1
|
Cai G, Song X, Luo H, Dai G, Zhang H, Jiang D, Lei X, Chen H, Zhang L. NLRP3 blockade by MCC950 suppressed osteoclastogenesis via NF-κB/c-Fos/NFATc1 signal pathway and alleviated bone loss in diabetes mellitus. Mol Cell Endocrinol 2024; 594:112382. [PMID: 39349237 DOI: 10.1016/j.mce.2024.112382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are linked to osteoporosis development, with obesity being a significant risk factor for T2DM. T2DM patients with obesity exhibit a higher fracture rate and often have a poor prognosis post-fracture. To address the urgent need for understanding the mechanisms of diabetic osteoporosis (DOP), research is ongoing to explore how obesity and T2DM impact bone metabolism. The NLRP3 inflammasome has been implicated in the pathogenesis of osteoporosis, and MCC950, an NLRP3 inflammasome inhibitor, has shown promise in various diseases but its role in osteoporosis remains unexplored. In this study, BMMs and BMSCs were isolated and cultured to investigate the effects of MCC950 on bone metabolism, and DOP model was used to evaluate the efficacy of MCC950 in vivo. The study demonstrated that MCC950 treatment inhibited osteoclast differentiation, reduced bone resorption capacity in BMMs without suppression for osteoblast differentiation from BMSCs. Additionally, MCC950 suppressed the activation of the NF-κB signaling pathway and downregulated key factors associated with osteoclast differentiation. Additionally, MCC950 alleviated bone loss in DOP mouse. These findings suggest that MCC950, by targeting the NLRP3 inflammasome, may have a protective role in preventing osteoporosis induced by T2DM with obesity. The study highlights the potential therapeutic implications of MCC950 in managing diabetic osteoporosis and calls for further research to explore its clinical application in high-risk patient populations.
Collapse
MESH Headings
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- Furans/pharmacology
- Furans/therapeutic use
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Signal Transduction/drug effects
- Osteogenesis/drug effects
- NF-kappa B/metabolism
- Indenes/pharmacology
- Sulfones/pharmacology
- Sulfones/therapeutic use
- Osteoclasts/metabolism
- Osteoclasts/drug effects
- Mice
- Mice, Inbred C57BL
- Bone Resorption/drug therapy
- Bone Resorption/pathology
- Bone Resorption/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Osteoporosis/drug therapy
- Osteoporosis/metabolism
- Osteoporosis/pathology
- Osteoporosis/etiology
- Proto-Oncogene Proteins c-fos/metabolism
- Cell Differentiation/drug effects
- Male
- Heterocyclic Compounds, 4 or More Rings/pharmacology
- Heterocyclic Compounds, 4 or More Rings/therapeutic use
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/pathology
- Inflammasomes/metabolism
- NFATC Transcription Factors
Collapse
Affiliation(s)
- Guoping Cai
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Xiaoting Song
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Hua Luo
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Gaoyuan Dai
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Honghao Zhang
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Dengteng Jiang
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Xinhuan Lei
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Haixiao Chen
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China.
| | - Liwei Zhang
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China; Institute of Bone Metabolism, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China.
| |
Collapse
|
2
|
Din RU, Nishtar T, Cheng X, Yang H. Magnetic resonance imaging phantom-based S1 vertebral scores are indicators of fat-water-like osteoporotic changes in postmenopausal women: a pilot study. Asian Spine J 2024; 18:560-569. [PMID: 39165061 PMCID: PMC11366554 DOI: 10.31616/asj.2024.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 08/23/2024] Open
Abstract
STUDY DESIGN A prospective study. PURPOSE To assess fat-water-like tissue changes on the 1st sacral vertebra using novel magnetic resonance imaging (MRI) phantombased F- and W-scores and evaluate their diagnostic performances in osteoporosis detection. OVERVIEW OF LITERATURE Using an uncommonly advanced MRI technique, previous studies have found that fat-water changes were consistent with osteoporosis. The role of routine MRI sequences can be extended in this regard. The S1 vertebra is considered a crucial anatomical site in spine surgeries because it seldom suffers from fractures. Thus, S1 could indicate osteoporotic fat-water changes. METHODS Forty-two female volunteers (aged 62.3±6.3 years) underwent spine examination with both MRI (including a phantom) and dual-energy X-ray absorptiometry (DXA) following ethical approval. MRI phantom-based F- and W-scoreS1 were defined by normalizing S1 vertebral signal intensities (SIs) by coconut oil and water SIs of the phantom on T1- and T2-weighted imaging, respectively. Using receiver operating characteristic analysis, the diagnostic performances of the new scores for evaluating osteoporosis and vertebral fractures were investigated against standard areal bone mineral density measured with DXA (DXA-aBMD). RESULTS The F-scoreS1 and W-scoreS1 were greater (4.11 and 2.43, respectively) in patients with osteoporosis than those without osteoporosis (3.25 and 1.92, respectively) and achieved areas under the curve (AUCs) of 0.82 and 0.76 (p<0.05), respectively, for osteoporosis detection. Similarly, the mean F-scoreS1 and W-scoreS1 were higher (4.11 and 2.63, respectively) in patients with vertebral fractures than in those without fractures (3.30 and 1.82, respectively) and had greater AUCs (0.90 for W-scoreS1 and 0.74 for F-scoreS1) than DXA-aBMD (AUC, 0.26; p<0.03). In addition, the F- and W-scoreS1 demonstrated a strong correlation (r=0.65, p<0.001). CONCLUSIONS The new S1 vertebral-based MRI scores were developed to detect osteoporotic changes and demonstrated improvements over DXA-aBMD in differentiating patients with vertebral fractures.
Collapse
Affiliation(s)
- Rahman Ud Din
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing,
China
| | - Tahira Nishtar
- Department of Imaging and Interventional Radiology, Lady Reading Hospital (LRH-MTI), Peshawar,
Pakistan
| | - Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, Beijing,
China
| | - Haisheng Yang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing,
China
| |
Collapse
|
3
|
Zapata-Linares N, Berenbaum F, Houard X. Role of joint adipose tissues in osteoarthritis. ANNALES D'ENDOCRINOLOGIE 2024; 85:214-219. [PMID: 38871517 DOI: 10.1016/j.ando.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Osteoarthritis (OA) is the most common musculoskeletal disease, without any curative treatment. Obesity being the main modifiable risk factor for OA, much attention focused on the role of adipose tissues (AT). In addition to the involvement of visceral and subcutaneous AT via systemic ways, many arguments also highlight the involvement of local AT, present in joint tissues. Local AT include intra-articular AT (IAAT), which border the synovium, and bone marrow AT (BMAT) localized within marrow cavities in the bones. This review describes the known features and involvement of IAAT and BMAT in joint homeostasis and OA. Recent findings evidence that alteration in magnetic resonance imaging signal intensity of infrapatellar fat pad can be predictive of the development and progression of knee OA. IAAT and synovium are partners of the same functional unit; IAAT playing an early and pivotal role in synovial inflammation and fibrosis and OA pain. BMAT, whose functions have only recently begun to be studied, is in close functional interaction with its microenvironment. The volume and molecular profile of BMAT change according to the pathophysiological context, enabling fine regulation of haematopoiesis and bone metabolism. Although its role in OA has not yet been studied, the localization of BMAT, its functions and the importance of the bone remodelling processes that occur in OA argue in favour of a role for BMAT in OA.
Collapse
Affiliation(s)
- Natalia Zapata-Linares
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France
| | - Francis Berenbaum
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France; Rheumatology Department, AP-HP Saint-Antoine Hospital, 184, rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Xavier Houard
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France.
| |
Collapse
|
4
|
Paccou J, Badr S, Lombardo D, Khizindar H, Deken V, Ruschke S, Karampinos DC, Cotten A, Cortet B. Bone Marrow Adiposity and Fragility Fractures in Postmenopausal Women: The ADIMOS Case-Control Study. J Clin Endocrinol Metab 2023; 108:2526-2536. [PMID: 37017011 DOI: 10.1210/clinem/dgad195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/03/2023] [Accepted: 04/03/2023] [Indexed: 04/06/2023]
Abstract
CONTEXT Noninvasive assessment of proton density fat fraction (PDFF) by magnetic resonance imaging (MRI) may improve the prediction of fractures. OBJECTIVE This work aimed to determine if an association exists between PDFF and fractures. METHODS A case-control study was conducted at Lille University Hospital, Lille, France, with 2 groups of postmenopausal women: one with recent osteoporotic fractures, and the other with no fractures. Lumbar spine and proximal femur (femoral head, neck, and diaphysis) PDFF were determined using chemical shift-based water-fat separation MRI (WFI) and dual-energy x-ray absorptiometry scans of the lumbar spine and hip. Our primary objective was to determine the relationship between lumbar spine PDFF and osteoporotic fractures in postmenopausal women. Analysis of covariance was used to compare PDFF measurements between patient cases (overall and according to the type of fracture) and controls, after adjusting for age, Charlson comorbidity index (CCI) and BMD. RESULTS In 199 participants, controls (n = 99) were significantly younger (P < .001) and had significantly higher BMD (P < 0.001 for all sites) than patient cases (n = 100). A total of 52 women with clinical vertebral fractures and 48 with nonvertebral fractures were included. When PDFFs in patient cases and controls were compared, after adjustment on age, CCI, and BMD, no statistically significant differences between the groups were found at the lumbar spine or proximal femur. When PDFFs in participants with clinical vertebral fractures (n = 52) and controls were compared, femoral neck PDFF and femoral diaphysis PDFF were detected to be lower in participants with clinical vertebral fractures than in controls (adjusted mean [SE] 79.3% [1.2] vs 83.0% [0.8]; P = 0.020, and 77.7% [1.4] vs 81.6% [0.9]; P = 0.029, respectively). CONCLUSION No difference in lumbar spine PDFF was found between those with osteoporotic fractures and controls. However, imaging-based proximal femur PDFF may discriminate between postmenopausal women with and without clinical vertebral fractures, independently of age, CCI, and BMD.
Collapse
Affiliation(s)
- Julien Paccou
- Department of Rheumatology, University Lille, CHU Lille, MABlab ULR 4490, F-59000 Lille, France
| | - Sammy Badr
- Department of Radiology and Musculoskeletal Imaging, University Lille, CHU Lille, MABlab ULR 4490, F-59000 Lille, France
| | - Daniela Lombardo
- Department of Rheumatology, University Lille, CHU Lille, MABlab ULR 4490, F-59000 Lille, France
| | - Huda Khizindar
- Department of Radiology and Musculoskeletal Imaging, University Lille, CHU Lille, MABlab ULR 4490, F-59000 Lille, France
| | - Valérie Deken
- METRICS: Évaluation des technologies de santé et des pratiques médicales, University Lille, CHU Lille, ULR 2694, F-59000 Lille, France
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Anne Cotten
- Department of Radiology and Musculoskeletal Imaging, University Lille, CHU Lille, MABlab ULR 4490, F-59000 Lille, France
| | - Bernard Cortet
- Department of Rheumatology, University Lille, CHU Lille, MABlab ULR 4490, F-59000 Lille, France
| |
Collapse
|
5
|
Ali D, Tencerova M, Figeac F, Kassem M, Jafari A. The pathophysiology of osteoporosis in obesity and type 2 diabetes in aging women and men: The mechanisms and roles of increased bone marrow adiposity. Front Endocrinol (Lausanne) 2022; 13:981487. [PMID: 36187112 PMCID: PMC9520254 DOI: 10.3389/fendo.2022.981487] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is defined as a systemic skeletal disease characterized by decreased bone mass and micro-architectural deterioration leading to increased fracture risk. Osteoporosis incidence increases with age in both post-menopausal women and aging men. Among other important contributing factors to bone fragility observed in osteoporosis, that also affect the elderly population, are metabolic disturbances observed in obesity and Type 2 Diabetes (T2D). These metabolic complications are associated with impaired bone homeostasis and a higher fracture risk. Expansion of the Bone Marrow Adipose Tissue (BMAT), at the expense of decreased bone formation, is thought to be one of the key pathogenic mechanisms underlying osteoporosis and bone fragility in obesity and T2D. Our review provides a summary of mechanisms behind increased Bone Marrow Adiposity (BMA) during aging and highlights the pre-clinical and clinical studies connecting obesity and T2D, to BMA and bone fragility in aging osteoporotic women and men.
Collapse
Affiliation(s)
- Dalia Ali
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
- *Correspondence: Dalia Ali, ; Abbas Jafari,
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Florence Figeac
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Moustapha Kassem
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Dalia Ali, ; Abbas Jafari,
| |
Collapse
|
6
|
The effect of metformin on vertebral marrow fat in postmenopausal women with newly diagnosed type 2 diabetes mellitus. ACTA ACUST UNITED AC 2020; 27:326-332. [DOI: 10.1097/gme.0000000000001473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Bani Hassan E, Ghasem-Zadeh A, Imani M, Kutaiba N, Wright DK, Sepehrizadeh T, Duque G. Bone Marrow Adipose Tissue Quantification by Imaging. Curr Osteoporos Rep 2019; 17:416-428. [PMID: 31713178 DOI: 10.1007/s11914-019-00539-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The significance and roles of marrow adipose tissue (MAT) are increasingly known, and it is no more considered a passive fat storage but a tissue with significant paracrine and endocrine activities that can cause lipotoxicity and inflammation. RECENT FINDINGS Changes in the MAT volume and fatty acid composition appear to drive bone and hematopoietic marrow deterioration, and studying it may open new horizons to predict bone fragility and anemia development. MAT has the potential to negatively impact bone volume and strength through several mechanisms that are partially described by inflammaging and lipotoxicity terminology. Evidence indicates paramount importance of MAT in age-associated decline of bone and red marrow structure and function. Currently, MAT measurement is being tested and validated by several techniques. However, purpose-specific adaptation of existing imaging technologies and, more importantly, development of new modalities to quantitatively measure MAT are yet to be done.
Collapse
Affiliation(s)
- Ebrahim Bani Hassan
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia
- Department of Medicine-Western Health, The University of Melbourne, St. Albans, VIC, Australia
| | - Ali Ghasem-Zadeh
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia
- Department of Medicine and Endocrinology, Austin Health, Melbourne, VIC, Australia
| | - Mahdi Imani
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia
- Department of Medicine-Western Health, The University of Melbourne, St. Albans, VIC, Australia
| | - Numan Kutaiba
- Austin Health, Department of Radiology, Heidelberg, VIC, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Tara Sepehrizadeh
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia.
- Department of Medicine-Western Health, The University of Melbourne, St. Albans, VIC, Australia.
| |
Collapse
|
8
|
Association between insulin resistance and the magnetic resonance spectroscopy-determined marrow fat fraction in nondiabetic postmenopausal women. Menopause 2018; 25:676-682. [DOI: 10.1097/gme.0000000000001063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Suchacki KJ, Cawthorn WP. Molecular Interaction of Bone Marrow Adipose Tissue with Energy Metabolism. CURRENT MOLECULAR BIOLOGY REPORTS 2018; 4:41-49. [PMID: 29888168 PMCID: PMC5976678 DOI: 10.1007/s40610-018-0096-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW The last decade has seen a resurgence in the study of bone marrow adipose tissue (BMAT) across diverse fields such as metabolism, haematopoiesis, skeletal biology and cancer. Herein, we review the most recent developments of BMAT research in both humans and rodents, including the distinct nature of BMAT; the autocrine, paracrine and endocrine interactions between BMAT and various tissues, both in physiological and pathological scenarios; how these interactions might impact energy metabolism; and the most recent technological advances to quantify BMAT. RECENT FINDINGS Though still dwarfed by research into white and brown adipose tissues, BMAT is now recognised as endocrine organ and is attracting increasing attention from biomedical researchers around the globe. SUMMARY We are beginning to learn the importance of BMAT both within and beyond the bone, allowing us to better appreciate the role of BMAT in normal physiology and disease.
Collapse
Affiliation(s)
- Karla J. Suchacki
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ UK
| | - William P. Cawthorn
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ UK
| |
Collapse
|