1
|
Zhao Y, Long Y, Shi T, Ma X, Lian C, Wang H, Xu H, Yu L, Zhao X. Validating the splicing effect of rare variants in the SLC26A4 gene using minigene assay. BMC Med Genomics 2024; 17:233. [PMID: 39334476 PMCID: PMC11430457 DOI: 10.1186/s12920-024-02007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The SLC26A4 gene is the second most common cause of hereditary hearing loss in human. The aim of this study was to utilize the minigene assay in order to identify pathogenic variants of SLC26A4 associated with enlarged vestibular aqueduct (EVA) and hearing loss (HL) in two patients. METHODS The patients were subjected to multiplex PCR amplification and next-generation sequencing of common deafness genes (including GJB2, SLC26A4, and MT-RNR1), then bioinformatics analysis was performed on the sequencing data to identify candidate pathogenic variants. Minigene experiments were conducted to determine the potential impact of the variants on splicing. RESULTS Genetic testing revealed that the first patient carried compound heterozygous variants c.[1149 + 1G > A]; [919-2 A > G] in the SLC26A4 gene, while the second patient carried compound heterozygous variants c.[2089 + 3 A > T]; [919-2 A > G] in the same gene. Minigene experiments demonstrated that both c.1149 + 1G > A and c.2089 + 3 A > T affected mRNA splicing. According to the ACMG guidelines and the recommendations of the ClinGen Hearing Loss Expert Panel for ACMG variant interpretation, these variants were classified as "likely pathogenic". CONCLUSIONS This study identified the molecular etiology of hearing loss in two patients with EVA and elucidated the impact of rare variants on splicing, thus contributing to the mutational spectrum of pathogenic variants in the SLC26A4 gene.
Collapse
Affiliation(s)
- Yixin Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
| | - Yan Long
- Department of Clinical Laboratory, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Tao Shi
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
| | - Xin Ma
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
| | - Chengyu Lian
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou, 450052, China
| | - Hanjun Wang
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou, 450052, China
| | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou, 450052, China
| | - Lisheng Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China.
| | - Xiaotao Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
2
|
Yeo XY, Kwon S, Rinai KR, Lee S, Jung S, Park R. A Consolidated Understanding of the Contribution of Redox Dysregulation in the Development of Hearing Impairment. Antioxidants (Basel) 2024; 13:598. [PMID: 38790703 PMCID: PMC11118506 DOI: 10.3390/antiox13050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The etiology of hearing impairment is multifactorial, with contributions from both genetic and environmental factors. Although genetic studies have yielded valuable insights into the development and function of the auditory system, the contribution of gene products and their interaction with alternate environmental factors for the maintenance and development of auditory function requires further elaboration. In this review, we provide an overview of the current knowledge on the role of redox dysregulation as the converging factor between genetic and environmental factor-dependent development of hearing loss, with a focus on understanding the interaction of oxidative stress with the physical components of the peripheral auditory system in auditory disfunction. The potential involvement of molecular factors linked to auditory function in driving redox imbalance is an important promoter of the development of hearing loss over time.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Soohyun Kwon
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
- Department of BioNanotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Kimberley R. Rinai
- Department of Life Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Sungsu Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital and Medical School, Gwangju 61469, Republic of Korea;
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
3
|
Liu Y, Zhang Y, Wang J, Song S, Wang H, Meng Q, Zhan Y, Xu Y, Sun L. Multicolor melting curve analysis discloses high carrier frequency of hearing loss-associated variants among neonates in Jiangsu province. Mol Genet Genomic Med 2024; 12:e2384. [PMID: 38407562 PMCID: PMC10847707 DOI: 10.1002/mgg3.2384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Genetic disorders ascribe to half of cases of congenital hearing loss. Hearing screening is significant in detecting hearing loss (HL) but weak at diagnosis, which can be complemented by genetic screening. METHODS To find a feasible method to accomplish genetic screening and evaluate its advantage when combined with hearing screening, between 1 January 2022, and 10 December 2023, we performed an observational cohort study based on 2488 neonates from the Han population at three hospitals in Jiangsu province. Genetic screening for 20 variants in four common HL-associated genes by multicolor melting curve analysis (MMCA) and hearing screening were offered concurrently to all participants. RESULTS In total, 170 (6.8%) of 2488 eligible neonates were detected at least one variant and among them, the proportion of referral was higher (p < 0.05). Genetic screening combined with hearing screening was associated with a 25.0% increase (2 of 8) in discovering cases of diagnosed hearing loss that were missed by hearing screening. CONCLUSION This study suggests that genetic screening combined with hearing screening by MMCA is effective at finding potential HL cases and practical to be validated in other places.
Collapse
Affiliation(s)
- Yi Liu
- Department of Obstetrics & GynecologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Yuanyuan Zhang
- Department of Obstetrics & GynecologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Jue Wang
- Department of Obstetrics & GynecologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Shengnan Song
- Department of Obstetrics & GynecologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Huiyan Wang
- Department of Obstetrics & GynecologyChangzhou Maternity and Child Health Care HospitalChangzhouJiangsuChina
| | - Qian Meng
- Department of Obstetrics & GynecologyLianyungang Maternity and Child Health HospitalLianyungangJiangsuChina
| | - Yuan Zhan
- Department of Obstetrics & GynecologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Yetao Xu
- Department of Obstetrics & GynecologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Lizhou Sun
- Department of Obstetrics & GynecologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
4
|
Zhu G, Huang Y, Zhang L, Yan K, Qiu C, He Y, Liu Q, Zhu C, Morín M, Moreno‐Pelayo MÁ, Zhu M, Cao X, Zhou H, Qian X, Xu Z, Chen J, Gao X, Wan G. Cingulin regulates hair cell cuticular plate morphology and is required for hearing in human and mouse. EMBO Mol Med 2023; 15:e17611. [PMID: 37691516 PMCID: PMC10630877 DOI: 10.15252/emmm.202317611] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023] Open
Abstract
Cingulin (CGN) is a cytoskeleton-associated protein localized at the apical junctions of epithelial cells. CGN interacts with major cytoskeletal filaments and regulates RhoA activity. However, physiological roles of CGN in development and human diseases are currently unknown. Here, we report a multi-generation family presenting with autosomal dominant non-syndromic hearing loss (ADNSHL) that co-segregates with a CGN heterozygous truncating variant, c.3330delG (p.Leu1110Leufs*17). CGN is normally expressed at the apical cell junctions of the organ of Corti, with enriched localization at hair cell cuticular plates and circumferential belts. In mice, the putative disease-causing mutation results in reduced expression and abnormal subcellular localization of the CGN protein, abolishes its actin polymerization activity, and impairs the normal morphology of hair cell cuticular plates and hair bundles. Hair cell-specific Cgn knockout leads to high-frequency hearing loss. Importantly, Cgn mutation knockin mice display noise-sensitive, progressive hearing loss and outer hair cell degeneration. In summary, we identify CGN c.3330delG as a pathogenic variant for ADNSHL and reveal essential roles of CGN in the maintenance of cochlear hair cell structures and auditory function.
Collapse
Affiliation(s)
- Guang‐Jie Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Yuhang Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Linqing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Keji Yan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Cui Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Yihan He
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Qing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Chengwen Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Matías Morín
- Servicio de GenéticaHospital Universitario Ramón y Cajal, IRYCISMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades RarasInstituto de Salud Carlos III (CB06/07/0048; CIBERER‐ISCIII)MadridSpain
| | - Miguel Ángel Moreno‐Pelayo
- Servicio de GenéticaHospital Universitario Ramón y Cajal, IRYCISMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades RarasInstituto de Salud Carlos III (CB06/07/0048; CIBERER‐ISCIII)MadridSpain
| | - Min‐Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical ScienceNanjing Medical UniversityNanjingChina
| | - Han Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Xiaoyun Qian
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Jie Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Xia Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Guoqiang Wan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| |
Collapse
|
5
|
Imizcoz T, Prieto-Matos C, Manrique-Huarte R, Calavia D, Huarte A, Pruneda PC, Ordoñez GR, Cañada-Higueras E, Patiño-García A, Alkorta-Aranburu G, Manrique Rodríguez M. Next-generation sequencing improves precision medicine in hearing loss. Front Genet 2023; 14:1264899. [PMID: 37811145 PMCID: PMC10557071 DOI: 10.3389/fgene.2023.1264899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023] Open
Abstract
Background: An early etiological diagnosis of hearing loss positively impacts children's quality of life including language and cognitive development. Even though hearing loss associates with extremely high genetic and allelic heterogeneity, several studies have proven that Next-Generation Sequencing (NGS)-based gene panel testing significantly reduces the time between onset and diagnosis. Methods: In order to assess the clinical utility of our custom NGS GHELP panel, the prevalence of pathogenic single nucleotide variants, indels or copy number variants was assessed by sequencing 171 nuclear and 8 mitochondrial genes in 155 Spanish individuals with hearing loss. Results: A genetic diagnosis of hearing loss was achieved in 34% (52/155) of the individuals (5 out of 52 were syndromic). Among the diagnosed cases, 87% (45/52) and 12% (6/52) associated with autosomal recessive and dominant inheritance patterns respectively; remarkably, 2% (1/52) associated with mitochondrial inheritance pattern. Although the most frequently mutated genes in this cohort were consistent with those described in the literature (GJB2, OTOF or MYO7A), causative variants in less frequent genes such as TMC1, FGF3 or mitCOX1 were also identified. Moreover, 5% of the diagnosed cases (3/52) were associated with pathogenic copy number variants. Conclusion: The clinical utility of NGS panels that allows identification of different types of pathogenic variants-not only single nucleotide variants/indels in both nuclear and mitochondrial genes but also copy number variants-has been demonstrated to reduce the clinical diagnostic odyssey in hearing loss. Thus, clinical implementation of genomic strategies within the regular clinical practice, and, more significantly, within the newborn screening protocols, is warranted.
Collapse
Affiliation(s)
- T. Imizcoz
- CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
| | - C. Prieto-Matos
- Department of Otorhinolaryngology, University Clinic of Navarra, Pamplona, Spain
| | - R. Manrique-Huarte
- Department of Otorhinolaryngology, University Clinic of Navarra, Pamplona, Spain
| | - D. Calavia
- Department of Otorhinolaryngology, University Clinic of Navarra, Pamplona, Spain
| | - A. Huarte
- Department of Otorhinolaryngology, University Clinic of Navarra, Pamplona, Spain
| | | | | | | | - A. Patiño-García
- CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
- Department of Pediatrics and Medical Genomics Unit, University Clinic of Navarra, Pamplona, Spain
| | | | | |
Collapse
|
6
|
Hong G, Fu X, Qi J, Shao B, Han X, Fang Y, Liu S, Cheng C, Zhu C, Gao J, Gao X, Chen J, Xia M, Xiong W, Chai R. Dock4 is required for the maintenance of cochlear hair cells and hearing function. FUNDAMENTAL RESEARCH 2023; 3:557-569. [PMID: 38933554 PMCID: PMC11197514 DOI: 10.1016/j.fmre.2022.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/27/2022] Open
Abstract
Auditory hair cells (HCs) are the mechanosensory receptors of the cochlea, and HC loss or malfunction can result from genetic defects. Dock4, a member of the Dock180-related protein superfamily, is a guanine nucleotide exchange factor for Rac1, and previous reports have shown that Dock4 mutations are associated with autism spectrum disorder, myelodysplastic syndromes, and tumorigenesis. Here, we found that Dock4 is highly expressed in the cochlear HCs of mice. However, the role of Dock4 in the inner ear has not yet been investigated. Taking advantage of the piggyBac transposon system, Dock4 knockdown (KD) mice were established to explore the role of Dock4 in the cochlea. Compared to wild-type controls, Dock4 KD mice showed significant hearing impairment from postnatal day 60. Dock4 KD mice showed hair bundle deficits and increased oxidative stress, which eventually led to HC apoptosis, late-onset HC loss, and progressive hearing loss. Furthermore, molecular mechanism studies showed that Rac1/β-catenin signaling was significantly downregulated in Dock4 KD cochleae and that this was the cause for the disorganized stereocilia and increased oxidative stress in HCs. Overall, our work demonstrates that the Dock4/Rac1/β-catenin signaling pathway plays a critical role in the maintenance of auditory HCs and hearing function.
Collapse
Affiliation(s)
- Guodong Hong
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Xiaolong Fu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Buwei Shao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Xuan Han
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Yuan Fang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Shuang Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100083, China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Research Institute of Otolaryngology, Nanjing 210008, China
| | - Chengwen Zhu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Junyan Gao
- Jiangsu Rehabilitation Research Center for Hearing and Speech Impairment, Nanjing, Jiangsu 210004, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Research Institute of Otolaryngology, Nanjing 210008, China
| | - Jie Chen
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Research Institute of Otolaryngology, Nanjing 210008, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong 250000, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong 250022, China
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100083, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing 100101, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
7
|
Jones M, Kovacevic B, Ionescu CM, Wagle SR, Quintas C, Wong EYM, Mikov M, Mooranian A, Al-Salami H. The applications of Targeted Delivery for Gene Therapies in Hearing Loss. J Drug Target 2023:1-22. [PMID: 37211674 DOI: 10.1080/1061186x.2023.2216900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/07/2022] [Accepted: 04/09/2023] [Indexed: 05/23/2023]
Abstract
Gene therapies are becoming more abundantly researched for use in a multitude of potential treatments, including for hearing loss. Hearing loss is a condition which impacts an increasing number of the population each year, with significant burdens associated. As such, this review will present the concept that delivering a gene effectively to the inner ear may assist in expanding novel treatment options and improving patient outcomes. Historically, several drawbacks have been associated with the use of gene therapies, some of which may be overcome via targeted delivery. Targeted delivery has the potential to alleviate off-target effects and permit a safer delivery profile. Viral vectors have often been described as a delivery method, however, there is an emerging depiction of the potential for nanotechnology to be used. Resulting nanoparticles may also be tuned to allow for targeted delivery. Therefore, this review will focus on hearing loss, gene delivery techniques and inner ear targets, including highlighting promising research. Targeted delivery is a key concept to permitting gene delivery in a safe effective manner, however, further research is required, both in the determination of genes to use in functional hearing recovery and formulating nanoparticles for targeted delivery.
Collapse
Affiliation(s)
- Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Christina Quintas
- School of human sciences, University of Western Australia, Crawley 6009, Perth, Western Australia, Australia
| | - Elaine Y M Wong
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Al-Bradie R, Uzair M, Bashir S. Sensorineural hearing loss due to a novel mutation in the PCDH15 gene: A case study. BRAIN DISORDERS 2023. [DOI: 10.1016/j.dscb.2023.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
9
|
Mardani S, Almadani N, Garshasbi M. Compound heterozygous variants in SPNS2 cause sensorineural hearing loss. Eur J Med Genet 2022; 66:104658. [DOI: 10.1016/j.ejmg.2022.104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022]
|
10
|
Li MM, Tayoun AA, DiStefano M, Pandya A, Rehm HL, Robin NH, Schaefer AM, Yoshinaga-Itano C. Clinical evaluation and etiologic diagnosis of hearing loss: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2022; 24:1392-1406. [PMID: 35802133 DOI: 10.1016/j.gim.2022.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
Abstract
Hearing loss is a common and complex condition that can occur at any age, can be inherited or acquired, and is associated with a remarkably wide array of etiologies. The diverse causes of hearing loss, combined with the highly variable and often overlapping presentations of different forms of hearing loss, challenge the ability of traditional clinical evaluations to arrive at an etiologic diagnosis for many deaf and hard-of-hearing individuals. However, identifying the etiology of hearing loss may affect clinical management, improve prognostic accuracy, and refine genetic counseling and assessment of the likelihood of recurrence for relatives of deaf and hard-of-hearing individuals. Linguistic and cultural identities associated with being deaf or hard-of-hearing can complicate access to and the effectiveness of clinical care. These concerns can be minimized when genetic and other health care services are provided in a linguistically and culturally sensitive manner. This clinical practice resource offers information about the frequency, causes, and presentations of hearing loss and suggests approaches to the clinical and genetic evaluation of deaf and hard-of-hearing individuals aimed at identifying an etiologic diagnosis and providing informative and effective patient education and genetic counseling.
Collapse
Affiliation(s)
- Marilyn M Li
- Department of Pathology and Laboratory Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ahmad Abou Tayoun
- Al Jalila Genomics Center, Al Jalila Children's Specialty Hospital, Mohammed Bin Rashid University, Dubai, United Arab Emirates
| | | | - Arti Pandya
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Nathaniel H Robin
- Departments of Genetics and Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Amanda M Schaefer
- Department of Otolaryngology-Head & Neck Surgery, Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA
| | | |
Collapse
|
11
|
Liang P, Chen F, Wang S, Li Q, Li W, Wang J, Chen J, Zha D. Whole exome sequencing of six Chinese families with hereditary non-syndromic hearing loss. Int J Pediatr Otorhinolaryngol 2021; 148:110817. [PMID: 34265623 DOI: 10.1016/j.ijporl.2021.110817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Hereditary non-syndromic hearing loss (NSHL) has a high genetic heterogeneity with about 152 genes identified as associated molecular causes. The present study aimed to detect the possible damaging variants of the deaf probands from six unrelated Chinese families. METHODS After excluding the pathogenic/likely pathogenic variants in the most common genes, GJB2 and SLC26A4, 12 probands with prelingual deafness and autosomal recessive inheritance were evaluated by whole-exome sequencing (WES). All the candidate variants were verified by Sanger sequencing in all patients and their parents. RESULTS Biallelic variants were identified in all deaf patients. Among these six families, 10 potentially causative variants, including 3 reported and 7 novel variants, in 3 different deafness-associated autosomal recessive (DFNB) genes (MYO15A, COL11A2, and CDH23) were identified. These novel variants are thought to be pathogenic or likely pathogenic for theirs predicted damage function upon the protein as while as cosegregated with the deafness phenotype. The variants in MYO15A were frequent with 7/10 candidate ones. CONCLUSION Next-generation sequencing (NGS) approach becomes more cost-effective and efficient when analyzing large-scale genes compared to the conventional polymerase chain reaction-based Sanger sequencing, which is often used to screen common deafness-related genes. The current findings further extend the pathogenic/likely pathogenic variants spectrum of hearing loss in the Chinese population, which has a positive significance for genetic counseling.
Collapse
Affiliation(s)
- Pengfei Liang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Fengping Chen
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Shujuan Wang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Qiong Li
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Wei Li
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jian Wang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jun Chen
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Dingjun Zha
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
12
|
Pennington JW, Ruth B, Miller JM, Peterson J, Xu B, Masino A, Krantz I, Manganella J, Gomes T, Stiles D, Kenna M, Hood LJ, Germiller J, Crenshaw EB. Perspective on the Development of a Large-Scale Clinical Data Repository for Pediatric Hearing Research. Ear Hear 2021; 41:231-238. [PMID: 31408044 PMCID: PMC7007829 DOI: 10.1097/aud.0000000000000779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The use of "big data" for pediatric hearing research requires new approaches to both data collection and research methods. The widespread deployment of electronic health record systems creates new opportunities and corresponding challenges in the secondary use of large volumes of audiological and medical data. Opportunities include cost-effective hypothesis generation, rapid cohort expansion for rare conditions, and observational studies based on sample sizes in the thousands to tens of thousands. Challenges include finding and forming appropriately skilled teams, access to data, data quality assessment, and engagement with a research community new to big data. The authors share their experience and perspective on the work required to build and validate a pediatric hearing research database that integrates clinical data for over 185,000 patients from the electronic health record systems of three major academic medical centers.
Collapse
Affiliation(s)
- Jeffrey W. Pennington
- Department of Biomedical and Health Informatics, The Children’s Hospital Of Philadelphia, Philadelphia, PA, USA
| | - Byron Ruth
- Department of Biomedical and Health Informatics, The Children’s Hospital Of Philadelphia, Philadelphia, PA, USA
| | - Jeffrey M. Miller
- Department of Biomedical and Health Informatics, The Children’s Hospital Of Philadelphia, Philadelphia, PA, USA
| | - Joy Peterson
- Center for Childhood Communication, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Baichen Xu
- Center for Childhood Communication, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aaron Masino
- Department of Biomedical and Health Informatics, The Children’s Hospital Of Philadelphia, Philadelphia, PA, USA
| | - Ian Krantz
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Juliana Manganella
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, MA, USA
| | - Tamar Gomes
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, MA, USA
| | - Derek Stiles
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, MA, USA
| | - Margaret Kenna
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, MA, USA
| | - Linda J. Hood
- Department of Hearing and Speech Sciences, Vanderbilt Bill Wilkerson Center, Vanderbilt University, Nashville, TN, USA
| | - John Germiller
- Division of Otolaryngology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Otorhinolaryngology: Head and Neck Surgery, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - E. Bryan Crenshaw
- Center for Childhood Communication, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Otorhinolaryngology: Head and Neck Surgery, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Yao J, Wang Y, Cao C, Song R, Bi D, Zhang H, Li Y, Qin G, Hou N, Zhang N, Zhang J, Guo W, Yang S, Wang Y, Zhao J. CRISPR/Cas9-mediated correction of MITF homozygous point mutation in a Waardenburg syndrome 2A pig model. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:986-999. [PMID: 34094716 PMCID: PMC8141604 DOI: 10.1016/j.omtn.2021.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/09/2021] [Indexed: 01/23/2023]
Abstract
Gene therapy for curing congenital human diseases is promising, but the feasibility and safety need to be further evaluated. In this study, based on a pig model that carries the c.740T>C (L247S) mutation in MITF with an inheritance pattern and clinical pathology that mimics Waardenburg syndrome 2A (WS2A), we corrected the point mutation by the CRISPR-Cas9 system in the mutant fibroblast cells using single-stranded oligodeoxynucleotide (ssODN) and long donor plasmid DNA as the repair template. By using long donor DNA, precise correction of this point mutation was achieved. The corrected cells were then used as the donor cell for somatic cell nuclear transfer (SCNT) to produce piglets, which exhibited a successfully rescued phenotype of WS2A, including anophthalmia and hearing loss. Furthermore, engineered base editors (BEs) were exploited to make the correction in mutant porcine fibroblast cells and early embryos. The correction efficiency was greatly improved, whereas substantial off-targeting mutations were detected, raising a safety concern for their potential applications in gene therapy. Thus, we explored the possibility of precise correction of WS2A-causing gene mutation by the CRISPR-Cas9 system in a large-animal model, suggesting great prospects for its future applications in treating human genetic diseases.
Collapse
Affiliation(s)
- Jing Yao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunwei Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ruigao Song
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Dengfeng Bi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongyong Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongshun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guosong Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Naipeng Hou
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Weiwei Guo
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing 100853, China
| | - Shiming Yang
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
14
|
Bankoti K, Generotti C, Hwa T, Wang L, O'Malley BW, Li D. Advances and challenges in adeno-associated viral inner-ear gene therapy for sensorineural hearing loss. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:209-236. [PMID: 33850952 PMCID: PMC8010215 DOI: 10.1016/j.omtm.2021.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is growing attention and effort focused on treating the root cause of sensorineural hearing loss rather than managing associated secondary characteristic features. With recent substantial advances in understanding sensorineural hearing-loss mechanisms, gene delivery has emerged as a promising strategy for the biological treatment of hearing loss associated with genetic dysfunction. There are several successful and promising proof-of-principle examples of transgene deliveries in animal models; however, there remains substantial further progress to be made in these avenues before realizing their clinical application in humans. Herein, we review different aspects of development, ongoing preclinical studies, and challenges to the clinical transition of transgene delivery of the inner ear toward the restoration of lost auditory and vestibular function.
Collapse
Affiliation(s)
- Kamakshi Bankoti
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles Generotti
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tiffany Hwa
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lili Wang
- Department of Medicine, Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bert W O'Malley
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daqing Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Roccio M. Directed differentiation and direct reprogramming: Applying stem cell technologies to hearing research. Stem Cells 2020; 39:375-388. [PMID: 33378797 DOI: 10.1002/stem.3315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022]
Abstract
Hearing loss is the most widely spread sensory disorder in our society. In the majority of cases, it is caused by the loss or malfunctioning of cells in the cochlea: the mechanosensory hair cells, which act as primary sound receptors, and the connecting auditory neurons of the spiral ganglion, which relay the signal to upper brain centers. In contrast to other vertebrates, where damage to the hearing organ can be repaired through the activity of resident cells, acting as tissue progenitors, in mammals, sensory cell damage or loss is irreversible. The understanding of gene and cellular functions, through analysis of different animal models, has helped to identify causes of disease and possible targets for hearing restoration. Translation of these findings to novel therapeutics is, however, hindered by the lack of cellular assays, based on human sensory cells, to evaluate the conservation of molecular pathways across species and the efficacy of novel therapeutic strategies. In the last decade, stem cell technologies enabled to generate human sensory cell types in vitro, providing novel tools to study human inner ear biology, model disease, and validate therapeutics. This review focuses specifically on two technologies: directed differentiation of pluripotent stem cells and direct reprogramming of somatic cell types to sensory hair cells and neurons. Recent development in the field are discussed as well as how these tools could be implemented to become routinely adopted experimental models for hearing research.
Collapse
Affiliation(s)
- Marta Roccio
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), and University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
16
|
Improving the Management of Patients with Hearing Loss by the Implementation of an NGS Panel in Clinical Practice. Genes (Basel) 2020; 11:genes11121467. [PMID: 33297549 PMCID: PMC7762334 DOI: 10.3390/genes11121467] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
A cohort of 128 patients from 118 families diagnosed with non-syndromic or syndromic hearing loss (HL) underwent an exhaustive clinical evaluation. Molecular analysis was performed using targeted next-generation sequencing (NGS) with a custom panel that included 59 genes associated with non-syndromic HL or syndromic HL. Variants were prioritized according to the minimum allele frequency and classified according to the American College of Medical Genetics and Genomics guidelines. Variant(s) responsible for the disease were detected in a 40% of families including autosomal recessive (AR), autosomal dominant (AD) and X-linked patterns of inheritance. We identified pathogenic or likely pathogenic variants in 26 different genes, 15 with AR inheritance pattern, 9 with AD and 2 that are X-linked. Fourteen of the found variants are novel. This study highlights the clinical utility of targeted NGS for sensorineural hearing loss. The optimal panel for HL must be designed according to the spectrum of the most represented genes in a given population and the laboratory capabilities considering the pressure on healthcare.
Collapse
|
17
|
Dey NEY, Dziwornu E, Frimpong-Manso K, Duah HO, Agbadi P. Correlates of child functional difficulties status in Ghana: A further analysis of the 2017/18 multiple indicator cluster survey. Heliyon 2020; 6:e05727. [PMID: 33364496 PMCID: PMC7750366 DOI: 10.1016/j.heliyon.2020.e05727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/06/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Functional difficulties have long-term implications for children's physical, cognitive, emotional, social, and academic growth and development. Although the subject of functional difficulties has received enough scholarly attention in the developed world, few studies have addressed the issue in Ghana. Therefore, the study aimed to regress child, maternal and household and geographical level factors associated with the functional difficulty of children in Ghana. METHOD We analysed the 2017/18 multiple indicator cluster survey dataset. The study sample consists of weighted cases of 21,871 children within the ages of 5-17 years. Summary statistics were produced for the study variables. Bivariate analyses were performed to select significant correlates for the multivariate analysis. We accounted for sample design and weight before using Poisson regression techniques to do the bivariate and multivariate analysis. RESULTS These factors were significantly associated with functional difficulties among 5-17 years old children in Ghana: not covered with health insurance, mothers who have a functional difficulty and those without information on their functional difficulty status, and children who dwelt in richer households compared to the richest households. Compared to the northern region, children from the remaining nine regions in Ghana were more likely to have had a child functional difficulty. CONCLUSION Given the results, the government of Ghana and other development partners should promote policies and programs to reduce the consequences of disability or functional difficulties in children by taking into consideration factors like mothers' functional difficulty, access to health insurance, and regional and economic disparities in Ghana.
Collapse
Affiliation(s)
| | - Emmanuel Dziwornu
- University of Health and Allied Sciences, Department of Psychological Medicine and Mental Health, School of Medicine, PMB 31, HO, Volta Region, Ghana
| | | | | | - Pascal Agbadi
- Department of Nursing, College of Health Sciences, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
| |
Collapse
|
18
|
Anto R, Maheswari S, Vadivu S, Kameswaran M. Cochlear Implantation in Congenital Long-QT Syndrome: A Comprehensive Study. J Int Adv Otol 2019; 15:352-357. [PMID: 31846911 DOI: 10.5152/iao.2019.7404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Jervell and Lange-Nielsen syndrome is a rare autosomal recessive disease characterized by congenital sensorineural deafness and significant QT interval prolongation. Aims were to study the prevalence of long QT in congenital hearing loss, complications encountered, outcomes by Categories of auditory Performance (CAP) scores and Speech Intelligibility Rating (SIR) scores and to create an algorithm with precautions to be followed in Long QT children. MATERIALS AND METHODS Study was done at Auditory implant center at a tertiary referral care ENT hospital which includes 41 paediatric patients who were diagnosed to have Long QT during preoperative assessment and underwent cochlear implantation. A standard Protocol was followed in all candidates which includes comprehensive targeted history and investigations, preoperative and intraoperative precautions, and the findings were recorded. RESULTS Preoperative prophylactic Beta blockers, avoiding sympathetic stimulation and drugs prolonging QT interval with rational use of Magnesium Sulphate and standby of defibrillator were the standard precautions practised. Fatal Arrhythmias were encountered intra-operatively in five patients which was treated with cardiac pacing. Cardiac monitoring was done intraoperatively and during switch-on. Significant improvement in CAP and SIR scores were observed at 3 and 6 months when compared to their base line values. CONCLUSION With special attention to preoperative evaluation, appropriate intraoperative precautions and monitoring, judicious surgical planning and post surgical follow-up cochlear implantation may be performed safely in patients with JLNS with good postoperative results allowing for improved audition.
Collapse
Affiliation(s)
- Ronald Anto
- Madras ENT Research Foundation (P) Ltd, Otorhinolaryngology, Chennai, India
| | - Sudha Maheswari
- Madras ENT Research Foundation (P) Ltd, Otorhinolaryngology, Chennai, India
| | - Senthil Vadivu
- Madras ENT Research Foundation (P) Ltd, Otorhinolaryngology, Chennai, India
| | - Mohan Kameswaran
- Madras ENT Research Foundation (P) Ltd, Otorhinolaryngology, Chennai, India
| |
Collapse
|
19
|
Mazurek B, Knipper M, Biesinger E, Schulze H. Special issues for the 55th Inner Ear Biology Workshop 06.-08.09.2018 in Berlin : Basic research and clinical aspects-translational aspects of hearing research. HNO 2019; 67:43-45. [PMID: 31197410 DOI: 10.1007/s00106-019-0624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- B Mazurek
- Tinnitus Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - M Knipper
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | | | - H Schulze
- Experimental Otolaryngology, Department of Otorhinolaryngology - Head and Neck Surgery, University of Erlangen, Erlangen, Germany
| |
Collapse
|
20
|
Pooresmaeil E, Mohamadi R, Ghorbani A, Kamali M. The relationship between comprehension of syntax and reading comprehension in cochlear implanted and hearing children. Int J Pediatr Otorhinolaryngol 2019; 121:114-119. [PMID: 30878557 DOI: 10.1016/j.ijporl.2019.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVES There is a large variation in the function of cochlear implanted children in language assessments. However, they usually have poorer performance in language abilities compared with their normal hearing peers. The purpose of the present study was to determine the relationship between syntax comprehension and reading comprehension in cochlear implanted and hearing children in the third to fifth grades of the elementary school and to identify the relationship between their reading comprehension and the age of receiving a cochlear implant as well as the duration of receiving speech therapy in cochlear implanted children. METHODS A total of 15 cochlear implanted children and 15 hearing children studying in the third to fifth grades of the elementary school participated in the present descriptive-analytic and cross-sectional study. Two skills of reading comprehension and syntax comprehension were evaluated in these two groups of children. RESULTS The results showed that there was a significant relationship between reading comprehension and comprehension of syntax in cochlear implanted children (P < 0.001). According to the linear regression, the score of reading comprehension increases with the increase in the score of syntax comprehension. No significant relationship was observed between reading comprehension and the age of receiving a cochlear implant (p = 0.337) and the duration of receiving speech therapy (p = 0.227). CONCLUSION Based on the findings of the present study, it can be concluded that focusing on comprehension of syntax for intervention can improve reading comprehension. Particularly, it seems that working on structures which are complicated for the children helps to improve their reading comprehension.
Collapse
Affiliation(s)
- Elham Pooresmaeil
- Department of Speech and Language Pathology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Reyhane Mohamadi
- Department of Speech and Language Pathology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Ghorbani
- Department of Speech and Language Pathology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Kamali
- Department of Rehabilitation Management, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Advances in cochlear implantation for hereditary deafness caused by common mutations in deafness genes. JOURNAL OF BIO-X RESEARCH 2019. [DOI: 10.1097/jbr.0000000000000037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
22
|
Peter B, Dougherty MJ, Reed EK, Edelman E, Hanson K. Perceived Gaps in Genetics Training Among Audiologists and Speech-Language Pathologists: Lessons From a National Survey. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2019; 28:408-423. [PMID: 31091132 DOI: 10.1044/2018_ajslp-18-0069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Purpose The aim of this study was to assess knowledge, self-rated confidence, and perceived relevance of genetics in the clinical practice of audiologists and speech-language pathologists (SLPs) toward a better understanding of the need for genetics education, given that genetics plays a growing role in the diagnosis of hearing impairment and communication disorders. Method A survey consisting of 8 demographic items and 16 content questions was returned by 233 audiologists and 283 SLPs. Knowledge of applied genetics was queried with clinical scenarios in a multiple-choice format. Self-assessment of clinical confidence and perceived relevance of genetics in one's field was queried with questions and statements rated on 5-point Likert scales. The benefit of additional training in genetics was rated with a yes/no question, and if answered with yes, suggested topics were entered. Results A large significant gap between confidence in one's own genetics skills and the perceived relevance of genetics was evident, regardless of professional group. Over one third of the audiologists and over two thirds of the SLPs indicated low or somewhat low confidence in their own ability to implement principles of genetics, whereas over two thirds of both groups agreed that genetics is relevant for their field. Regardless of group, confidence scores were significantly and positively associated with relevance scores. Over 80% of respondents in both groups indicated that they would benefit from additional training in genetics. Most commonly suggested topics included genetic causes, general information about genetics, and making referrals. Conclusion Both audiologists and SLPs felt that genetics is relevant for their fields and that additional training in genetics would be beneficial. Future studies should evaluate the effect of genetics training on patient outcomes and the need for incorporating genetics more extensively into audiology and speech-language pathology training programs.
Collapse
Affiliation(s)
- Beate Peter
- Department of Speech and Hearing Science, Arizona State University, Tempe
- Department of Communication Sciences and Disorders, Saint Louis University, MO
| | - Michael J Dougherty
- American Society of Human Genetics, Bethesda, MD
- Department of Pediatrics, University of Colorado School of Medicine, Aurora
| | | | | | - Karen Hanson
- American Society of Human Genetics, Bethesda, MD
| |
Collapse
|
23
|
[Special issues for the 55th Inner Ear Biology Workshop 06.-08.09.2018 in Berlin : Basic research and clinical aspects-translational aspects of hearing research. German version]. HNO 2019; 67:156-158. [PMID: 30830286 DOI: 10.1007/s00106-019-0621-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Ma J, Zhang Z, Jiang HC, Sun H, Ming C, Zhao LP, Gao YQ, Li ZC, Sun MH, Xiao Y, Wu GL, Zhang TS, Ruan B. A novel dominant mutation in the SOX10 gene in a Chinese family with Waardenburg syndrome type II. Mol Med Rep 2019; 19:1775-1780. [PMID: 30628718 DOI: 10.3892/mmr.2019.9815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/11/2018] [Indexed: 11/05/2022] Open
Abstract
Waardenburg syndrome type 2 (WS2) is a rare genetic disorder, characterized by bright blue eyes, moderate to profound hearing loss and pigmental abnormalities of the hair and skin. Between 10 and 20 mutations in the SRY‑box 10 (SOX10) gene were previously identified to be associated with WS2. The present study aimed to identify the genetic causes of WS2 in a Chinese family. Clinical and molecular analyses were performed to genetically characterize a Chinese family with two cases of WS2. The clinical data of the proband were collected using a questionnaire. The genomic DNA was extracted from peripheral blood samples of each individual in the family, and 168 candidate genes associated with hearing loss were sequenced using the Illumina HiSeq 2000 and confirmed by Sanger sequencing. A heterozygous nonsense mutation [substitution; position 127; cytosine to thymine (c.127C>T)] was identified in exon 2 of SOX10 (transcript ID: NM_006941.3) in the proband and the mother; however, not in other family members or healthy controls. The novel nonsense heterozygous mutation may cause the replacement of codon 43 [arginine (Arg)] with a stop codon (Arg43stop), leading to premature termination of protein translation. The novel nonsense heterozygous mutation c.127C>T in the SOX10 gene was considered to be the cause of WS2 in the family. This mutation has not been identified in any databases, to the best of the authors' knowledge, including The Single Nucleotide Polymorphism Database, The Human Gene Mutation Database, 1000 Genomes Project and ClinVar and Exome Sequencing Project v. 6500.
Collapse
Affiliation(s)
- Jing Ma
- Department of Otolaryngology, Head and Neck Surgery, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Zhen Zhang
- Yunnan Pediatric Institute, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Hong-Chao Jiang
- Yunnan Pediatric Institute, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Hao Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union of Medical College, Kunming, Yunnan 650118, P.R. China
| | - Cheng Ming
- Department of Otolaryngology, Head and Neck Surgery, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Li-Ping Zhao
- Department of Otolaryngology, Head and Neck Surgery, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Ying-Qin Gao
- Department of Otolaryngology, Head and Neck Surgery, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Zheng-Cai Li
- Department of Otolaryngology, Head and Neck Surgery, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Mei-Hua Sun
- Department of Otolaryngology, Head and Neck Surgery, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Yang Xiao
- Department of Otolaryngology, Head and Neck Surgery, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Guo-Li Wu
- Yunnan Rehabilitation School For Children With Hearing Impairment, Kunming, Yunnan 650100, P.R. China
| | - Tie-Song Zhang
- Department of Otolaryngology, Head and Neck Surgery, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Biao Ruan
- Department of Otolaryngology, First Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
25
|
Matsushima K, Nakano A, Arimoto Y, Mutai H, Yamazawa K, Murayama K, Matsunaga T. High-level heteroplasmy for the m.7445A>G mitochondrial DNA mutation can cause progressive sensorineural hearing loss in infancy. Int J Pediatr Otorhinolaryngol 2018; 108:125-131. [PMID: 29605341 DOI: 10.1016/j.ijporl.2018.02.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/11/2018] [Accepted: 02/23/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Hearing loss caused by mutation of mitochondrial DNA typically develops in late childhood or early adulthood, but rarely in infancy. We report the investigation of a patient to determine the cause of his early onset hearing loss. MATERIALS AND METHODS The proband was a boy aged 1 year and 2 months at presentation. Newborn hearing screening test by automated auditory brainstem response generated "pass" results for both ears. His reaction to sound deteriorated by 9 months. Average pure tone threshold at 0.5, 1, and 2 kHz was 55 dB by conditioned orientation response audiometry. His father had congenital hearing loss, and his mother had progressive hearing loss since childhood. Invader assays and Sanger sequencing were performed to investigate genetic causes of the hearing loss in the proband, and heteroplasmy was assessed by PCR-restriction fragment length polymorphism, Sanger sequencing, and pyrosequencing. Additionally, mitochondrial function was evaluated by measurement of the oxygen consumption rate of patient skin fibroblasts. RESULTS An m.7445A > G mitochondrial DNA mutation and a heterozygous c.235delC (p.L79Cfs*3) mutation of GJB2 were detected in the proband. His mother carried the m.7445A > G mitochondrial DNA mutation, and his father was a compound heterozygote for GJB2 mutations (c.[235delC]; [134G > A; 408C > A]). Tissue samples from both the proband and his mother exhibited a high degree of heteroplasmy. Fibroblasts from the proband exhibited markedly reduced oxygen consumption rates. These data indicate that the proband had impaired mitochondrial function, resulting in hearing loss. CONCLUSION This research demonstrates that hearing loss in a proband who presented in infancy and that of his mother resulted from a high level of heteroplasmy for the m.7445A > G mitochondrial DNA mutation, indicating that this alteration can cause hearing loss in infancy.
Collapse
Affiliation(s)
- Kana Matsushima
- Division of Otorhinolaryngology, Chiba Children's Hospital, 579-1 Hetacho, Midori-ku, Chiba, Chiba 266-0007, Japan.
| | - Atsuko Nakano
- Division of Otorhinolaryngology, Chiba Children's Hospital, 579-1 Hetacho, Midori-ku, Chiba, Chiba 266-0007, Japan.
| | - Yukiko Arimoto
- Division of Otorhinolaryngology, Chiba Children's Hospital, 579-1 Hetacho, Midori-ku, Chiba, Chiba 266-0007, Japan.
| | - Hideki Mutai
- Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan.
| | - Kazuki Yamazawa
- Medical Genetics Center, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan.
| | - Kei Murayama
- Division of Metabolism, Chiba Children's Hospital, 579-1 Hetacho, Midori-ku, Chiba, Chiba 266-0007, Japan.
| | - Tatsuo Matsunaga
- Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan; Medical Genetics Center, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan.
| |
Collapse
|
26
|
He X, Li X, Guo Y, Zhao Y, Dong H, Dong J, Zhong L, Shi Z, Zhang Y, Soliman M, Song C, Zhao Z. Newborn Screening of Genetic Mutations in Common Deafness Genes With Bloodspot-Based Gene Chip Array. Am J Audiol 2018; 27:57-66. [PMID: 29234782 DOI: 10.1044/2017_aja-17-0042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/04/2017] [Indexed: 11/09/2022] Open
Abstract
PURPOSE This study screens for deafness gene mutations in newborns in the Northwest China population. METHOD The 9 sites of 4 common deafness genes (GJB2, GJB3, SLC26A4, and mt 12S rRNA) were detected by bloodspot-based gene chip array in 2,500 newborns. RESULTS We detected mutations of the 4 genes in 101 (4.04%) newborns; particularly, 0.20% detected the double mutations. In the Hui population, 4.58% of the newborns tested positive for mutations, whereas 4.01% of Han newborns tested positive for mutations. The detective rates are as follows: 1.44% for GJB2 235delC, 1.08% for SLC26A4 IVS7-2A>G, 0.48% for GJB2 299_300delAT, 0.28% for SLC26A4 2168A>G, 0.2% for mt 12S rRNA 1555A>G, and 0.16% for GJB3 538C>T. The 31.25% (5/16) of infants with GJB2 235delC, 50% (3/6) with GJB2 299_300delAT, and 25% (3/12) with SLC26A4 IVS7-2A>G showed abnormal hearing when tested; only 1 double mutation case received the hearing test, and this infant showed abnormality in both ears on the hearing test. CONCLUSIONS High mutation rates in the common deafness genes were detected in newborns in Northwest China. Our study is helpful in understanding the deafness genomic epidemiology and also provides evidence for prenatal and postnatal care as well as policy making on population health in the region.
Collapse
Affiliation(s)
- Xuehu He
- Clinical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiuzhong Li
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yaqi Guo
- Clinical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yue Zhao
- Clinical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hui Dong
- Clinical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jie Dong
- Clinical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Li Zhong
- Clinical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhiyun Shi
- Clinical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuying Zhang
- Clinical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Mario Soliman
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey
| | - Zhijun Zhao
- Clinical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
27
|
Rudman JR, Mei C, Bressler SE, Blanton SH, Liu XZ. Precision medicine in hearing loss. J Genet Genomics 2018; 45:99-109. [PMID: 29500086 DOI: 10.1016/j.jgg.2018.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 11/26/2022]
Abstract
Precision medicine (PM) proposes customized medical care based on a patient's unique genome, biomarkers, environment and behaviors. Hearing loss (HL) is the most common sensorineural disorder worldwide and is frequently caused by a single genetic mutation. With recent advances in PM tools such as genetic sequencing and data analysis, the field of HL is ideally positioned to adopt the strategies of PM. Here, we review current and future applications of PM in HL as they relate to the four core qualities of PM (P4): predictive, personalized, patient-centered, and participatory. We then introduce a strategy for effective incorporation of HL PM into the design of future research studies, electronic medical records, and clinical practice to improve diagnostics, prognostics, and, ultimately, individualized patient treatment. Finally, specific anticipated ethical and economic concerns in this growing era of genomics-based HL treatment are discussed. By integrating PM principles into translational HL research and clinical practice, hearing specialists are uniquely positioned to effectively treat the heterogeneous causes and manifestations of HL on an individualized basis.
Collapse
Affiliation(s)
- Jason R Rudman
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christine Mei
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sara E Bressler
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Susan H Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xue-Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
28
|
Likar T, Hasanhodžić M, Teran N, Maver A, Peterlin B, Writzl K. Diagnostic outcomes of exome sequencing in patients with syndromic or non-syndromic hearing loss. PLoS One 2018; 13:e0188578. [PMID: 29293505 PMCID: PMC5749682 DOI: 10.1371/journal.pone.0188578] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/09/2017] [Indexed: 12/30/2022] Open
Abstract
Hereditary hearing loss (HL) is a common sensory disorder, with an incidence of 1–2 per 1000 newborns, and has a genetic etiology in over 50% of cases. It occurs either as part of a syndrome or in isolation and is genetically very heterogeneous which poses a challenge for clinical and molecular diagnosis. We used exome sequencing to seek a genetic cause in a group of 56 subjects (49 probands) with HL: 32 with non-syndromic non-GJB2 HL and 17 with syndromic HL. Following clinical examination and clinical exome sequencing, an etiological diagnosis was established in 15 probands (15/49; 30%); eight (8/17;47%) from the syndromic group and seven (7/32; 21%) from the non-syndromic non-GJB2 subgroup. Fourteen different (half of them novel) non-GJB2 variants causing HL were found in 10 genes (CHD7, HDAC8, MITF, NEFL, OTOF, SF3B4, SLC26A4, TECTA, TMPRSS3, USH2A) among 13 probands, confirming the genetic heterogeneity of hereditary HL. Different genetic causes for HL were found in a single family while three probands with apparent syndromic HL were found to have HL as a separate clinical feature, distinct from the complex phenotype. Clinical exome sequencing proved to be an effective tool used to comprehensively address the genetic heterogeneity of HL, to detect clinically unrecognized HL syndromes, and to decipher complex phenotypes in which HL is a separate feature and not part of a syndrome.
Collapse
Affiliation(s)
- Tina Likar
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mensuda Hasanhodžić
- Policlinic of Medical Genetics with Genetic Counseling for Out-Patient Care, Department of Paediatrics, University Clinical Centre Tuzla, Tuzla, Bosnia and Herzegovina
| | - Nataša Teran
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Karin Writzl
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
29
|
Poonual W, Navacharoen N, Kangsanarak J, Namwongprom S, Saokaew S. Hearing loss screening tool (COBRA score) for newborns in primary care setting. KOREAN JOURNAL OF PEDIATRICS 2017; 60:353-358. [PMID: 29234358 PMCID: PMC5725340 DOI: 10.3345/kjp.2017.60.11.353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/08/2017] [Accepted: 03/31/2017] [Indexed: 12/04/2022]
Abstract
Purpose To develop and evaluate a simple screening tool to assess hearing loss in newborns. A derived score was compared with the standard clinical practice tool. Methods This cohort study was designed to screen the hearing of newborns using transiently evoked otoacoustic emission and auditory brain stem response, and to determine the risk factors associated with hearing loss of newborns in 3 tertiary hospitals in Northern Thailand. Data were prospectively collected from November 1, 2010 to May 31, 2012. To develop the risk score, clinical-risk indicators were measured by Poisson risk regression. The regression coefficients were transformed into item scores dividing each regression-coefficient with the smallest coefficient in the model, rounding the number to its nearest integer, and adding up to a total score. Results Five clinical risk factors (Craniofacial anomaly, Ototoxicity, Birth weight, family history [Relative] of congenital sensorineural hearing loss, and Apgar score) were included in our COBRA score. The screening tool detected, by area under the receiver operating characteristic curve, more than 80% of existing hearing loss. The positive-likelihood ratio of hearing loss in patients with scores of 4, 6, and 8 were 25.21 (95% confidence interval [CI], 14.69–43.26), 58.52 (95% CI, 36.26–94.44), and 51.56 (95% CI, 33.74–78.82), respectively. This result was similar to the standard tool (The Joint Committee on Infant Hearing) of 26.72 (95% CI, 20.59–34.66). Conclusion A simple screening tool of five predictors provides good prediction indices for newborn hearing loss, which may motivate parents to bring children for further appropriate testing and investigations.
Collapse
Affiliation(s)
- Watcharapol Poonual
- Clinical Epidemiology Program, Faculty of Medicine, Chiang Mai University, Thailand
| | - Niramon Navacharoen
- Department of Otolaryngology, Faculty of Medicine, Chiang Mai University, Thailand
| | - Jaran Kangsanarak
- Department of Otolaryngology, Faculty of Medicine, Chiang Mai University, Thailand
| | - Sirianong Namwongprom
- Clinical Epidemiology Program, Faculty of Medicine, Chiang Mai University, Thailand.,Department of Radiology, Faculty of Medicine, Chiang Mai University, Thailand
| | - Surasak Saokaew
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.,Center of Pharmaceutical Outcomes Research (CPOR), Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
30
|
Umrigar A, Musso A, Mercer D, Hurley A, Glausier C, Bakeer M, Marble M, Hicks C, Tsien F. Delayed diagnosis of a patient with Usher syndrome 1C in a Louisiana Acadian family highlights the necessity of timely genetic testing for the diagnosis and management of congenital hearing loss. SAGE Open Med Case Rep 2017; 5:2050313X17745904. [PMID: 29276601 PMCID: PMC5734434 DOI: 10.1177/2050313x17745904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/09/2017] [Indexed: 01/19/2023] Open
Abstract
Advances in sequencing technologies and increased understanding of the contribution of genetics to congenital sensorineural hearing loss have led to vastly improved outcomes for patients and their families. Next-generation sequencing and diagnostic panels have become increasingly reliable and less expensive for clinical use. Despite these developments, the diagnosis of genetic sensorineural hearing loss still presents challenges for healthcare providers. Inherited sensorineural hearing loss has high levels of genetic heterogeneity and variable expressivity. Additionally, syndromic hearing loss (hearing loss and additional clinical abnormalities) should be distinguished from non-syndromic (hearing loss is the only clinical symptom). Although the diagnosis of genetic sensorineural hearing loss can be challenging, the patient’s family history and ethnicity may provide critical information, as certain genetic mutations are more common in specific ethnic populations. The early identification of the cause of deafness can benefit patients and their families by estimating recurrence risks for future family planning and offering the proper interventions to improve their quality of life. Collaboration between pediatricians, audiologists, otolaryngologists, geneticists, and other specialists are essential in the diagnosis and management of patients with hearing disorders. An early diagnosis is vital for proper management and care, as some clinical manifestations of syndromic sensorineural hearing loss are not apparent at birth and have a delayed age of onset. We present a case of Usher syndrome (congenital deafness and childhood-onset blindness) illustrating the challenges encountered in the diagnosis and management of children presenting with congenital genetic sensorineural hearing loss, along with helpful resources for clinicians and families.
Collapse
Affiliation(s)
- Ayesha Umrigar
- Department of Genetics, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Amanda Musso
- Department of Genetics, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA.,Department of Communication Disorders Audiology Program, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Danielle Mercer
- Department of Genetics, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Annette Hurley
- Department of Communication Disorders Audiology Program, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Cassondra Glausier
- Department of Communication Disorders Audiology Program, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Mona Bakeer
- Department of Clinical Laboratory Sciences, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Michael Marble
- Department of Pediatrics, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA.,Division of Clinical Genetics, Children's Hospital of New Orleans, New Orleans, LA, USA
| | - Chindo Hicks
- Department of Genetics, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Fern Tsien
- Department of Genetics, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA
| |
Collapse
|
31
|
Niepokój K, Rygiel AM, Jurczak P, Kujko AA, Śniegórska D, Sawicka J, Grabarczyk A, Bal J, Wertheim-Tysarowska K. Hearing impairment caused by mutations in two different genes responsible for nonsyndromic and syndromic hearing loss within a single family. J Appl Genet 2017; 59:67-72. [PMID: 29151245 DOI: 10.1007/s13353-017-0416-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/26/2017] [Accepted: 11/03/2017] [Indexed: 11/29/2022]
Abstract
Usher syndrome is rare genetic disorder impairing two human senses, hearing and vision, with the characteristic late onset of vision loss. This syndrome is divided into three types. In all cases, the vision loss is postlingual, while loss of hearing is usually prelingual. The vestibular functions may also be disturbed in Usher type 1 and sometimes in type 3. Vestibular areflexia is helpful in making a proper diagnosis of the syndrome, but, often, the syndrome is misdiagnosed as a nonsyndromic hearing loss. Here, we present a Polish family with hearing loss, which was clinically classified as nonsyndromic. After excluding mutations in the DFNB1 locus, we implemented the next-generation sequencing method and revealed that hearing loss was syndromic and mutations in the USH2A gene indicate Usher syndrome. This research highlights the importance of molecular analysis in establishing a clinical diagnosis of congenital hearing loss.
Collapse
Affiliation(s)
- Katarzyna Niepokój
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a Street, 01-211, Warsaw, Poland.
| | - Agnieszka M Rygiel
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a Street, 01-211, Warsaw, Poland
| | - Piotr Jurczak
- Center of Diagnosis, Treatment and Rehabilitation of Hearing, Voice and Speech Disorders, John Paul II Podkarpacie Province Hospital, Korczyńska Street, 38-400, Krosno, Poland
| | - Aleksandra A Kujko
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a Street, 01-211, Warsaw, Poland
| | - Dominika Śniegórska
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a Street, 01-211, Warsaw, Poland
| | - Justyna Sawicka
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a Street, 01-211, Warsaw, Poland
| | - Alicja Grabarczyk
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a Street, 01-211, Warsaw, Poland
| | - Jerzy Bal
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a Street, 01-211, Warsaw, Poland
| | | |
Collapse
|
32
|
Hai T, Guo W, Yao J, Cao C, Luo A, Qi M, Wang X, Wang X, Huang J, Zhang Y, Zhang H, Wang D, Shang H, Hong Q, Zhang R, Jia Q, Zheng Q, Qin G, Li Y, Zhang T, Jin W, Chen ZY, Wang H, Zhou Q, Meng A, Wei H, Yang S, Zhao J. Creation of miniature pig model of human Waardenburg syndrome type 2A by ENU mutagenesis. Hum Genet 2017; 136:1463-1475. [PMID: 29094203 DOI: 10.1007/s00439-017-1851-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/22/2017] [Indexed: 02/08/2023]
Abstract
Human Waardenburg syndrome 2A (WS2A) is a dominant hearing loss (HL) syndrome caused by mutations in the microphthalmia-associated transcription factor (MITF) gene. In mouse models with MITF mutations, WS2A is transmitted in a recessive pattern, which limits the study of hearing loss (HL) pathology. In the current study, we performed ENU (ethylnitrosourea) mutagenesis that resulted in substituting a conserved lysine with a serine (p. L247S) in the DNA-binding domain of the MITF gene to generate a novel miniature pig model of WS2A. The heterozygous mutant pig (MITF +/L247S) exhibits a dominant form of profound HL and hypopigmentation in skin, hair, and iris, accompanied by degeneration of stria vascularis (SV), fused hair cells, and the absence of endocochlear potential, which indicate the pathology of human WS2A. Besides hypopigmentation and bilateral HL, the homozygous mutant pig (MITF L247S/L247S) and CRISPR/Cas9-mediated MITF bi-allelic knockout pigs both exhibited anophthalmia. Three WS2 patients carrying MITF mutations adjacent to the corresponding region were also identified. The pig models resemble the clinical symptom and molecular pathology of human WS2A patients perfectly, which will provide new clues for better understanding the etiology and development of novel treatment strategies for human HL.
Collapse
Affiliation(s)
- Tang Hai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Weiwei Guo
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jing Yao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Chunwei Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Ailing Luo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Meng Qi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Xianlong Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Xiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Jiaojiao Huang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Hongyong Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Dayu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Haitao Shang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Qianlong Hong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Qitao Jia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Qiantao Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Guosong Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Yongshun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Tao Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Weiwu Jin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Zheng-Yi Chen
- Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, 02114, USA
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Chinese Swine Mutagenesis Consortium, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anming Meng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038, China. .,Chinese Swine Mutagenesis Consortium, Beijing, China.
| | - Shiming Yang
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Chinese Swine Mutagenesis Consortium, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
33
|
Li H, Jin P, Hao Q, Zhu W, Chen X, Wang P. Identification of a Novel De Novo Heterozygous Deletion in the SOX10 Gene in Waardenburg Syndrome Type II Using Next-Generation Sequencing. Genet Test Mol Biomarkers 2017; 21:681-685. [PMID: 29045167 DOI: 10.1089/gtmb.2016.0421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Waardenburg syndrome (WS) is a rare autosomal dominant disorder associated with pigmentation abnormalities and sensorineural hearing loss. In this study, we investigated the genetic cause of WSII in a patient and evaluated the reliability of the targeted next-generation exome sequencing method for the genetic diagnosis of WS. METHODS Clinical evaluations were conducted on the patient and targeted next-generation sequencing (NGS) was used to identify the candidate genes responsible for WSII. Multiplex ligation-dependent probe amplification (MLPA) and real-time quantitative polymerase chain reaction (qPCR) were performed to confirm the targeted NGS results. RESULTS Targeted NGS detected the entire deletion of the coding sequence (CDS) of the SOX10 gene in the WSII patient. MLPA results indicated that all exons of the SOX10 heterozygous deletion were detected; no aberrant copy number in the PAX3 and microphthalmia-associated transcription factor (MITF) genes was found. Real-time qPCR results identified the mutation as a de novo heterozygous deletion. CONCLUSIONS This is the first report of using a targeted NGS method for WS candidate gene sequencing; its accuracy was verified by using the MLPA and qPCR methods. Our research provides a valuable method for the genetic diagnosis of WS.
Collapse
Affiliation(s)
- Haonan Li
- 1 Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University , Changchun, China
| | - Peng Jin
- 1 Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University , Changchun, China
| | - Qian Hao
- 2 Department of Ophthalmology, First Hospital of Jilin University , Changchun, China
| | - Wei Zhu
- 1 Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University , Changchun, China
| | - Xia Chen
- 3 Department of Pharmacology, College of Basic Medical Sciences, Jilin University , Changchun, China
| | - Ping Wang
- 1 Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University , Changchun, China
| |
Collapse
|
34
|
Stanghellini I, Genovese E, Palma S, Falcinelli C, Presutti L, Percesepe A. A mild phenotype of sensorineural hearing loss and palmoplantar keratoderma caused by a novel GJB2 dominant mutation. ACTA OTORHINOLARYNGOLOGICA ITALICA : ORGANO UFFICIALE DELLA SOCIETA ITALIANA DI OTORINOLARINGOLOGIA E CHIRURGIA CERVICO-FACCIALE 2017; 37:308-311. [PMID: 28872160 PMCID: PMC5584103 DOI: 10.14639/0392-100x-1382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/18/2016] [Indexed: 01/13/2023]
Abstract
Dominant GJB2 mutations are known to cause a syndromic form of sensorineural hearing loss associated with palmo-plantar skin manifestations. We present the genotype/phenotype correlations of a new GJB2 mutation identified in three generations of an Italian family (proband, mother and grandfather) whose members are affected by sensorineural hearing impairment associated with adult-onset palmoplantar keratoderma. In all affected members we identified a new heterozygous GJB2 mutation (c.66G > T, p.Lys22Asn) whose segregation, population frequency and in silico prediction analysis have suggested a pathogenic role. The p.Lys22Asn GJB2 mutation causes a dominant form of hearing loss associated with variable expression of palmoplantar keratoderma, representing a model of full penetrance, with an age-dependent effect on the phenotype.
Collapse
Affiliation(s)
- I. Stanghellini
- Medical Genetics Unit, Department of Mother & Child, University Hospital of Modena, Modena, Italy
| | - E. Genovese
- Audiology Service, Otolaryngology Department, University Hospital of Modena, Modena, Italy
| | - S. Palma
- Community Healthcare Services, Otolaryngology Department, Modena, Italy
| | - C. Falcinelli
- Medical Genetics Unit, Department of Mother & Child, University Hospital of Modena, Modena, Italy
| | - L. Presutti
- Audiology Service, Otolaryngology Department, University Hospital of Modena, Modena, Italy
| | - A. Percesepe
- Medical Genetics Unit, Department of Mother & Child, University Hospital of Modena, Modena, Italy
| |
Collapse
|
35
|
Oonk AMM, Ariens S, Kunst HPM, Admiraal RJC, Kremer H, Pennings RJE. Psychological impact of a genetic diagnosis on hearing impairment-An exploratory study. Clin Otolaryngol 2017; 43:47-54. [PMID: 28556609 DOI: 10.1111/coa.12908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Genetic testing for hereditary hearing impairment has become more routinely available as a diagnostic tool in the outpatient clinic. However, little is known about the psychological impact of a genetic diagnosis. To evaluate this impact, an exploratory study was conducted. DESIGN Prospectively, 48 individuals who underwent genetic testing for hereditary hearing impairment were included in this study. Study participants were asked to fill out the following questionnaires: Hospital Anxiety Depression Scale, Impact of Event Scale, Self-Efficacy 24, Illness Cognition Questionnaire and the Inventory for Social Reliance. Questionnaires were filled out on three occasions: before genetic testing, directly after counselling on either positive or negative test results, and six weeks thereafter. RESULTS No significant differences were found between the group that received a genetic diagnosis for their hearing impairment and the group that did not. CONCLUSION This study did not demonstrate differences between receiving a genetic diagnosis or not; however, special attention to psychological well-being should be offered to hearing-impaired patients who seek a genetic diagnosis for their hearing impairment. Additionally, the psychological impact of sensorineural hearing impairment might be greater than the impact of a genetic diagnosis itself. Based on the current exploratory study, there are no psychological reasons in favour of or against genetic testing for hereditary hearing impairment.
Collapse
Affiliation(s)
- A M M Oonk
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - S Ariens
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, Nijmegen, The Netherlands
| | - H P M Kunst
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - R J C Admiraal
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - H Kremer
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - R J E Pennings
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Evaluation of Family History of Permanent Hearing Loss in Childhood as a Risk Indicator in Universal Screening. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2017. [DOI: 10.1016/j.otoeng.2016.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Valido Quintana M, Oviedo Santos Á, Borkoski Barreiro S, Santana Rodríguez A, Ramos Macías Á. Evaluación de la historia familiar de hipoacusia permanente en la infancia como factor de riesgo en el cribado universal. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2017; 68:157-163. [DOI: 10.1016/j.otorri.2016.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 07/21/2016] [Accepted: 08/01/2016] [Indexed: 10/20/2022]
|
38
|
Jacob RTDS, Lopes NBF, Cruz ADD, Alves TKM, Santos LGD, Angelo TCSD, Mondelli MFCG, Moret ALM. TELEGRAM: contribution in assistive technology indication for individuals with hearing impairment. Codas 2017; 29:e20160012. [PMID: 28273250 DOI: 10.1590/2317-1782/20172016012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/14/2016] [Indexed: 11/21/2022] Open
Abstract
Purpose The objective of the study was to translate and culturally adapt to Portuguese the TELEGRAM instrument and to evaluate its effectiveness in adults with hearing impairment using hearing aids. Methods The TELEGRAM was translated into the Portuguese language, reviewed for grammatical and idiomatic equivalences (reverse translations) and linguistic and cultural adaptations. After translation, the TELEGRAM was applied to 20 individuals with hearing impairment. Results A descriptive analysis of the results was performed. After the grammatical and idiomatic equivalence, the replacement of one term/item was suggested, which was modified and adapted to the Brazilian context. In general, the questions of the instrument were considered easy to understand. Among the categories assessed, individuals with hearing loss had greater difficulty using the telephone and in activities such as attending church gatherings, parties, or in situations of noisy environments, distance and reverberation. Conclusion The TELEGRAM translated into Brazilian Portuguese proved to be an easily applicable tool in population studies and effective to assess which are the main situations where individuals with hearing impairment have greater difficulty in communication, reinforcing the importance of hearing rehabilitation and assistive technology to minimize these difficulties.
Collapse
Affiliation(s)
- Regina Tangerino de Souza Jacob
- Departamento de Fonoaudiologia, Faculdade de Odontologia de Bauru - FOB, Universidade de São Paulo - USP - Bauru (SP), Brasil
| | | | - Aline Duarte da Cruz
- Departamento de Fonoaudiologia, Faculdade de Odontologia de Bauru - FOB, Universidade de São Paulo - USP - Bauru (SP), Brasil
| | - Tacianne Kriscia Machado Alves
- Departamento de Fonoaudiologia, Faculdade de Odontologia de Bauru - FOB, Universidade de São Paulo - USP - Bauru (SP), Brasil
| | - Larissa Germiniani Dos Santos
- Departamento de Fonoaudiologia, Faculdade de Odontologia de Bauru - FOB, Universidade de São Paulo - USP - Bauru (SP), Brasil
| | - Thais Corina Said de Angelo
- Departamento de Fonoaudiologia, Faculdade de Odontologia de Bauru - FOB, Universidade de São Paulo - USP - Bauru (SP), Brasil
| | | | - Adriane Lima Mortari Moret
- Departamento de Fonoaudiologia, Faculdade de Odontologia de Bauru - FOB, Universidade de São Paulo - USP - Bauru (SP), Brasil
| |
Collapse
|
39
|
Korver AMH, Smith RJH, Van Camp G, Schleiss MR, Bitner-Glindzicz MAK, Lustig LR, Usami SI, Boudewyns AN. Congenital hearing loss. Nat Rev Dis Primers 2017; 3:16094. [PMID: 28079113 PMCID: PMC5675031 DOI: 10.1038/nrdp.2016.94] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Congenital hearing loss (hearing loss that is present at birth) is one of the most prevalent chronic conditions in children. In the majority of developed countries, neonatal hearing screening programmes enable early detection; early intervention will prevent delays in speech and language development and has long-lasting beneficial effects on social and emotional development and quality of life. A diagnosis of hearing loss is usually followed by a search for an underlying aetiology. Congenital hearing loss might be attributed to environmental and prenatal factors, which prevail in low-income settings; congenital infections, particularly cytomegalovirus infection, are also a common risk factor for hearing loss. Genetic causes probably account for the majority of cases in developed countries; mutations can affect any component of the hearing pathway, in particular, inner ear homeostasis (endolymph production and maintenance) and mechano-electrical transduction (the conversion of a mechanical stimulus into electrochemical activity). Once the underlying cause of hearing loss is established, it might direct therapeutic decision making and guide prevention and (genetic) counselling. Management options include specific antimicrobial therapies, surgical treatment of craniofacial abnormalities and implantable or non-implantable hearing devices. An improved understanding of the pathophysiology and molecular mechanisms that underlie hearing loss and increased awareness of recent advances in genetic testing will promote the development of new treatment and screening strategies.
Collapse
Affiliation(s)
- Anna M H Korver
- Department of Pediatrics, St Antonius Hospital, PO BOX 2500, 3430 EM Nieuwegein, The Netherlands
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories and the Genetics PhD Program, University of Iowa, Iowa City, Iowa, USA
| | - Guy Van Camp
- Department of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Mark R Schleiss
- Division of Pediatric Infectious Diseases and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Maria A K Bitner-Glindzicz
- Genetics and Genomic Medicine Programme, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Lawrence R Lustig
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, New York, USA
| | - Shin-Ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - An N Boudewyns
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
40
|
Núñez-Batalla F, Jáudenes-Casaubón C, Sequí-Canet JM, Vivanco-Allende A, Zubicaray-Ugarteche J, Cabanillas-Farpón R. Aetiological Diagnosis of Child Deafness: CODEPEH Recommendations. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2017. [DOI: 10.1016/j.otoeng.2016.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Abstract
OBJECTIVE Hearing loss is the most common sensory deficit and congenital anomaly, yet the decision-making processes involved in disclosing hearing loss have been little studied. To address this issue, we have explored the phrases that adults with hearing loss use to disclose their hearing loss. DESIGN Since self-disclosure research has not focused on hearing loss-specific issues, we created a 15-question survey about verbally disclosing hearing loss. English speaking adults (>18 years old) with hearing loss of any etiology were recruited from otology clinics in a major referral hospital. Three hundred and thirty-seven participants completed the survey instrument. Participants' phrase(s) used to tell people they have hearing loss were compared across objective characteristics (age; sex; type, degree, and laterality of hearing loss; word recognition scores) and self-reported characteristics (degree of hearing loss; age of onset and years lived with hearing loss; use of technology; hearing handicap score). RESULTS Participants' responses revealed three strategies to address hearing loss: Multipurpose disclosure (phrases that disclose hearing loss and provide information to facilitate communication), Basic disclosure (phrases that disclose hearing loss through the term, a label, or details about the condition), or nondisclosure (phrases that do not disclose hearing loss). Variables were compared between patients who used and who did not use each disclosure strategy using χ or Wilcoxon rank sum tests. Multipurpose disclosers were mostly female (p = 0.002); had experienced reactions of help, support, and accommodation after disclosing (p = 0.008); and had experienced reactions of being overly helpful after disclosing (p=0.039). Basic disclosers were predominantly male (p = 0.004); reported feeling somewhat more comfortable disclosing their hearing loss over time (p = 0.009); had not experienced reactions of being treated unfairly or discriminated against (p = 0.021); and were diagnosed with mixed hearing loss (p = 0.004). Nondisclosers tended not to disclose in a group setting (p = 0.002) and were diagnosed with bilateral hearing loss (p = 0.005). In addition, all of the variables were examined to build logistic regression models to predict the use of each disclosure strategy. CONCLUSIONS Our results reveal three simple strategies for verbally addressing hearing loss that can be used in a variety of contexts. We recommend educating people with hearing loss about these strategies-this could improve the experience of disclosing hearing loss, and could educate society at large about how to interact with those who have a hearing loss.
Collapse
|
42
|
Aetiological diagnosis of child deafness: CODEPEH recommendations. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2016; 68:43-55. [PMID: 27644946 DOI: 10.1016/j.otorri.2016.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 12/18/2022]
Abstract
Important progress in the fields of molecular genetics (principally) and diagnostic imaging, together with the lack of a consensus protocol for guiding the diagnostic process after confirming deafness by neonatal screening, have led to this new work document drafted by the Spanish Commission for the Early Detection of Child Deafness (Spanish acronym: CODEPEH). This 2015 Recommendations Document, which is based on the most recent scientific evidence, provides guidance to professionals to support them in making decisions regarding aetiological diagnosis. Such diagnosis should be performed without delay and without impeding early intervention. Early identification of the causes of deafness offers many advantages: it prevents unnecessary trouble for the families, reduces health system expenses caused by performing different tests, and provides prognostic information that may guide therapeutic actions.
Collapse
|
43
|
Variations in Multiple Syndromic Deafness Genes Mimic Non-syndromic Hearing Loss. Sci Rep 2016; 6:31622. [PMID: 27562378 PMCID: PMC4999867 DOI: 10.1038/srep31622] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/20/2016] [Indexed: 12/18/2022] Open
Abstract
The genetics of both syndromic (SHL) and non-syndromic hearing loss (NSHL) is characterized by a high degree of genetic heterogeneity. We analyzed whole exome sequencing data of 102 unrelated probands with apparently NSHL without a causative variant in known NSHL genes. We detected five causative variants in different SHL genes (SOX10, MITF, PTPN11, CHD7, and KMT2D) in five (4.9%) probands. Clinical re-evaluation of these probands shows that some of them have subtle syndromic findings, while none of them meets clinical criteria for the diagnosis of the associated syndrome (Waardenburg (SOX10 and MITF), Kallmann (CHD7 and SOX10), Noonan/LEOPARD (PTPN11), CHARGE (CHD7), or Kabuki (KMT2D). This study demonstrates that individuals who are evaluated for NSHL can have pathogenic variants in SHL genes that are not usually considered for etiologic studies.
Collapse
|
44
|
Ma J, Zhang TS, Lin K, Sun H, Jiang HC, Yang YL, Low F, Gao YQ, Ruan B. Waardenburg syndrome type II in a Chinese patient caused by a novel nonsense mutation in the SOX10 gene. Int J Pediatr Otorhinolaryngol 2016; 85:56-61. [PMID: 27240497 DOI: 10.1016/j.ijporl.2016.03.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Waardenburg syndrome is a congenital genetic disorder. It is the most common type of syndromic hearing impairment with highly genetic heterogeneity and proved to be related by 6 genes as follows: PAX3, MITF, SNAI2, EDN3, EDNRB and SOX10. This article aims to identify the genetic causes of a Chinese WS child patient. METHODS A Chinese WS child was collected for clinical data collection by questionnaire survey. DNA samples of proband and his parents were extracted from peripheral blood samples. Six candidate genes were sequenced by the Trusight One sequencing panel on the illumina NextSeq 500 platform. RESULTS A novel nonsense heterozygous mutation was found in the coding region of exon 2 in the SOX10 gene of proband. The novel nonsense heterozygous mutation could cause the replacement of the 55th lysine codon by stop codon (484T > C, C142R) and further more possibly cause terminating the protein translation in advance. However, both proband's parents had no mutation of genes above mentioned. CONCLUSION The gene mutation of SOX10 [NM_006941.3 c.163A > T] is a novel nonsense mutation. No record of this mutation has been found in dbSNP, HGMD, 1000 Genomes Project, ClinVar and ESP6500 databases. It meets the condition of PS2 of strong evidence in 2015 ACMG Standards and Guidelines.
Collapse
Affiliation(s)
- Jing Ma
- Department of Otolaryngology, Head & Neck Surgery, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Tie-Song Zhang
- Department of Otolaryngology, Head & Neck Surgery, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Ken Lin
- Department of Otolaryngology, Head & Neck Surgery, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Hao Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union of Medical College, Kunming, Yunnan, China
| | - Hong-Chao Jiang
- Department of Clinical Laboratory, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Yan-Li Yang
- Department of Otolaryngology, First Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fan Low
- Department of Otolaryngology, Head & Neck Surgery, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Ying-Qin Gao
- Department of Otolaryngology, Head & Neck Surgery, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Biao Ruan
- Department of Otolaryngology, First Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
45
|
Kameswaran M, Sudhamaheswari S, Natarajan K. Genetics: A New Frontier in Otology. Indian J Otolaryngol Head Neck Surg 2016; 68:1-5. [PMID: 27066400 DOI: 10.1007/s12070-016-0972-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/14/2016] [Indexed: 11/25/2022] Open
Abstract
Molecular genetics is a rapidly expanding field with possibilities for novel diagnostic and treatment strategies for otological diseases. Gene therapy, if theory is proven practical, could eliminate disease at the molecular level, thus obviating the need for pharmacologic or surgical treatment. Recent years have seen great advances in our understanding of the molecular genetic basis of many otological disorders. Building on the success of the Human Genome Project, new technologies are in development to identify disease-causing mutations through genetic testing. A basic understanding of the genetic basis of Otological diseases is crucial to the practising Otologist and the time has come for genetic services to be incorporated into regular Otological clinics.
Collapse
Affiliation(s)
- Mohan Kameswaran
- Madras ENT Research Foundation, 1, 1st Cross Street, Off 2nd Main Road, Raja Annamalaipuram, Chennai, Tamil Nadu 600028 India
| | - S Sudhamaheswari
- Madras ENT Research Foundation, 1, 1st Cross Street, Off 2nd Main Road, Raja Annamalaipuram, Chennai, Tamil Nadu 600028 India
| | - Kiran Natarajan
- Madras ENT Research Foundation, 1, 1st Cross Street, Off 2nd Main Road, Raja Annamalaipuram, Chennai, Tamil Nadu 600028 India
| |
Collapse
|
46
|
Miyasaka Y, Shitara H, Suzuki S, Yoshimoto S, Seki Y, Ohshiba Y, Okumura K, Taya C, Tokano H, Kitamura K, Takada T, Hibino H, Shiroishi T, Kominami R, Yonekawa H, Kikkawa Y. Heterozygous mutation of Ush1g/Sans in mice causes early-onset progressive hearing loss, which is recovered by reconstituting the strain-specific mutation in Cdh23. Hum Mol Genet 2016; 25:2045-2059. [PMID: 26936824 DOI: 10.1093/hmg/ddw078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/29/2016] [Indexed: 12/21/2022] Open
Abstract
Most clinical reports have suggested that patients with congenital profound hearing loss have recessive mutations in deafness genes, whereas dominant alleles are associated with progressive hearing loss (PHL). Jackson shaker (Ush1gjs) is a mouse model of recessive deafness that exhibits congenital profound deafness caused by the homozygous mutation of Ush1g/Sans on chromosome 11. We found that C57BL/6J-Ush1gjs/+ heterozygous mice exhibited early-onset PHL (ePHL) accompanied by progressive degeneration of stereocilia in the cochlear outer hair cells. Interestingly, ePHL did not develop in mutant mice with the C3H/HeN background, thus suggesting that other genetic factors are required for ePHL development. Therefore, we performed classical genetic analyses and found that the occurrence of ePHL in Ush1gjs/+ mice was associated with an interval in chromosome 10 that contains the cadherin 23 gene (Cdh23), which is also responsible for human deafness. To confirm this mutation effect, we generated C57BL/6J-Ush1gjs/+, Cdh23c.753A/G double-heterozygous mice by using the CRISPR/Cas9-mediated Cdh23c.753A>G knock-in method. The Cdh23c.753A/G mice harbored a one-base substitution (A for G), and the homozygous A allele caused moderate hearing loss with aging. Analyses revealed the complete recovery of ePHL and stereocilia degeneration in C57BL/6J-Ush1gjs/+ mice. These results clearly show that the development of ePHL requires at least two mutant alleles of the Ush1g and Cdh23 genes. Our results also suggest that because the SANS and CDH23 proteins form a complex in the stereocilia, the interaction between these proteins may play key roles in the maintenance of stereocilia and the prevention of ePHL.
Collapse
Affiliation(s)
- Yuki Miyasaka
- Mammalian Genetics Project, Graduate School of Medical and Dental Sciences
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | | | - Sachi Yoshimoto
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | | | - Yasuhiro Ohshiba
- Mammalian Genetics Project, Graduate School of Medical and Dental Sciences
| | - Kazuhiro Okumura
- Division of Oncogenomics, Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba 260-0801, Japan
| | - Choji Taya
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Hisashi Tokano
- Department of Otolaryngology, Tokyo Medical and Dental University, Tokyo 113-0034, Japan and
| | - Ken Kitamura
- Department of Otolaryngology, Tokyo Medical and Dental University, Tokyo 113-0034, Japan and
| | - Toyoyuki Takada
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Hiroshi Hibino
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata 951-8510, Japan
| | - Toshihiko Shiroishi
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | | | - Hiromichi Yonekawa
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Graduate School of Medical and Dental Sciences,
| |
Collapse
|
47
|
Effects of genetic correction on the differentiation of hair cell-like cells from iPSCs with MYO15A mutation. Cell Death Differ 2016; 23:1347-57. [PMID: 26915297 DOI: 10.1038/cdd.2016.16] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/23/2016] [Accepted: 01/26/2016] [Indexed: 12/22/2022] Open
Abstract
Deafness or hearing loss is a major issue in human health. Inner ear hair cells are the main sensory receptors responsible for hearing. Defects in hair cells are one of the major causes of deafness. A combination of induced pluripotent stem cell (iPSC) technology with genome-editing technology may provide an attractive cell-based strategy to regenerate hair cells and treat hereditary deafness in humans. Here, we report the generation of iPSCs from members of a Chinese family carrying MYO15A c.4642G>A and c.8374G>A mutations and the induction of hair cell-like cells from those iPSCs. The compound heterozygous MYO15A mutations resulted in abnormal morphology and dysfunction of the derived hair cell-like cells. We used a CRISPR/Cas9 approach to genetically correct the MYO15A mutation in the iPSCs and rescued the morphology and function of the derived hair cell-like cells. Our data demonstrate the feasibility of generating inner ear hair cells from human iPSCs and the functional rescue of gene mutation-based deafness by using genetic correction.
Collapse
|
48
|
Oonk AMM, Huygen PLM, Kunst HPM, Kremer H, Pennings RJE. Features of autosomal recessive non-syndromic hearing impairment: a review to serve as a reference. Clin Otolaryngol 2016; 41:487-97. [PMID: 26474130 DOI: 10.1111/coa.12567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Non-syndromic sensorineural hearing impairment is inherited in an autosomal recessive fashion in 75-85% of cases. To date, 61 genes with this type of inheritance have been identified as related to hearing impairment, and the genetic heterogeneity is accompanied by a large variety of clinical characteristics. Adequate counselling on a patient's hearing prognosis and rehabilitation is part of the diagnosis on the genetic cause of hearing impairment and, in addition, is important for the psychological well-being of the patient. TYPE OF REVIEW Traditional literature review. DATA SOURCE All articles describing clinical characteristics of the audiovestibular phenotypes of identified genes and related loci have been reviewed. CONCLUSION This review aims to serve as a summary and a reference for counselling purposes when a causative gene has been identified in a patient with a non-syndromic autosomal recessively inherited sensorineural hearing impairment.
Collapse
Affiliation(s)
- A M M Oonk
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, Nijmegen, The Netherlands. .,Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - P L M Huygen
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, Nijmegen, The Netherlands
| | - H P M Kunst
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - H Kremer
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, Nijmegen, The Netherlands.,Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - R J E Pennings
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
49
|
Sakuma N, Moteki H, Takahashi M, Nishio SY, Arai Y, Yamashita Y, Oridate N, Usami SI. An effective screening strategy for deafness in combination with a next-generation sequencing platform: a consecutive analysis. J Hum Genet 2016; 61:253-61. [PMID: 26763877 PMCID: PMC4819760 DOI: 10.1038/jhg.2015.143] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 09/29/2015] [Accepted: 10/18/2015] [Indexed: 11/24/2022]
Abstract
The diagnosis of the genetic etiology of deafness contributes to the clinical management of patients. We performed the following four genetic tests in three stages for 52 consecutive deafness subjects in one facility. We used the Invader assay for 46 mutations in 13 genes and Sanger sequencing for the GJB2 gene or SLC26A4 gene in the first-stage test, the TaqMan genotyping assay in the second-stage test and targeted exon sequencing using massively parallel DNA sequencing in the third-stage test. Overall, we identified the genetic cause in 40% (21/52) of patients. The diagnostic rates of autosomal dominant, autosomal recessive and sporadic cases were 50%, 60% and 34%, respectively. When the sporadic cases with congenital and severe hearing loss were selected, the diagnostic rate rose to 48%. The combination approach using these genetic tests appears to be useful as a diagnostic tool for deafness patients. We recommended that genetic testing for the screening of common mutations in deafness genes using the Invader assay or TaqMan genotyping assay be performed as the initial evaluation. For the remaining undiagnosed cases, targeted exon sequencing using massively parallel DNA sequencing is clinically and economically beneficial.
Collapse
Affiliation(s)
- Naoko Sakuma
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, Yokohama, Japan.,Department of Otorhinolaryngology, School of Medicine, Shinshu University, Matsumoto, Japan
| | - Hideaki Moteki
- Department of Otorhinolaryngology, School of Medicine, Shinshu University, Matsumoto, Japan
| | - Masahiro Takahashi
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, Yokohama, Japan
| | - Shin-ya Nishio
- Department of Otorhinolaryngology, School of Medicine, Shinshu University, Matsumoto, Japan
| | - Yasuhiro Arai
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yukiko Yamashita
- Department of Otorhinolaryngology, Yokohama City University Medical Center, Yokohama, Japan
| | - Nobuhiko Oridate
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, Yokohama, Japan
| | - Shin-ichi Usami
- Department of Otorhinolaryngology, School of Medicine, Shinshu University, Matsumoto, Japan
| |
Collapse
|
50
|
Chen Y, Yang F, Zheng H, Zhou J, Zhu G, Hu P, Wu W. Clinical and genetic investigation of families with type II Waardenburg syndrome. Mol Med Rep 2016; 13:1983-8. [PMID: 26781036 PMCID: PMC4768954 DOI: 10.3892/mmr.2016.4774] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 12/11/2015] [Indexed: 11/21/2022] Open
Abstract
The present study aimed to investigate the molecular pathology of Waardenburg syndrome type II in three families, in order to provide genetic diagnosis and hereditary counseling for family members. Relevant clinical examinations were conducted on the probands of the three pedigrees. Peripheral blood samples of the probands and related family members were collected and genomic DNA was extracted. The coding sequences of paired box 3 (PAX3), microphthalmia-associated transcription factor (MITF), sex-determining region Y-box 10 (SOX10) and snail family zinc finger 2 (SNAI2) were analyzed by polymerase chain reaction and DNA sequencing. The heterozygous mutation, c.649_651delAGA in exon 7 of the MITF gene was detected in the proband and all patients of pedigree 1; however, no pathological mutation of the relevant genes (MITF, SNAI2, SOX10 or PAX3) was detected in pedigrees 2 and 3. The heterozygous mutation c.649_651delAGA in exon 7 of the MITF gene is therefore considered the disease-causing mutation in pedigree 1. However, there are novel disease-causing genes in Waardenburg syndrome type II, which require further research.
Collapse
Affiliation(s)
- Yong Chen
- Key Laboratory of Genetics and Birth Health of Hunan, The Family Planning Institute of Hunan, Changsha, Hunan 410126, P.R. China
| | - Fuwei Yang
- Department of Otolaryngology, Meizhou People's Hospital, Meizhou, Guangdong 514031, P.R. China
| | - Hexin Zheng
- Key Laboratory of Genetics and Birth Health of Hunan, The Family Planning Institute of Hunan, Changsha, Hunan 410126, P.R. China
| | - Jianda Zhou
- Department of Burns and Plastic Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Ganghua Zhu
- Department of Otolaryngology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Peng Hu
- Department of Otolaryngology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Weijing Wu
- Department of Otolaryngology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|