1
|
Pal S, Sharma S, Porwal K, Riyazuddin M, Kulkarni C, Chattopadhyay S, Sanyal S, Gayen JR, Chattopadhyay N. Oral Administration of Isovitexin, a Naturally Occurring Apigenin Derivative Showed Osteoanabolic Effect in Ovariectomized Mice: A Comparative Study with Teriparatide. Calcif Tissue Int 2022; 111:196-210. [PMID: 35451627 DOI: 10.1007/s00223-022-00979-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/03/2022] [Indexed: 12/13/2022]
Abstract
Isovitexin (apigenin-6C-glucopyranose) is found in several food items and medicinal plants. Recently, we showed that isovitexin stimulated osteoblast differentiation through mitochondrial biogenesis and respiration that required adiponectin receptors (AdipoRs). Here, we studied whether oral isovitexin has a bone anabolic effect in vivo. At first, using a femur osteotomy model in adult mice, we compared the bone regenerative effect of isovitexin and apigenin. Whereas isovitexin-stimulated bone formation at the osteotomy site at 2.5 mg/kg and 5 mg/kg dose, apigenin had no effect. Subsequently, we tested the effect of isovitexin (5 mg/kg) in ovariectomized (OVX) osteopenic mice and observed that it restored bone mass and architecture of trabecular bones (femur metaphysis and fifth lumbar vertebra/L5) and cortical bones (femur diaphysis). Isovitexin completely restored bone strength at L5 (compressive strength) and femur (bending strength) in OVX mice. The bone anabolic effect of isovitexin was demonstrated by the increased surface referent bone formation parameters, increased expression of osteogenic genes (Runx2, bone morphogenetic protein-2 and type 1 collagen) in bones, and increased serum procollagen type 1N-terminal propeptide in OVX mice and these were on a par with teriparatide. Isovitexin inhibited bone and serum sclerostin as well as the serum type I collagen cross-linked C-telopeptide in OVX mice. Isovitexin has an oral bioavailability of 14.58%. Taken together, our data show that isovitexin had a significant oral bioavailability that translated to osteoanabolic effect equivalent to teriparatide and inhibited bone resorption, which implied a durable effect over teriparatide.
Collapse
Affiliation(s)
- Subhashis Pal
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shivani Sharma
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Konica Porwal
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Mohammed Riyazuddin
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Chirag Kulkarni
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sourav Chattopadhyay
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Sabyasachi Sanyal
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Gupta P, Singh A, Tiwari S, Mishra A, Maurya R, Singh S. Ulmosides A: Flavonoid 6-C-glycosides from Ulmus wallichiana attenuates lipopolysacchride induced oxidative stress, apoptosis and neuronal death. Neurotoxicology 2019; 73:100-111. [PMID: 30857974 DOI: 10.1016/j.neuro.2019.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/09/2019] [Accepted: 02/25/2019] [Indexed: 01/04/2023]
Abstract
Extract of Ulmus wallichiana is being used as traditional medicine used for the treatment of fractured bones however the effect of its individual flavonols is not known. The present study was conducted to investigate the effect of its novel flavonol, (2S, 3S)-(+)-30, 40, 5, 7-tetrahydroxydihydroflavonol-6-C-b-d-glucopyranoside named as Ulmoside A (UA), on lipopolysaccharides (LPS) treated neurons. LPS treatment to neuronal cells caused significant cytotoxicity, reactive oxygen species generation, depletion in glutathione and mitochondrial impairment which were significantly inhibited with UA treatment. LPS treatment also caused significant translocation of cytochrome-c, decreased level of Bcl2, increased level of Bax and cleaved caspase-3 in neuronal cells reflecting the involvement of intrinsic apoptotic pathway in neuronal death which was attenuated with UA treatment. Since LPS is a well known pro-inflammatory agent it also offered the significant increase in proinflammatory cytokines (tumor necrosis factors-α & interleukin 1-beta) however, UA treatment did not exhibit significant inhibition against LPS induced inflammatory response. LPS also caused the augmented level of inducible nitric oxide synthase (iNOS) which was also not inhibited with co treatment of UA. We have also observed the significant DNA fragmentation and augmented level of cleaved Poly (ADP-Ribose) polymerase 1 after LPS treatment which was significantly reverted with UA treatment. Findings suggested that UA acts through mitochondria and exhibited its anti-oxidative and anti-apoptotic activities in neuronal cells while no significant anti-inflammatory activity and effect on iNOS were observed.
Collapse
Affiliation(s)
- Parul Gupta
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India; Academy of Scientific & Innovative Research (AcSIR), India
| | - Abhishek Singh
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India; Academy of Scientific & Innovative Research (AcSIR), India
| | - Shubhangini Tiwari
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342011, India
| | - Rakesh Maurya
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
| | - Sarika Singh
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India; Academy of Scientific & Innovative Research (AcSIR), India.
| |
Collapse
|
3
|
Stimulation of liver IGF-1 expression promotes peak bone mass achievement in growing rats: a study with pomegranate seed oil. J Nutr Biochem 2017; 52:18-26. [PMID: 29121593 DOI: 10.1016/j.jnutbio.2017.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/14/2017] [Accepted: 09/28/2017] [Indexed: 01/08/2023]
Abstract
Peak bone mass (PBM) achieved at adulthood is a strong determinant of future onset of osteoporosis, and maximizing it is one of the strategies to combat the disease. Recently, pomegranate seed oil (PSO) has been shown to have bone-sparing effect in ovariectomized mice. However, its effect on growing skeleton and its molecular mechanism remain unclear. In the present study, we evaluated the effect of PSO on PBM in growing rats and associated mechanism of action. PSO was given at various doses to 21-day-old growing rats for 90 days by oral gavage. The changes in bone parameters were assessed by micro-computed tomography and histology. Enzyme-linked immunosorbent assay was performed to analyze the levels of serum insulin-like growth factor type 1 (IGF-1). Western blotting from bone and liver tissues was done. Chromatin immunoprecipitation assay was performed to study the histone acetylation levels at IGF-1 gene. The results of the study show that PSO treatment significantly increases bone length, bone formation rate, biomechanical parameters, bone mineral density and bone microarchitecture along with enhancing muscle and brown fat mass. This effect was due to the increased serum levels of IGF-1 and stimulation of its signaling in the bones. Studies focusing on acetylation of histones in the liver, the major site of IGF-1 synthesis, showed enrichment of acetylated H3K9 and H3K14 at IGF-1 gene promoter and body. Further, the increased acetylation at H3K9 and H3K14 was associated with a reduced HDAC1 protein level. Together, our data suggest that PSO promotes the PBM achievement via increased IGF-1 expression in liver and IGF-1 signaling in bone.
Collapse
|
4
|
Choudhary D, Kushwaha P, Gautam J, Kumar P, Verma A, Kumar A, Maurya SW, Siddiqui IR, Mishra PR, Maurya R, Trivedi R. Fast and long acting neoflavonoids dalbergin isolated from Dalbergia sissoo heartwood is osteoprotective in ovariectomized model of osteoporosis: Osteoprotective effect of Dalbergin. Biomed Pharmacother 2016; 83:942-957. [DOI: 10.1016/j.biopha.2016.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 12/26/2022] Open
|
5
|
Effendy NM, Ibrahim NI, Mohamed N, Shuid AN. An Evidence-Based Review of Micro-CT Assessments of the Postmenopausal Osteoporosis Rat Model. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.177.200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Singh AK, Joharapurkar AA, Khan MP, Mishra JS, Singh N, Yadav M, Hossain Z, Khan K, Kumar S, Dhanesha NA, Mishra DP, Maurya R, Sharma S, Jain MR, Trivedi AK, Godbole MM, Gayen JR, Chattopadhyay N, Sanyal S. Orally active osteoanabolic agent GTDF binds to adiponectin receptors, with a preference for AdipoR1, induces adiponectin-associated signaling, and improves metabolic health in a rodent model of diabetes. Diabetes 2014; 63:3530-44. [PMID: 24848063 DOI: 10.2337/db13-1619] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Adiponectin is an adipocytokine that signals through plasma membrane-bound adiponectin receptors 1 and 2 (AdipoR1 and -2). Plasma adiponectin depletion is associated with type 2 diabetes, obesity, and cardiovascular diseases. Adiponectin therapy, however, is yet unavailable owing to its large size, complex multimerization, and functional differences of the multimers. We report discovery and characterization of 6-C-β-D-glucopyranosyl-(2S,3S)-(+)-5,7,3',4'-tetrahydroxydihydroflavonol (GTDF) as an orally active adiponectin mimetic. GTDF interacted with both AdipoRs, with a preference for AdipoR1. It induced adiponectin-associated signaling and enhanced glucose uptake and fatty acid oxidation in vitro, which were augmented or abolished by AdipoR1 overexpression or silencing, respectively. GTDF improved metabolic health, characterized by elevated glucose clearance, β-cell survival, reduced steatohepatitis, browning of white adipose tissue, and improved lipid profile in an AdipoR1-expressing but not an AdipoR1-depleted strain of diabetic mice. The discovery of GTDF as an adiponectin mimetic provides a promising therapeutic tool for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Abhishek Kumar Singh
- Biochemistry Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | | | - Mohd Parvez Khan
- Division of Endocrinology, CSIR-CDRI, Lucknow, Uttar Pradesh, India
| | - Jay Sharan Mishra
- Biochemistry Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Nidhi Singh
- Biochemistry Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Manisha Yadav
- Biochemistry Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Zakir Hossain
- Division of Phramacokinetics, CSIR-CDRI, Lucknow, Uttar Pradesh, India
| | - Kainat Khan
- Division of Endocrinology, CSIR-CDRI, Lucknow, Uttar Pradesh, India
| | - Sudhir Kumar
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, Uttar Pradesh, India
| | | | | | - Rakesh Maurya
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, Uttar Pradesh, India
| | - Sharad Sharma
- Division of Toxicology, CSIR-CDRI, Lucknow, Uttar Pradesh, India
| | | | - Arun Kumar Trivedi
- Biochemistry Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Madan Madhav Godbole
- Department of Molecular Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | | | | | - Sabyasachi Sanyal
- Biochemistry Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| |
Collapse
|
7
|
Srivastava K, Singh AK, Khan K, Kureel J, Trivedi R, Jain GK, Singh D, Chattopadhyay N. Assessment of enhancement of peak bone gain by isoflavone enriched standardized soy extract in female rats. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.01.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
8
|
Rai RK, Barbhuyan T, Singh C, Mittal M, Khan MP, Sinha N, Chattopadhyay N. Total water, phosphorus relaxation and inter-atomic organic to inorganic interface are new determinants of trabecular bone integrity. PLoS One 2013; 8:e83478. [PMID: 24386209 PMCID: PMC3875436 DOI: 10.1371/journal.pone.0083478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/12/2013] [Indexed: 12/14/2022] Open
Abstract
Bone is the living composite biomaterial having unique structural property. Presently, there is a considerable gap in our understanding of bone structure and composition in the native state, particularly with respect to the trabecular bone, which is metabolically more active than cortical bones, and is readily lost in post-menopausal osteoporosis. We used solid-state nuclear magnetic resonance (NMR) to compare trabecular bone structure and composition in the native state between normal, bone loss and bone restoration conditions in rat. Trabecular osteopenia was induced by lactation as well as prolonged estrogen deficiency (bilateral ovariectomy, Ovx). Ovx rats with established osteopenia were administered with PTH (parathyroid hormone, trabecular restoration group), and restoration was allowed to become comparable to sham Ovx (control) group using bone mineral density (BMD) and µCT determinants. We used a technique combining (1)H NMR spectroscopy with (31)P and (13)C to measure various NMR parameters described below. Our results revealed that trabecular bones had diminished total water content, inorganic phosphorus NMR relaxation time (T1) and space between the collagen and inorganic phosphorus in the osteopenic groups compared to control, and these changes were significantly reversed in the bone restoration group. Remarkably, bound water was decreased in both osteopenic and bone restoration groups compared to control. Total water and T1 correlated strongly with trabecular bone density, volume, thickness, connectivity, spacing and resistance to compression. Bound water did not correlate with any of the microarchitectural and compression parameters. We conclude that total water, T1 and atomic space between the crystal and organic surface are altered in the trabecular bones of osteopenic rats, and PTH reverses these parameters. Furthermore, from these data, it appears that total water and T1 could serve as trabecular surrogates of micro-architecture and compression strength.
Collapse
Affiliation(s)
- Ratan Kumar Rai
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India
| | - Tarun Barbhuyan
- Division of Endocrinology and Center for Research on Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - Chandan Singh
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India
| | - Monika Mittal
- Division of Endocrinology and Center for Research on Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - Mohd. Parvez Khan
- Division of Endocrinology and Center for Research on Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research on Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| |
Collapse
|
9
|
Khan MP, Mishra JS, Sharan K, Yadav M, Singh AK, Srivastava A, Kumar S, Bhaduaria S, Maurya R, Sanyal S, Chattopadhyay N. A novel flavonoid C-glucoside from Ulmus wallichiana preserves bone mineral density, microarchitecture and biomechanical properties in the presence of glucocorticoid by promoting osteoblast survival: a comparative study with human parathyroid hormone. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:1256-66. [PMID: 23928508 DOI: 10.1016/j.phymed.2013.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 05/31/2013] [Accepted: 07/09/2013] [Indexed: 05/23/2023]
Abstract
PURPOSE 6-C-β-D-glucopyranosyl-(2S,3S)-(+)-5,7,3',4'-tetrahydroxydihydroflavonol (GTDF) is a novel compound isolated from Ulmus wallichiana, reported to have bone anabolic action in ovariectomized rats. Here, we studied the effect of GTDF in glucocorticoid (GC)-induced bone loss and its mode of action. METHODS Osteoblasts were cultured from rat calvaria or bone marrow to study apoptosis and differentiation by dexamethasone (Dex), methylprednisolone (MP), GTDF, quercetin and rutin. Female Sprague Dawley rats were treated with Dex or MP with or without GTDF or PTH. Efficacy was evaluated by bone microarchitecture using microcomputed tomography, determination of new bone formation by fluorescent labeling of bone and osteoblast apoptosis by co-labeling bone sections with Runx-2 and TUNEL. Serum osteocalcin was determined by ELISA. RESULTS GTDF preserved trabecular and cortical bones in the presence of Dex and MP and mitigated the MP-mediated suppression of serum osteocalcin. Co-administration of GTDF to MP rats increased mineral apposition, bone formation rates, bone biomechanical strength, reduced osteoblast apoptosis and increased osteogenic differentiation of bone marrow stromal cells compared to MP group, suggesting in vivo osteogenic effect of GTDF. These effects of GTDF were to a great extent comparable to PTH. GTDF prevented GC-induced osteoblast apoptosis by inhibiting p53 expression and acetylation, and activation of AKT but did not influence transactivation of GC receptor (GR). CONCLUSIONS GTDF protects against GC-induced bone loss by promoting osteoblast survival through p53 inhibition and activation of AKT pathways but not as a GR antagonist. GTDF has the potential in the management of GC-induced osteopenia.
Collapse
Affiliation(s)
- M P Khan
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226021, India; Center for Research on Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226021, India; Center for Drug Discovery and Development in Reproductive Health (CDDDRH), CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226021, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Greater Skeletal Gains in Ovary Intact Rats at Maturity Are Achieved by Supplementing a Standardized Extract of Butea monosperma Stem Bark that Confers Better Bone Conserving Effect following Ovariectomy and Concurrent Treatment Withdrawal. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:519387. [PMID: 23710224 PMCID: PMC3655608 DOI: 10.1155/2013/519387] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/13/2013] [Indexed: 12/17/2022]
Abstract
With a longitudinally designed study, we tested whether an acetone soluble fraction (ASF) from the stem bark of Butea monosperma resulted in maximizing bone gain in rats during growth and maturation and thus protected against osteopenia following ovariectomy (OVx) with concomitant treatment withdrawal. Female rats at weaning were given ASF (100 mg/kg/d) or vehicle for 12 weeks, and baseline skeletal parameters (micro-CT) and total plasma antioxidant status (TAS) were measured. At this stage, one group was OVx and the other group was sham operated. Vehicle group (untreated) after OVx was given E2 or continued with vehicle (OVx control). ASF group after OVx was given vehicle (ASF withdrawn, ASFW). After another 12 weeks, all groups were killed and various skeletal parameters were determined. ASF resulted in substantially better skeletal parameters and higher plasma TAS over control at maturity. Rats treated with ASF before OVx had reduced rates of bone loss compared to OVx control. Twelve weeks after OVx, the ASFW group exhibited better trabecular microarchitectural preservation, bone turnover profiles, increased cortical deposition, and biomechanical strength over the OVx control, and the effects were comparable to OVx + E2 group. ASF supplementation during skeletal growth could maximize bone accrual and could confer increased resistance to post-OVx osteopenia despite treatment withdrawal.
Collapse
|
11
|
Jia M, Nie Y, Cao DP, Xue YY, Wang JS, Zhao L, Rahman K, Zhang QY, Qin LP. Potential antiosteoporotic agents from plants: a comprehensive review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2012; 2012:364604. [PMID: 23365596 PMCID: PMC3551255 DOI: 10.1155/2012/364604] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/30/2012] [Indexed: 02/08/2023]
Abstract
Osteoporosis is a major health hazard and is a disease of old age; it is a silent epidemic affecting more than 200 million people worldwide in recent years. Based on a large number of chemical and pharmacological research many plants and their compounds have been shown to possess antiosteoporosis activity. This paper reviews the medicinal plants displaying antiosteoporosis properties including their origin, active constituents, and pharmacological data. The plants reported here are the ones which are commonly used in traditional medical systems and have demonstrated clinical effectiveness against osteoporosis. Although many plants have the potential to prevent and treat osteoporosis, so far, only a fraction of these plants have been thoroughly investigated for their physiological and pharmacological properties including their mechanism of action. An attempt should be made to highlight plant species with possible antiosteoporosis properties and they should be investigated further to help with future drug development for treating this disease.
Collapse
Affiliation(s)
- Min Jia
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yan Nie
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Da-Peng Cao
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yun-Yun Xue
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jie-Si Wang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lu Zhao
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Qiao-Yan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lu-Ping Qin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
12
|
Gautam J, Kushwaha P, Swarnkar G, Khedgikar V, Nagar GK, Singh D, Singh V, Jain M, Barthwal M, Trivedi R. EGb 761 promotes osteoblastogenesis, lowers bone marrow adipogenesis and atherosclerotic plaque formation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:1134-1142. [PMID: 22951391 DOI: 10.1016/j.phymed.2012.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 04/18/2012] [Accepted: 07/06/2012] [Indexed: 06/01/2023]
Abstract
AIM OF THE STUDY Our earlier study has demonstrated that EGb 761 (standardized extract of Ginkgo) has the bone sparing effect on the estrogen deficiency induced bone loss model. In the present study, we have addressed the question whether treatment of osteoporosis benefits arterial calcification or vice versa, because both adipocyte and osteoblast originate from the same mesenchymal cell of the bone marrow cell (BMC) population. MATERIALS AND METHODS Bone marrow cells were isolated to study the effect of EGb 761 on osteoblast and adipocytes. For in vivo effect hamsters were fed high fat diet and the effect of EGb 761 studied on atherosclerotic plaque formation and endothelial function. RESULTS BMC's undergoing induced osteogenic or adipogenic differentiations in the presence of EGb 761 show increase and decrease in mineralization and adipogenesis respectively. Osteogenic and adipogenic mRNAs, reveal lineage dependent expression patterns. Runx-2 (osteoblast transcription factor) showed a progressive increase, whereas PPAR-γ (adipogenic regulator) was attenuated, with same pattern of expression being for late osteogenic and adipogenic genes. EGb 761 led to increase in apoptotic cells and ROS, an important upstream signal. In vivo experiments in hamsters after induction with high cholesterol diet (HCD) show improvement in endothelial function by EGb 761 with lowering in total plasma cholesterol levels. EGb 761 led to vascular preservation of the aortic lumen with impairment of the endothelium dependent relaxation which was corroborated by micro-CT and histological sections of the thoracic region of the aorta. CONCLUSION From this data, it can be implied that EGb 761 controls bone loss, adiposity and lowers atherogenic risk factor after HCD induction.
Collapse
Affiliation(s)
- Jyoti Gautam
- Division of Endocrinology, CSIR-Central Drug Research Institute, Chattar Manzil, Lucknow, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Swarnkar G, Sharan K, Siddiqui JA, Mishra JS, Khan K, Khan MP, Gupta V, Rawat P, Maurya R, Dwivedi AK, Sanyal S, Chattopadhyay N. A naturally occurring naringenin derivative exerts potent bone anabolic effects by mimicking oestrogen action on osteoblasts. Br J Pharmacol 2012; 165:1526-42. [PMID: 21864313 DOI: 10.1111/j.1476-5381.2011.01637.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Naringenin and its derivatives have been assessed in bone health for their oestrogen-'like' effects but low bioavailability impedes clinical potential. This study was aimed at finding a potent form of naringenin with osteogenic action. EXPERIMENTAL APPROACH Osteoblast cultures were harvested from mouse calvaria to study differentiation by naringenin, isosakuranetin, poncirin, phloretin and naringenin-6-C-glucoside (NCG). Balb/cByJ ovariectomized (OVx) mice without or with osteopenia were given naringenin, NCG, 17β-oestradiol (E2) or parathyroid hormone (PTH). Efficacy was evaluated by bone microarchitecture using microcomputed tomography and determination of new bone formation by fluorescent labelling of bone. Plasma levels of NCG and naringenin were determined by HPLC. KEY RESULTS NCG stimulated osteoblast differentiation more potently than naringenin, while isosakuranetin, poncirin or phloretin had no effect. NCG had better oral bioavailability than naringenin. NCG increased the mRNA levels of oestrogen receptors (ERs) and bone morphogenetic protein (an ER responsive gene) in vivo, more than naringenin. In OVx mice, NCG treatment in a preventive protocol increased bone formation rate (BFR) and improved trabecular microarchitecture more than naringenin or E2. In osteopenic mice, NCG but not naringenin, in a therapeutic protocol, increased BFR and improved trabecular microarchitecture, comparable with effects of PTH treatment. Stimulatory effects of NCG on osteoblasts were abolished by an ER antagonist. NCG transactivated ERβ but not ERα. NCG exhibited no uterine oestrogenicity unlike naringenin. CONCLUSIONS AND IMPLICATIONS NCG is a potent derivative of naringenin that has bone anabolic action through the activation of osteoblast ERs and exhibited substantial oral bioavailability.
Collapse
Affiliation(s)
- Gaurav Swarnkar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Chattar Manzil, Lucknow, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dixit P, Chand K, Khan MP, Siddiqui JA, Tewari D, Ngueguim FT, Chattopadhyay N, Maurya R. Phytoceramides and acylated phytosterol glucosides from Pterospermum acerifolium Willd. seed coat and their osteogenic activity. PHYTOCHEMISTRY 2012; 81:117-125. [PMID: 22784550 DOI: 10.1016/j.phytochem.2012.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/18/2012] [Accepted: 06/11/2012] [Indexed: 06/01/2023]
Abstract
Phytochemical investigation of seed coats of Pterospermum acerifolium afforded two phytoceramides (1, 2) and two acylated phytosterol glucosides (3, 4) together with five known compounds (5-9). Their structures were elucidated on the basis of extensive spectroscopic analysis using 1D, 2D NMR and Mass spectrometry. Compounds 1, 2, 3, and 4 were assessed for their osteogenic activity using primary cultures of osteoblasts harvested from neonatal rat calvaria. Among these compounds, 1 and 2 markedly stimulated osteoblast differentiation assessed by alkaline phosphatase production and osteoblast mineralization by alizarin red-S staining.
Collapse
Affiliation(s)
- Preety Dixit
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226001, India
| | | | | | | | | | | | | | | |
Collapse
|
15
|
In vivo efficacy studies of layer-by-layer nano-matrix bearing kaempferol for the conditions of osteoporosis: a study in ovariectomized rat model. Eur J Pharm Biopharm 2012; 82:508-17. [PMID: 22926146 DOI: 10.1016/j.ejpb.2012.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 07/31/2012] [Accepted: 08/04/2012] [Indexed: 02/06/2023]
Abstract
A prototype formulation based on layer-by-layer (LbL) nano-matrix was developed to increase bioavailability of kaempferol with improved retention in bone marrow to achieve enhanced bone formation. The layer-by-layer nano-matrix was prepared by sequential adsorption of biocompatible polyelectrolytes over the preformed kaempferol-loaded CaCO(3) template. The system was pharmaceutically characterized and evaluated for osteogenic activity in ovariectomized (OVx) rats. Data have been compared to the standard osteogenic agent parathyroid hormone (PTH). Single oral dose of kaempferol loaded LbL nano-matrix formulation increased bioavailability significantly compared to unformulated kaempferol. Three months of Formulated kaempferol administration to osteopenic rats increased plasma and bone marrow Kaempferol levels by 2.8- and 1.75-fold, respectively, compared to free Kaempferol. Formulated Kaempferol increased bone marrow osteoprogenitor cells, osteogenic genes in femur, bone formation rate, and improved trabecular micro-architecture. Withdrawal of Formulated kaempferol-in OVx rats resulted in the maintenance of bone micro-architecture up to 30days, whereas micro-architectural deterioration was readily observed in OVx rats treated with unformulated kaempferol-within 15days of withdrawal. The developed novel formulation has enhanced anabolic effect in osteopenic rats through increased stimulatory effect in osteoblasts. Treatment post-withdrawal sustenance of formulated kaempferol could become a strategy to enhance bioavailability of flavanoids.
Collapse
|
16
|
Siddiqui JA, Swarnkar G, Sharan K, Chakravarti B, Gautam AK, Rawat P, Kumar M, Gupta V, Manickavasagam L, Dwivedi AK, Maurya R, Chattopadhyay N. A naturally occurring rare analog of quercetin promotes peak bone mass achievement and exerts anabolic effect on osteoporotic bone. Osteoporos Int 2011; 22:3013-27. [PMID: 21225417 DOI: 10.1007/s00198-010-1519-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 12/06/2010] [Indexed: 12/01/2022]
Abstract
UNLABELLED The effect of quercetin C-glucoside (QCG) on osteoblast function in vitro and bone formation in vivo was investigated. QCG supplementation promoted peak bone mass achievement in growing rats and new bone formation in osteopenic rats. QCG has substantial oral bioavailability. Findings suggest a significant bone anabolic effect of QCG. INTRODUCTION Recently, we showed that extracts of Ulmus wallichiana promoted peak bone mass achievement in growing rats and preserved trabecular bone mass and cortical bone strength in ovariectomized (OVx) rats. 3,3',4',5,7-Pentahydroxyflavone-6-C-β-D-glucopyranoside, a QCG, is the most abundant bioactive compound of U. wallichiana extract. We hypothesize that QCG exerts bone anabolic effects by stimulating osteoblast function. METHODS Osteoblast cultures were harvested from rat calvaria and bone marrow (BM) to study differentiation and mineralization. In vivo, growing female Sprague Dawley rats and OVx rats with osteopenia were administered QCG (5.0 or 10.0 mg kg(-1) day(-1)) orally for 12 weeks. Efficacy was evaluated by examining changes in bone microarchitecture using histomorphometric and microcomputed tomographic analyses and by determination of new bone formation by fluorescent labeling of bone. Plasma and BM levels of QCG were determined by high-performance liquid chromatography. RESULTS QCG was much more potent than quercetin (Q) in stimulating osteoblast differentiation, and the effect of QCG was not mediated by estrogen receptors. In growing rats, QCG increased BM osteoprogenitors, bone mineral density, bone formation rate, and cortical deposition. In osteopenic rats, QCG treatment increased bone formation rate and improved trabecular microarchitecture. Comparison with the sham group (ovary intact) revealed significant restoration of trabecular bone in osteopenic rats treated with QCG. QCG levels in the BM were ~50% of that of the plasma levels. CONCLUSION QCG stimulated modeling-directed bone accrual and exerted anabolic effects on osteopenic rats by direct stimulatory effect on osteoprogenitors likely due to substantial QCG delivery at tissue level following oral administration.
Collapse
Affiliation(s)
- J A Siddiqui
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Chattar Manzil, P.O. Box 173, Lucknow, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sharan K, Mishra JS, Swarnkar G, Siddiqui JA, Khan K, Kumari R, Rawat P, Maurya R, Sanyal S, Chattopadhyay N. A novel quercetin analogue from a medicinal plant promotes peak bone mass achievement and bone healing after injury and exerts an anabolic effect on osteoporotic bone: the role of aryl hydrocarbon receptor as a mediator of osteogenic action. J Bone Miner Res 2011; 26:2096-111. [PMID: 21638315 DOI: 10.1002/jbmr.434] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We recently reported that extracts made from the stem bark of Ulmus wallichiana promoted peak bone mass achievement in growing rats and preserved trabecular bone mass and cortical bone strength in ovariectomized (OVX) rats. Further, 6-C-β-D-glucopyranosyl-(2S,3S)-(+)-3',4',5,7-tetrahydroxyflavanol (GTDF), a novel flavonol-C-glucoside isolated from the extracts, had a nonestrogenic bone-sparing effect on OVX rats. Here we studied the effects of GTDF on osteoblast function and its mode of action and in vivo osteogenic effect. GTDF stimulated osteoblast proliferation, survival, and differentiation but had no effect on osteoclastic or adipocytic differentiation. In cultured osteoblasts, GTDF transactivated the aryl hydrocarbon receptor (AhR). Activation of AhR mediated the stimulatory effect of GTDF on osteoblast proliferation and differentiation. Furthermore, GTDF stimulated cAMP production, which mediated osteogenic gene expression. GTDF treatments given to 1- to 2-day-old rats or adult rats increased the mRNA levels of AhR target genes in calvaria or bone marrow stromal cells. In growing female rats, GTDF promoted parameters of peak bone accrual in the appendicular skeleton, including increased longitudinal growth, bone mineral density, bone-formation rate (BFR), cortical deposition, and bone strength. GTDF promoted the process of providing newly generated bone to fill drill holes in the femurs of both estrogen-sufficient and -deficient rats. In osteopenic OVX rats, GTDF increased BFR and significantly restored trabecular bone compared with the ovaries-intact group. Together our data suggest that GTDF stimulates osteoblast growth and differentiation via the AhR and promotes modeling-directed bone accrual, accelerates bone healing after injury, and exerts anabolic effects on osteopenic rats likely by a direct stimulatory effect on osteoprogenitors. Based on these preclinical data, clinical evaluation of GTDF as a potential bone anabolic agent is warranted.
Collapse
Affiliation(s)
- Kunal Sharan
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Quercetin-6-C-β-D-glucopyranoside isolated from Ulmus wallichiana planchon is more potent than quercetin in inhibiting osteoclastogenesis and mitigating ovariectomy-induced bone loss in rats. Menopause 2011; 18:198-207. [PMID: 20671576 DOI: 10.1097/gme.0b013e3181e84e67] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The aim of this study was to determine the skeletal effect of quercetin-6-C-β-D-glucopyranoside (QCG) isolated from the extract of Ulmus wallichiana and compare this effect with quercetin (Q) in a rat model of postmenopausal bone loss. METHODS Murine bone marrow cells were used to study the effect of QCG or Q on osteoclast differentiation. QCG or Q (1.0 and 5.0 mg kg(-1) d(-1) doses) was administered orally to ovarietomized (OVx) rats for 12 weeks. Sham-operated + vehicle and OVx + vehicle groups served as positive and negative controls, respectively. Bone mineral density, bone microarchitecture, biomechanical strength, bone turnover markers, and uterotrophic effect were studied. One-way analysis of variance was used to test significance of effects. RESULTS QCG at 1.0 nM significantly inhibited differentiation of multinucleated osteoclasts and expression of osteoclastogenic genes from bone marrow cells, whereas Q at 10.0 μM had comparable results. OVx rats treated with QCG exhibited significantly higher bone mass and better microarchitecture in trabecular and cortical bones compared with OVx + vehicle. QCG treatment of OVx rats had better functional impact than did Q-treated OVx rats, evident from increased bone biomechanical strength. Serum osteocalcin and urinary fragments of type 1 collagen were significantly lower in QCG-treated OVx rats compared with OVx + vehicle group. The protective effect of QCG under ovariectomy-induced bone loss setting was found to be significantly better than Q. Uterine histomorphometry parameters of OVx rats did not change with QCG treatment. CONCLUSIONS QCG improves bone biomechanical quality more effectively than Q through positive modifications of bone mineral density and bone microarchitecture without a hyperplastic effect on the uterus.
Collapse
|
19
|
Swarnkar G, Sharan K, Siddiqui JA, Chakravarti B, Rawat P, Kumar M, Arya KR, Maurya R, Chattopadhyay N. A novel flavonoid isolated from the steam-bark of Ulmus Wallichiana Planchon stimulates osteoblast function and inhibits osteoclast and adipocyte differentiation. Eur J Pharmacol 2011; 658:65-73. [DOI: 10.1016/j.ejphar.2011.02.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 02/11/2011] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
|