco-Wong
- Cellular Signalling and Differentiation Laboratory (CSDL), School of Medical Technology, Medicine and Science Faculty, Universidad San Sebastián, Santiago, Chile
| | - Fabián Pardo
- Metabolic Diseases Research Laboratory, Interdisciplinary Centre of Territorial Health Research (CIISTe), Biomedical Research Center (CIB), San Felipe Campus, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe, Chile
| | - Pamela Díaz-Astudillo
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile
| | - Sebastián San Martín
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile.
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile.
| |
Collapse
|
12
|
The Importance of the Microbiota in Shaping Women’s Health—The Current State of Knowledge. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol3010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
According to current knowledge, a properly colonized human microbiota contributes to the proper functioning of the body. The composition of the natural flora changes depending on age, health, living conditions, and the use of antimicrobial agents: antibiotics, disinfectants, and some cosmetics. The human body is diversely populated with microorganisms and undergoes constant changes under the influence of various factors, and its proper composition is extremely important for the proper functioning of the body. Given the above, it was decided that we would review current scientific research that explains the cause–effect relationship between the composition of microorganisms populating the human body and health, focusing on women’s health. As a result, an overview paper was prepared based on 109 scientific sources from 2009–2022. Special attention was paid to the most recent scientific studies of the last five years, which account for more than 75% of the cited sources.
Collapse
|
13
|
Genital Microbiota and Outcome of Assisted Reproductive Treatment-A Systematic Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111867. [PMID: 36431002 PMCID: PMC9693990 DOI: 10.3390/life12111867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
The balance between different bacterial species is essential for optimal vaginal health. Microbiome includes the host genome along with microorganism genomes and incorporates the biotic and abiotic factors, reflecting the habitat as a whole. A significant difference exists in the composition and number of the human microbiota in healthy individuals. About one-tenth of the total body microbiota exists in the urogenital tract and these can be identified by microscopy and culture-based methods, quantitative PCR, next generation and whole genome sequencing. The trend of delaying the planning of pregnancy to a later age nowadays has resulted in magnifying the use of assisted reproductive treatment (ART). Hence, genital microbiota and its impact on fertility has generated immense interest in recent years. In this systematic review, we searched the available evidence on the microbiota of the genital tract in women undergoing ART and studied the outcomes of IVF in different microbial compositions. Despite the inconsistency of the studies, it is evident that vaginal, cervical and endometrial microbiota might play a role in predicting ART outcomes. However, there is no clear evidence yet on whether the diversity, richness, quantity, or composition of species in the maternal genital tract significantly affects the outcomes in ARTs.
Collapse
|
14
|
Wang W, Feng D, Ling B. Biologia Futura: endometrial microbiome affects endometrial receptivity from the perspective of the endometrial immune microenvironment. Biol Futur 2022; 73:291-300. [DOI: 10.1007/s42977-022-00134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 08/03/2022] [Indexed: 11/25/2022]
Abstract
AbstractThe existence of Lactobacillus-led colonized bacteria in the endometrium of a healthy human has been reported in recent studies. Unlike the composition of the microbiome in the lower genital tract, that in the endometrium is different and closely associated with the physiological and pathological processes of gynecological diseases. For example, changing the immune microenvironment affects the receptivity of the endometrium, thereby leading to abnormal reproductive outcomes, such as embryo implantation failure and recurrent spontaneous abortion. However, the concrete functions and mechanisms of the endometrial microbiome have not been studied thoroughly. This review elaborates the research progress on the mechanisms by which the endometrial microbiome affects endometrial receptivity from the perspective of endometrial immune microenvironment regulation. Considering the lack of a unified evaluation method for the endometrial microbiome, as well as the lack of an optimal treatment protocol against recurrent spontaneous abortion, we also discussed the application of combining antibiotics with probiotics/prebiotics as precautionary measures.
Collapse
|
15
|
Keburiya LK, Smolnikova VY, Priputnevich TV, Muravieva VV, Gordeev AB, Trofimov DY, Shubina ES, Kochetkova TO, Rogacheva MS, Kalinina EA, Sukhikh GT. Does the uterine microbiota affect the reproductive outcomes in women with recurrent implantation failures? BMC Womens Health 2022; 22:168. [PMID: 35568852 PMCID: PMC9107114 DOI: 10.1186/s12905-022-01750-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inefficiency of in vitro fertilization (IVF) programs can be caused by implantation failures. The uterine microbiota can influence the implantation process. However, it still remains unclear whether opportunistic microorganisms detected in the endometrium have a negative impact on the implantation success. The aim of our study was to evaluate the influence of the uterine microbiota on the embryo implantation success in patients undergoing assisted reproductive technologies. METHODS The study included 130 women diagnosed with infertility. The patients were divided into three groups: group I included women with the first IVF attempt (n = 39); group II included patients with recurrent implantation failure following embryo transfer with ovarian stimulation (n = 27); group III consisted of women with recurrent implantation failure following frozen-thawed embryo transfer (n = 64). We performed microbiological examination of the embryo transfer catheter which was removed from the uterine cavity after embryo transfer; cervical discharge of all the patients was studied as well. Thirty patients were selected for metagenomic sequencing. RESULTS The study showed that the uterine cavity is not free of microorganisms. A total of 44 species of microorganisms were detected: 26 species of opportunistic organisms and 18 species of commensals (14 species of lactobacilli and 4 species of bifidobacteria). Obligate anaerobic microorganisms and Gardnerella vaginalis were detected more frequently in group I compared to group III (strict anaerobes-15.4 and 1.6%; G. vaginalis-12.8 and 1.6%, respectively) (p < 0.05). However, this fact did not have a negative influence on the pregnancy rate: it was 51.3% in group I, it was 29.6% and 35.9% in women with recurrent implantation failures, respectively. CONCLUSION Opportunistic microorganisms which were revealed in low or moderate titers (103-105 CFU/ml) in the uterine cavity and cervical canal did not affect the pregnancy rate in the women in the study groups. The microflora of the uterine cavity and cervical canal differed in qualitative composition in 87.9% of patients, therefore, we can suggest that the uterine cavity may form its own microbiota. The microbiota of the uterine cavity is characterized by fewer species diversity compared to the microbiota of the cervical canal.
Collapse
Affiliation(s)
- Lela K Keburiya
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow, Russia, 117997.
| | - Veronika Yu Smolnikova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow, Russia, 117997
| | - Tatiana V Priputnevich
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow, Russia, 117997
| | - Vera V Muravieva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow, Russia, 117997
| | - Alexey B Gordeev
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow, Russia, 117997
| | - Dmitry Yu Trofimov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow, Russia, 117997
| | - Ekaterina S Shubina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow, Russia, 117997
| | - Taisiya O Kochetkova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow, Russia, 117997
| | - Margarita S Rogacheva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow, Russia, 117997
| | - Elena A Kalinina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow, Russia, 117997
| | - Gennady T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow, Russia, 117997
| |
Collapse
|
16
|
Zhu H, Yang M, Loor JJ, Elolimy A, Li L, Xu C, Wang W, Yin S, Qu Y. Analysis of Cow-Calf Microbiome Transfer Routes and Microbiome Diversity in the Newborn Holstein Dairy Calf Hindgut. Front Nutr 2021; 8:736270. [PMID: 34760909 PMCID: PMC8573054 DOI: 10.3389/fnut.2021.736270] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/27/2021] [Indexed: 01/12/2023] Open
Abstract
Hindgut microorganisms in newborn calves play an important role in the development of immunity and metabolism, and optimization of performance. However, knowledge of the extent to which microbiome colonization of the calf intestine is dependent on maternal characteristics is limited. In this study, placenta, umbilical cord, amniotic fluid, colostrum, cow feces, and calf meconium samples were collected from 6 Holstein cow-calf pairs. Microbial composition was analyzed by 16S rRNA gene high-throughput sequencing, and maternal transfer characteristics assessed using SourceTracker based on Gibbs sampling to fit the joint distribution using the mean proportions of each sample with meconium as the "sink" and other sample types as different "sources." Alpha and beta diversity analyses revealed sample type-specific microbiome features: microbial composition of the placenta, umbilical cord, amniotic fluid, colostrum, and calf feces were similar, but differed from cow feces (p < 0.05). Compared with profiles of meconium vs. placenta, meconium vs. umbilical cord, and meconium vs. colostrum, differences between the meconium and amniotic fluid were most obvious. SourceTracker analysis revealed that 23.8 ± 2.21% of the meconium OTUs matched those of umbilical cord samples, followed by the meconium-placenta pair (15.57 ± 2.2%), meconium-colostrum pair (14.4 ± 1.9%), and meconium-amniotic fluid pair (11.2 ± 1.7%). The matching ratio between meconium and cow feces was the smallest (10.5 ± 1%). Overall, our data indicated that the composition of the meconium microflora was similar compared with multiple maternal sites including umbilical cord, placenta, colostrum, and amniotic fluid. The umbilical cord microflora seemed to contribute the most to colonization of the fecal microflora of calves. Bacteria with digestive functions such as cellulose decomposition and rumen fermentation were mainly transmitted during the maternal transfer process.
Collapse
Affiliation(s)
- Huan Zhu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- College of Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Minna Yang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Juan J. Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Ahmed Elolimy
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Lingyan Li
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chuang Xu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuxin Yin
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yongli Qu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
17
|
Chen P, Chen P, Guo Y, Fang C, Li T. Interaction Between Chronic Endometritis Caused Endometrial Microbiota Disorder and Endometrial Immune Environment Change in Recurrent Implantation Failure. Front Immunol 2021; 12:748447. [PMID: 34671363 PMCID: PMC8521098 DOI: 10.3389/fimmu.2021.748447] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/31/2022] Open
Abstract
Objective To investigate the Interaction between chronic endometritis (CE) caused endometrial microbiota disorder and endometrial immune environment change in recurrent implantation failure (RIF). Method Transcriptome sequencing analysis of the endometrial of 112 patients was preform by using High-Throughput Sequencing. The endometrial microbiota of 43 patients was analyzed by using 16s rRNA sequencing technology. Result In host endometrium, CD4 T cell and macrophage exhibited significant differences abundance between CE and non-CE patients. The enrichment analysis indicated differentially expressed genes mainly enriched in immune-related functional terms. Phyllobacterium and Sphingomonas were significantly high infiltration in CE patients, and active in pathways related to carbohydrate metabolism and/or fat metabolism. The increased synthesis of lipopolysaccharide, an important immunomodulator, was the result of microbial disorders in the endometrium. Conclusion The composition of endometrial microorganisms in CE and non-CE patients were significantly different. Phyllobacterium and Sphingomonas mainly regulated immune cells by interfering with the process of carbohydrate metabolism and/or fat metabolism in the endometrium. CE endometrial microorganisms might regulate Th17 response and the ratio of Th1 to Th17 through lipopolysaccharide (LPS).
Collapse
Affiliation(s)
- Peigen Chen
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Panyu Chen
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingchun Guo
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cong Fang
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingting Li
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Patel SK, Valicherla GR, Micklo AC, Rohan LC. Drug delivery strategies for management of women's health issues in the upper genital tract. Adv Drug Deliv Rev 2021; 177:113955. [PMID: 34481034 DOI: 10.1016/j.addr.2021.113955] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023]
Abstract
The female upper genital tract (UGT) hosts important reproductive organs including the cervix, uterus, fallopian tubes, and ovaries. Several pathologies affect these organ systems such as infections, reproductive issues, structural abnormalities, cancer, and inflammatory diseases that could have significant impact on women's overall health. Effective disease management is constrained by the multifaceted nature of the UGT, complex anatomy and a dynamic physiological environment. Development of drug delivery strategies that can overcome mucosal and safety barriers are needed for effective disease management. This review introduces the anatomy, physiology, and mucosal properties of the UGT and describes drug delivery barriers, advances in drug delivery technologies, and opportunities available for new technologies that target the UGT.
Collapse
|
19
|
Punzón-Jiménez P, Labarta E. The impact of the female genital tract microbiome in women health and reproduction: a review. J Assist Reprod Genet 2021; 38:2519-2541. [PMID: 34110573 PMCID: PMC8581090 DOI: 10.1007/s10815-021-02247-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The aim of this review is to gather the available research focusing on female genital tract (FGT) microbiome. Research question focuses in decipher which is the role of FGT microbiota in eubiosis, assisted reproduction techniques (ARTs), and gynaecological disorders, and how microbiome could be utilised to improve reproduction outcomes and to treat fertility issues. METHODS PubMed was searched for articles in English from January 2004 to April 2021 for "genital tract microbiota and reproduction", "endometrial microbiome", "microbiome and reproduction" and "microbiota and infertility". Manual search of the references within the resulting articles was performed. RESULTS Current knowledge confirms predominance of Lactobacillus species, both in vagina and endometrium, whereas higher variability of species is both found in fallopian tubes and ovaries. Microbial signature linked to different disorders such endometriosis, bacterial vaginosis, and gynaecological cancers are described. Broadly, low variability of species and Lactobacillus abundance within the FGT is associated with better reproductive and ART outcomes. CONCLUSION Further research regarding FGT microbiome configuration needs to be done in order to establish a more precise link between microbiota and eubiosis or dysbiosis. Detection of bacterial species related with poor reproductive outcomes, infertility or gynaecological diseases could shape new tools for their diagnosis and treatment, as well as resources to assess the pregnancy prognosis based on endometrial microbiota. Data available suggest future research protocols should be standardised, and it needs to include the interplay among microbiome, virome and mycobiome, and the effect of antibiotics or probiotics on the microbiome shifts.
Collapse
Affiliation(s)
- Paula Punzón-Jiménez
- IVI Global Education, Edificio Bipolo, Hospital Universitario La Fe, Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026, Valencia, Spain.
- Department of Pediatrics, Obstetrics and Gynaecology, Universitat de València, Av. Blasco Ibáñez, 15, 46010, Valencia, Spain.
| | - Elena Labarta
- IVIRMA Valencia, Plaza de la Policía Local, 3, 46015, Valencia, Spain
- IVI Foundation - IIS La Fe, Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026, Valencia, Spain
| |
Collapse
|
20
|
Aly J, Plowden TC, Christy AY. Factors contributing to persistent disparate outcomes of in vitro fertilization treatment. Curr Opin Obstet Gynecol 2021; 33:335-342. [PMID: 34101661 DOI: 10.1097/gco.0000000000000726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW Disparate healthcare outcomes are ubiquitous and occur across all fields of medicine, specifically for racial and ethnic minorities. Within reproductive health, minority women face disparate access to care, particularly infertility services, poor outcomes of fertility treatment, alarmingly higher rates of maternal morbidity and mortality as well as higher rates of preterm birth, lower live birth rates when they conceive spontaneously or when they conceive with assisted reproductive technology. The objective of this review is to highlight factors contributing to the persistent racial/ethnic disparities in in vitro fertilization (IVF) outcomes. RECENT FINDINGS Recent studies document poorer outcomes after IVF treatment. Black women have been shown to have lower live birth rates following IVF treatment for more than 15 years. SUMMARY In an effort to better understand these negative outcomes, scientists and clinicians have investigated possible biological contributing factors including the vaginal microbiome, differences in oocyte quality, embryo viability, endometrial factors, and hormonal differences. Multiple social/cultural factors also play a role including access to care, particularly for people with low income, patient (mis)education, and medical racism/bias.
Collapse
Affiliation(s)
- Jasmine Aly
- Program in Reproductive Endocrinology and Infertility, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Torie C Plowden
- Department of Gynecologic Surgery and Obstetrics, Womack Army Medical Center, Fort Bragg, North Carolina
| | | |
Collapse
|
21
|
Tsonis O, Gkrozou F, Paschopoulos M. Microbiome affecting reproductive outcome in ARTs. J Gynecol Obstet Hum Reprod 2020; 50:102036. [PMID: 33307241 DOI: 10.1016/j.jogoh.2020.102036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 11/15/2022]
Abstract
Current scientific evidence reveals the importance of the human microbiome in health and disease. The presence of microbiota within the male and female reproductive tract has been well-documented and present theories imply that a possible disruption of their concentrations may have adverse effects on reproductive health and reproductive outcomes. Altered endometrial and vaginal microbiome could potential affect the reproductive outcome in infertile couples undergoing assisted reproductive techniques. Analysis of seminal fluids could also facilitate a prompt and appropriate approach in cases of abnormal male reproductive microflora. Essential knowledge on this subject could provide fertility experts better understanding with regards to unexplained fertility, increasing the success rates of ARTs. In this review, we summarise the current knowledge on the microbiota of the male and female reproductive tract and its impact on the success rates of ARTs in infertile couples.
Collapse
Affiliation(s)
- O Tsonis
- Department of Obstetrics and Gynaecology, University Hospital of Ioannina, Greece.
| | - F Gkrozou
- Department of Obstetrics and Gynaecology, University Hospitals of Birmingham, UK.
| | - M Paschopoulos
- Department of Obstetrics and Gynaecology, University Hospital of Ioannina, Greece.
| |
Collapse
|
22
|
Wolfarth AA, Smith TM, VanInsberghe D, Dunlop AL, Neish AS, Corwin EJ, Jones RM. A Human Microbiota-Associated Murine Model for Assessing the Impact of the Vaginal Microbiota on Pregnancy Outcomes. Front Cell Infect Microbiol 2020; 10:570025. [PMID: 33123496 PMCID: PMC7574503 DOI: 10.3389/fcimb.2020.570025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Disease states are often linked to large scale changes in microbial community structure that obscure the contributions of individual microbes to disease. Establishing a mechanistic understanding of how microbial community structure contribute to certain diseases, however, remains elusive thereby limiting our ability to develop successful microbiome-based therapeutics. Human microbiota-associated (HMA) mice have emerged as a powerful approach for directly testing the influence of microbial communities on host health and disease, with the transfer of disease phenotypes from humans to germ-free recipient mice widely reported. We developed a HMA mouse model of the human vaginal microbiota to interrogate the effects of Bacterial Vaginosis (BV) on pregnancy outcomes. We collected vaginal swabs from 19 pregnant African American women with and without BV (diagnosed per Nugent score) to colonize female germ-free mice and measure its impact on birth outcomes. There was considerable variability in the microbes that colonized each mouse, with no association to the BV status of the microbiota donor. Although some of the women in the study had adverse birth outcomes, the vaginal microbiota was not predictive of adverse birth outcomes in mice. However, elevated levels of pro-inflammatory cytokines in the uterus of HMA mice were detected during pregnancy. Together, these data outline the potential uses and limitations of HMA mice to elucidate the influence of the vaginal microbiota on health and disease.
Collapse
Affiliation(s)
- Alexandra A. Wolfarth
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, United States
| | - Taylor M. Smith
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, United States
| | - David VanInsberghe
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, United States
| | - Anne Lang Dunlop
- Emory University Nell Hodgson Woodruff School of Nursing, Emory University School of Medicine, Atlanta, GA, United States
| | - Andrew S. Neish
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, United States
| | - Elizabeth J. Corwin
- Emory University Nell Hodgson Woodruff School of Nursing, Emory University School of Medicine, Atlanta, GA, United States
| | - Rheinallt M. Jones
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
23
|
Brandão P, Gonçalves-Henriques M. The Impact of Female Genital Microbiota on Fertility and Assisted Reproductive Treatments. J Family Reprod Health 2020; 14:131-149. [PMID: 33603805 PMCID: PMC7868657 DOI: 10.18502/jfrh.v14i3.4666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective: To review publish data about human microbiome. It is known to modulate many body functions. In the field of Reproductive Medicine, the main question is in what extent may female genital tract microbiome influence fertility, both by spontaneous conception or after Assisted Reproductive Treatments (ART). The aim of this work is to review publish data about this matter. Materials and methods: This is a systematic review on the effect of the microbiota of the female genital tract on human fertility and on the outcomes of ART. Results: Fourteen articles were retrieved, concerning female lower genital tract and endometrium microbiota, including 5 case-controls studies about its impact on fertility, 8 cohort studies regarding ART outcomes and 1 mixed study. The main variables considered were richness and diversity of species, Lactobacillus dominance and the role of other bacteria. Results and conclusions of the various studies were quite diverse and incoherent. Despite the inconsistency of the studies, it seems that vaginal, cervical and endometrial microbiome may eventually play a role. Whether high richness and diversity of species, low amounts of Lactobacillus spp. or the presence of other bacteria, such as Gardnerella spp., may adversely affect reproductive outcomes is not clear. Conclusion: The influence of female genital microbiota on the ability to conceive is still unclear, due to the paucity and inconsistency of published data.
Collapse
Affiliation(s)
- Pedro Brandão
- Department of Reproductive Medicine, Infertility Institute of Valencia, Valenica, Spain
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Manuel Gonçalves-Henriques
- Department of Obstetrics and Gynecology, Prof. Doutor Fernando da Fonseca - Amadora Hospital, Lisbon, Portugal
| |
Collapse
|
24
|
Liu Y, Li X, Zhu B, Zhao H, Ai Q, Tong Y, Qin S, Feng Y, Wang Y, Wang S, Ma J, Yang H. Midtrimester amniotic fluid from healthy pregnancies has no microorganisms using multiple methods of microbiologic inquiry. Am J Obstet Gynecol 2020; 223:248.e1-248.e21. [PMID: 32017922 DOI: 10.1016/j.ajog.2020.01.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND There is controversy about whether the amniotic fluid contains bacteria. With the use of sequencing-based methods, recent studies report that the amniotic fluid is colonized by microorganisms. However, background-contaminating DNA might lead to false-positive findings when such a low microbial biomass sample is examined. OBJECTIVE The purpose of this study was to determine whether the midtrimester amniotic fluid of patients who subsequently had normal pregnancy outcomes contains a microbial signature. STUDY DESIGN In this prospective cohort study, 42 amniotic fluid samples were collected from 37 pregnancies (5 twin and 32 singletons) during genetic amniocentesis in the midtrimester. The subsequent pregnancy outcomes of all the participants were followed. Multiple methods were used to detect the presence of microorganisms in this study, which included cultivation, quantitative real-time polymerase chain reaction, and 16S ribosomal RNA gene sequencing. Multiple positive control samples (n=16) served as quality control samples and included 3 adult fecal samples, 4 vaginal swabs, and 9 artificial bacterial communities that were run in parallel with negative control samples (n=12) that included 4 samples from the hospital operating room and 8 samples from the laboratory, to account for background-contaminating DNA during each step of the experiments. RESULTS No bacteria under anaerobic or aerobic conditions or genital mycoplasmas were cultured from any of the amniotic fluid samples. Quantitative polymerase chain reaction did not reveal greater copy numbers of 16S ribosomal RNA gene in amniotic fluid samples than in negative control samples. 16S Ribosomal RNA gene sequencing did not indicate a significant difference in the microbial richness or community structures between amniotic fluid and negative control samples. CONCLUSION With multiple methods of microbiologic inquiry, no microorganisms were identified in the midtrimester amniotic fluid of healthy pregnancies with a normal pregnancy outcome.
Collapse
|
25
|
Vallvé-Juanico J, Santamaria X, Vo KC, Houshdaran S, Giudice LC. Macrophages display proinflammatory phenotypes in the eutopic endometrium of women with endometriosis with relevance to an infectious etiology of the disease. Fertil Steril 2020; 112:1118-1128. [PMID: 31843088 DOI: 10.1016/j.fertnstert.2019.08.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To phenotype transcriptomically M1 macrophages (Mϕ1) and M2 macrophages (Mϕ2) in the endometrium of women with endometriosis. DESIGN Prospective experimental study. SETTING University research laboratory. PATIENT(S) Six women with endometriosis and five controls without disease, in the secretory phase of the menstrual cycle. INTERVENTION(S) Mϕ1, Mϕ2, uterine natural killer, and T regulatory cells were isolated from human endometrium using a uniquely designed cell-specific fluorescence activating cell sorting panel. Transcriptome profiles were assessed by RNA high sequencing, bioinformatics, and biological pathway analyses. MAIN OUTCOMES MEASURE(S) Differential gene expression between Mϕ1 and Mϕ2 in women with and without endometriosis and in Mϕ1 versus Mϕ2 in each group was determined and involved different biologic and signaling pathways. RESULT(S) Flow cytometry analysis showed no significant differences in total numbers of leukocytes between control and endometriosis groups, although Mϕ1 were higher in the endometriosis group versus controls. Statistical transcriptomic analysis was performed only in Mϕ1 and Mϕ2 populations due to larger sample sizes. Bioinformatic analyses revealed that in women with endometriosis, endometrial Mϕ1 are more proinflammatory than controls and that Mϕ2 paradoxically have a proinflammatory phenotype. CONCLUSION(S) As Mϕ are phenotypically plastic and their polarization state depends on their microenvironment, the altered endometrial environment in women with endometriosis may promote endometrial Mϕ2 polarization and an Mϕ1 proinflammatory phenotype. Moreover, aberrant phenotypes of Mϕ may contribute to abnormal gene expression of the eutopic endometrium and a proinflammatory environment in women with endometriosis relevant to the pathophysiology of the disease and compromised reproductive outcomes.
Collapse
Affiliation(s)
- Júlia Vallvé-Juanico
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California; Department of Gynecology, IVIRMA Barcelona S.L., Barcelona, Spain; Group of Biomedical Research in Gynecology, Vall Hebron Research Institute and University Hospital, Barcelona, Spain
| | - Xavier Santamaria
- Department of Gynecology, IVIRMA Barcelona S.L., Barcelona, Spain; Group of Biomedical Research in Gynecology, Vall Hebron Research Institute and University Hospital, Barcelona, Spain; Igenomix, Valencia, Spain
| | - Kim Chi Vo
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California
| | - Sahar Houshdaran
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California
| | - Linda C Giudice
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California.
| |
Collapse
|
26
|
Al-Nasiry S, Ambrosino E, Schlaepfer M, Morré SA, Wieten L, Voncken JW, Spinelli M, Mueller M, Kramer BW. The Interplay Between Reproductive Tract Microbiota and Immunological System in Human Reproduction. Front Immunol 2020; 11:378. [PMID: 32231664 PMCID: PMC7087453 DOI: 10.3389/fimmu.2020.00378] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
In the last decade, the microbiota, i.e., combined populations of microorganisms living inside and on the surface of the human body, has increasingly attracted attention of researchers in the medical field. Indeed, since the completion of the Human Microbiome Project, insight and interest in the role of microbiota in health and disease, also through study of its combined genomes, the microbiome, has been steadily expanding. One less explored field of microbiome research has been the female reproductive tract. Research mainly from the past decade suggests that microbial communities residing in the reproductive tract represent a large proportion of the female microbial network and appear to be involved in reproductive failure and pregnancy complications. Microbiome research is facing technological and methodological challenges, as detection techniques and analysis methods are far from being standardized. A further hurdle is understanding the complex host-microbiota interaction and the confounding effect of a multitude of constitutional and environmental factors. A key regulator of this interaction is the maternal immune system that, during the peri-conceptional stage and even more so during pregnancy, undergoes considerable modulation. This review aims to summarize the current literature on reproductive tract microbiota describing the composition of microbiota in different anatomical locations (vagina, cervix, endometrium, and placenta). We also discuss putative mechanisms of interaction between such microbial communities and various aspects of the immune system, with a focus on the characteristic immunological changes during normal pregnancy. Furthermore, we discuss how abnormal microbiota composition, “dysbiosis,” is linked to a spectrum of clinical disorders related to the female reproductive system and how the maternal immune system is involved. Finally, based on the data presented in this review, the future perspectives in diagnostic approaches, research directions and therapeutic opportunities are explored.
Collapse
Affiliation(s)
- Salwan Al-Nasiry
- Department of Obstetrics and Gynecology, GROW School of Oncology and Developmental Biology, Maastricht University Medical Centre (MUMC), Maastricht, Netherlands
| | - Elena Ambrosino
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Research School GROW (School for Oncology & Developmental Biology), Institute for Public Health Genomics, Maastricht University, Maastricht, Netherlands
| | - Melissa Schlaepfer
- Department of Obstetrics and Gynecology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Servaas A Morré
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Research School GROW (School for Oncology & Developmental Biology), Institute for Public Health Genomics, Maastricht University, Maastricht, Netherlands.,Laboratory of Immunogenetics, Department Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam UMC, Amsterdam, Netherlands
| | - Lotte Wieten
- Tissue Typing Laboratory, Department of Transplantation Immunology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Marialuigia Spinelli
- Department of Obstetrics and Gynecology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Martin Mueller
- Department of Obstetrics and Gynecology, University Hospital Bern, University of Bern, Bern, Switzerland.,Department of Pediatrics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
27
|
Altmäe S, Franasiak JM, Mändar R. The seminal microbiome in health and disease. Nat Rev Urol 2019; 16:703-721. [PMID: 31732723 DOI: 10.1038/s41585-019-0250-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2019] [Indexed: 12/19/2022]
Abstract
Owing to the fact that there are more microbial than human cells in our body and that humans contain more microbial than human genes, the microbiome has huge potential to influence human physiology, both in health and in disease. The use of next-generation sequencing technologies has helped to elucidate functional, quantitative and mechanistic aspects of the complex microorganism-host interactions that underlie human physiology and pathophysiology. The microbiome of semen is a field of increasing scientific interest, although this microbial niche is currently understudied compared with other areas of microbiome research. However, emerging evidence is beginning to indicate that the seminal microbiome has important implications for the reproductive health of men, the health of the couple and even the health of offspring, owing to transfer of microorganisms to the partner and offspring. As this field expands, further carefully designed and well-powered studies are required to unravel the true nature and role of the seminal microbiome.
Collapse
Affiliation(s)
- Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain. .,Competence Centre on Health Technologies, Tartu, Estonia. .,Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain.
| | | | - Reet Mändar
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
28
|
Monin L, Whettlock EM, Male V. Immune responses in the human female reproductive tract. Immunology 2019; 160:106-115. [PMID: 31630394 DOI: 10.1111/imm.13136] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
Mucosal surfaces are key interfaces between the host and its environment, but also constitute ports of entry for numerous pathogens. The gut and lung mucosae act as points of nutrient and gas exchange, respectively, but the physiological purpose of the female reproductive tract (FRT) is to allow implantation and development of the fetus. Our understanding of immune responses in the FRT has traditionally lagged behind our grasp of the situation at other mucosal sites, but recently reproductive immunologists have begun to make rapid progress in this challenging area. Here, we review current knowledge of immune responses in the human FRT and their heterogeneity within and between compartments. In the commensal-rich vagina, the immune system must allow the growth of beneficial microbes, whereas the key challenge in the uterus is allowing the growth of the semi-allogeneic fetus. In both compartments, these objectives must be balanced with the need to eliminate pathogens. Our developing understanding of immune responses in the FRT will help us develop interventions to prevent the spread of sexually transmitted diseases and to improve outcomes of pregnancy for mothers and babies.
Collapse
Affiliation(s)
- Leticia Monin
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Emily M Whettlock
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Victoria Male
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
29
|
The role of uterine microbiome and epithelial-mesenchymal transition in endometrial function. ACTA ACUST UNITED AC 2019. [DOI: 10.2478/acb-2019-0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Abstract
Reproductive period in woman is characterized by cyclic changes of endometrium and its regeneration. The factors important for proper function of the endometrium are anatomical structure, hormonal control and signalling pathways on molecular-genetic level. New knowledge on uterine microbiome, mutual epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) of endometrial cells refine our conception of changes on cellular level, endometrial receptivity and possible causes of endometrial dysfunction. Substantial information on bacterial colonisation of endometrium were discovered by new diagnostic methods using analysis of ribosomal RNA in 16S subunit which are able to detect and exactly identify bacteria that are not detectable by classic cultivation methods. Endometrial microbiome prevents development of pathogenous microorganisms and modulates function of endometrial cells. It has been proven that stromal cells contribute to regeneration of not only the endometrial stroma, but also of the epithelium. Activity of ovarian steroids and other factors leads to EMT/MET, which ensures different functions of endometrium throughout the menstrual cycle and pregnancy. The endometrial microbiome and mutual transition of stromal and epithelial endometrial cells are necessary for physiological functions of uterine mucosa including implantation and development of an embryo.
Running title: Microbiome and cells transition in endometrial function
Collapse
|
30
|
Al-Memar M, Bobdiwala S, Fourie H, Mannino R, Lee YS, Smith A, Marchesi JR, Timmerman D, Bourne T, Bennett PR, MacIntyre DA. The association between vaginal bacterial composition and miscarriage: a nested case-control study. BJOG 2019; 127:264-274. [PMID: 31573753 PMCID: PMC6972675 DOI: 10.1111/1471-0528.15972] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2019] [Indexed: 01/31/2023]
Abstract
Objective To characterise vaginal bacterial composition in early pregnancy and investigate its relationship with first and second trimester miscarriages. Design Nested case–control study. Setting Queen Charlotte’s and Chelsea Hospital, Imperial College Healthcare NHS Trust, London. Population 161 pregnancies: 64 resulting in first trimester miscarriage, 14 in second trimester miscarriage and 83 term pregnancies. Methods Prospective profiling and comparison of vaginal bacteria composition using 16S rRNA gene‐based metataxonomics from 5 weeks’ gestation in pregnancies ending in miscarriage or uncomplicated term deliveries matched for age, gestation and body mass index. Main outcome measures Relative vaginal bacteria abundance, diversity and richness. Pregnancy outcomes defined as first or second trimester miscarriage, or uncomplicated term delivery. Results First trimester miscarriage associated with reduced prevalence of Lactobacillus spp.‐dominated vaginal microbiota classified using hierarchical clustering analysis (65.6 versus 87.7%; P = 0.005), higher alpha diversity (mean Inverse Simpson Index 2.5 [95% confidence interval 1.8–3.0] versus 1.5 [1.3–1.7], P = 0.003) and higher richness 25.1 (18.5–31.7) versus 16.7 (13.4–20), P = 0.017), compared with viable pregnancies. This was independent of vaginal bleeding and observable before first trimester miscarriage diagnosis (P = 0.015). Incomplete/complete miscarriage associated with higher proportions of Lactobacillus spp.‐depleted communities compared with missed miscarriage. Early pregnancy vaginal bacterial stability was similar between miscarriage and term pregnancies. Conclusions These findings associate the bacterial component of vaginal microbiota with first trimester miscarriage and indicate suboptimal community composition is established in early pregnancy. While further studies are required to elucidate the mechanism, vaginal bacterial composition may represent a modifiable risk factor for first trimester miscarriage. Tweetable abstract Vaginal bacterial composition in first trimester miscarriage is associated with reduced Lactobacillus spp. abundance and is independent of vaginal bleeding. Vaginal bacterial composition in first trimester miscarriage is associated with reduced Lactobacillus spp. abundance and is independent of vaginal bleeding.
Collapse
Affiliation(s)
- M Al-Memar
- Tommy's National Centre for Miscarriage Research, Imperial College London, London, UK.,Imperial College Parturition Research Group, Division of the Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - S Bobdiwala
- Tommy's National Centre for Miscarriage Research, Imperial College London, London, UK.,Imperial College Parturition Research Group, Division of the Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - H Fourie
- Tommy's National Centre for Miscarriage Research, Imperial College London, London, UK.,Imperial College Parturition Research Group, Division of the Institute of Reproductive and Developmental Biology, Imperial College London, London, UK.,Queen Charlotte's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - R Mannino
- Tommy's National Centre for Miscarriage Research, Imperial College London, London, UK.,Imperial College Parturition Research Group, Division of the Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Y S Lee
- Tommy's National Centre for Miscarriage Research, Imperial College London, London, UK.,Imperial College Parturition Research Group, Division of the Institute of Reproductive and Developmental Biology, Imperial College London, London, UK.,Queen Charlotte's Hospital, Imperial College Healthcare NHS Trust, London, UK.,March of Dimes European Preterm Birth Research Centre, Imperial College London, London, UK
| | - A Smith
- School of Medicine, Cardiff University, Cardiff, UK
| | - J R Marchesi
- March of Dimes European Preterm Birth Research Centre, Imperial College London, London, UK.,Division of Integrative Systems Medicine and Digestive Disease, Imperial College London, London, UK.,School of Biosciences, Cardiff University, Cardiff, UK
| | - D Timmerman
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - T Bourne
- Tommy's National Centre for Miscarriage Research, Imperial College London, London, UK.,Imperial College Parturition Research Group, Division of the Institute of Reproductive and Developmental Biology, Imperial College London, London, UK.,Queen Charlotte's Hospital, Imperial College Healthcare NHS Trust, London, UK.,Department of Obstetrics and Gynaecology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - P R Bennett
- Tommy's National Centre for Miscarriage Research, Imperial College London, London, UK.,Imperial College Parturition Research Group, Division of the Institute of Reproductive and Developmental Biology, Imperial College London, London, UK.,Queen Charlotte's Hospital, Imperial College Healthcare NHS Trust, London, UK.,March of Dimes European Preterm Birth Research Centre, Imperial College London, London, UK
| | - D A MacIntyre
- Tommy's National Centre for Miscarriage Research, Imperial College London, London, UK.,Imperial College Parturition Research Group, Division of the Institute of Reproductive and Developmental Biology, Imperial College London, London, UK.,Queen Charlotte's Hospital, Imperial College Healthcare NHS Trust, London, UK.,March of Dimes European Preterm Birth Research Centre, Imperial College London, London, UK
| |
Collapse
|
31
|
Benner M, Ferwerda G, Joosten I, van der Molen RG. How uterine microbiota might be responsible for a receptive, fertile endometrium. Hum Reprod Update 2019; 24:393-415. [PMID: 29668899 DOI: 10.1093/humupd/dmy012] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/27/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Fertility depends on a receptive state of the endometrium, influenced by hormonal and anatomical adaptations, as well as the immune system. Local and systemic immunity is greatly influenced by microbiota. Recent discoveries of 16S rRNA in the endometrium and the ability to detect low-biomass microbiota fueled the notion that the uterus may be indeed a non-sterile compartment. To date, the concept of the 'sterile womb' focuses on in utero effects of microbiota on offspring and neonatal immunity. However, little awareness has been raised regarding the importance of uterine microbiota for endometrial physiology in reproductive health; manifested in fertility and placentation. OBJECTIVE AND RATIONALE Commensal colonization of the uterus has been widely discussed in the literature. The objective of this review is to outline the possible importance of this uterine colonization for a healthy, fertile uterus. We present the available evidence regarding uterine microbiota, focusing on recent findings based on 16S rRNA, and depict the possible importance of uterine colonization for a receptive endometrium. We highlight a possible role of uterine microbiota for host immunity and tissue adaptation, as well as conferring protection against pathogens. Based on knowledge of the interaction of the mucosal immune cells of the gut with the local microbiome, we want to investigate the potential implications of commensal colonization for uterine health. SEARCH METHODS PubMed and Google Scholar were searched for articles in English indexed from 1 January 2008 to 1 March 2018 for '16S rRNA', 'uterus' and related search terms to assess available evidence on uterine microbiome analysis. A manual search of the references within the resulting articles was performed. To investigate possible functional contributions of uterine microbiota to health, studies on microbiota of other body sites were additionally assessed. OUTCOMES Challenging the view of a sterile uterus is in its infancy and, to date, no conclusions on a 'core uterine microbiome' can be drawn. Nevertheless, evidence for certain microbiota and/or associated compounds in the uterus accumulates. The presence of microbiota or their constituent molecules, such as polysaccharide A of the Bacteroides fragilis capsule, go together with healthy physiological function. Lessons learned from the gut microbiome suggest that the microbiota of the uterus may potentially modulate immune cell subsets needed for implantation and have implications for tissue morphology. Microbiota can also be crucial in protection against uterine infections by defending their niche and competing with pathogens. Our review highlights the need for well-designed studies on a 'baseline' microbial state of the uterus representing the optimal starting point for implantation and subsequent placenta formation. WIDER IMPLICATIONS The complex interplay of processes and cells involved in healthy pregnancy is still poorly understood. The correct receptive endometrial state, including the local immune environment, is crucial not only for fertility but also placenta formation since initiation of placentation highly depends on interaction with immune cells. Implantation failure, recurrent pregnancy loss, and other pathologies of endometrium and placenta, such as pre-eclampsia, represent an increasing societal burden. More robust studies are needed to investigate uterine colonization. Based on current data, future research needs to include the uterine microbiome as a relevant factor in order to understand the players needed for healthy pregnancy.
Collapse
Affiliation(s)
- Marilen Benner
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, Internal mail 469, 6500 HB Nijmegen, The Netherlands
| | - Gerben Ferwerda
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, Internal mail 469, 6500 HB Nijmegen, The Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, Internal mail 469, 6500 HB Nijmegen, The Netherlands
| | - Renate G van der Molen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, Internal mail 469, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
32
|
Shaping Microbiota During the First 1000 Days of Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1125:3-24. [PMID: 30680645 DOI: 10.1007/5584_2018_312] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The data obtained in prior studies suggest that early microbial exposition begins prior to conception and gestation. Given that the host-microbe interaction is shaped by the immune system response, it is important to understand the key immune system-microbiota relationship during the period from conception to the first years of life. The present work summarizes the available evidence concerning early microbiota exposure within the male and the female reproductive tracts at the point of conception and during gestation, focusing on the potential impact on infant development during the first 1000 days of life. Furthermore, we conclude that some dietary strategies including specific probiotics could become potentially valuable tools to modulate the gut microbiota during this early critical window of opportunity for targeted health outcomes throughout the entire lifespan.
Collapse
|
33
|
D'Ippolito S, Di Nicuolo F, Pontecorvi A, Gratta M, Scambia G, Di Simone N. Endometrial microbes and microbiome: Recent insights on the inflammatory and immune "players" of the human endometrium. Am J Reprod Immunol 2018; 80:e13065. [PMID: 30375712 DOI: 10.1111/aji.13065] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 12/29/2022] Open
Abstract
In recent years, extended scientific works shed light on the important role played by the endometrium in early pregnancy. This review examines our current knowledge about the delicate balance between microbial and cellular immune agents at endometrial level: All of them might affect endometrial receptivity. In contrast to the classical thinking of human endometrium as a sterile tissue, several recent studies have drawn attention to a resident population of microorganisms, which reaches only a 30% of concordance with those of the cervical-vaginal flora. At present, the understanding of the microbiome in relation to human reproduction is in its infancy and further studies are needed to clarify the activity of endometrial microbiome and the possible effects of a "reproductive tract dysbiosis" on fertility. Moreover, in the human endometrium, there is a complex system works preventing the risk of infection as well as enabling, when pregnancy occurs, the acceptance of the blastocyst. In this way, the endometrium plays a central role in the uterine immune surveillance. A better understanding of the different agents that may affect endometrial receptivity would improve the diagnosis and treatment of obstetric complications related to defective implantation and placentation.
Collapse
Affiliation(s)
- Silvia D'Ippolito
- Dipartimento di Scienze della Salute della Donna e del Bambino, Area Salute Donna, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italia.,Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Rome, Italia
| | - Fiorella Di Nicuolo
- Dipartimento di Scienze della Salute della Donna e del Bambino, Area Salute Donna, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italia.,Paolo VI International Scientific Institute, Università Cattolica del Sacro Cuore, Rome, Italia
| | - Alfredo Pontecorvi
- Paolo VI International Scientific Institute, Università Cattolica del Sacro Cuore, Rome, Italia.,Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Area Endocrino-Metabolica e Dermo-Reumatologica, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italia.,Istituto di Patologia Medica, Università Cattolica del Sacro Cuore, Rome, Italia
| | - Matteo Gratta
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Rome, Italia
| | - Giovanni Scambia
- Dipartimento di Scienze della Salute della Donna e del Bambino, Area Salute Donna, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italia.,Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Rome, Italia
| | - Nicoletta Di Simone
- Dipartimento di Scienze della Salute della Donna e del Bambino, Area Salute Donna, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italia.,Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Rome, Italia
| |
Collapse
|
34
|
Zhu L, Luo F, Hu W, Han Y, Wang Y, Zheng H, Guo X, Qin J. Bacterial Communities in the Womb During Healthy Pregnancy. Front Microbiol 2018; 9:2163. [PMID: 30237795 PMCID: PMC6135892 DOI: 10.3389/fmicb.2018.02163] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/23/2018] [Indexed: 01/12/2023] Open
Abstract
The idea that healthy uterine cavity is sterile is challenged nowadays. It is still debatable whether the bacteria present in the uterine cavity during pregnancy are residents or invaders. To reveal microbiome composition and its characteristics in the womb of pregnant women, 41 decidual tissue samples and 64 amniotic fluid samples were taken from pregnant Chinese women. DNA extraction was followed by pyrosequencing of the hypervariable V4 region of the 16S rDNA gene to characterize womb microbiome. Both types of samples had low diversity microbiome with Enterobacteriaceae being the dominant phylotypes at family level. To characterize the nature of colonization during pregnancy, the presence of endogenous biomass was confirmed by cultivation. Surprisingly, all of the 50 amniotic fluid samples studied were culture-negative, whereas 379 out of 1,832 placenta samples were culture-positive. Our results suggested that womb contained microbiome with low diversity. Culture-based investigation of amniotic fluid and placenta samples confirmed the presence of cultivable microorganisms in the placenta but not in amniotic fluid. Thus it suggests that bacterial colonization does occur during healthy pregnancy.
Collapse
Affiliation(s)
- Lihong Zhu
- Department of Gynecology, Huadong Hospital, Fudan University, Shanghai, China
| | - Fei Luo
- Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Hu
- Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Han
- Department of Microbiology, Guizhou Medical University, Guiyang, China
| | - Yuezhu Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Xiaokui Guo
- Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhong Qin
- Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Loeper N, Graspeuntner S, Rupp J. Microbiota changes impact on sexually transmitted infections and the development of pelvic inflammatory disease. Microbes Infect 2018; 20:505-511. [PMID: 29452257 DOI: 10.1016/j.micinf.2018.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 02/06/2023]
Abstract
The integrity of the human urogenital microbiome is crucial for women's health and well-being. An imbalance of the urogenital microbiota increases the risk for sexually transmitted infections. In this review, we discuss the microbiota composition of the female urogenital tract and its role in protecting from sexually transmitted infections and the emergence of pelvic inflammatory disease.
Collapse
Affiliation(s)
- Nathalie Loeper
- Department of Infectious Diseases and Microbiology, University of Luebeck, 23538 Luebeck, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Luebeck, 23538 Luebeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Luebeck, 23538 Luebeck, Germany.
| |
Collapse
|