2
|
Liang Z, Tang Z, Zhu C, Li F, Chen S, Han X, Zheng R, Hu X, Lin R, Pei Q, Yin C, Wang J, Tang C, Cao N, Zhao J, Wang R, Li X, Luo N, Wen Q, Yu J, Li J, Xia X, Zheng X, Wang X, Huang N, Zhong Z, Mo C, Chen P, Wang Y, Fan J, Guo Y, Zhong H, Liu J, Peng Z, Mao H, Shi GP, Bonventre JV, Chen W, Zhou Y. Intestinal CXCR6 + ILC3s migrate to the kidney and exacerbate renal fibrosis via IL-23 receptor signaling enhanced by PD-1 expression. Immunity 2024; 57:1306-1323.e8. [PMID: 38815582 PMCID: PMC11539045 DOI: 10.1016/j.immuni.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Group 3 innate lymphoid cells (ILC3s) regulate inflammation and tissue repair at mucosal sites, but whether these functions pertain to other tissues-like the kidneys-remains unclear. Here, we observed that renal fibrosis in humans was associated with increased ILC3s in the kidneys and blood. In mice, we showed that CXCR6+ ILC3s rapidly migrated from the intestinal mucosa and accumulated in the kidney via CXCL16 released from the injured tubules. Within the fibrotic kidney, ILC3s increased the expression of programmed cell death-1 (PD-1) and subsequent IL-17A production to directly activate myofibroblasts and fibrotic niche formation. ILC3 expression of PD-1 inhibited IL-23R endocytosis and consequently amplified the JAK2/STAT3/RORγt/IL-17A pathway that was essential for the pro-fibrogenic effect of ILC3s. Thus, we reveal a hitherto unrecognized migration pathway of ILC3s from the intestine to the kidney and the PD-1-dependent function of ILC3s in promoting renal fibrosis.
Collapse
Affiliation(s)
- Zhou Liang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Ziwen Tang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Changjian Zhu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Feng Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Shuaijiabin Chen
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Han
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Ruilin Zheng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Xinrong Hu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Ruoni Lin
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Qiaoqiao Pei
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Changjun Yin
- Precision Medicine Research Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ji Wang
- Precision Medicine Research Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ce Tang
- Precision Medicine Research Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Nan Cao
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Rong Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Xiaoyan Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Ning Luo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Qiong Wen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Jianwen Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Jianbo Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Xi Xia
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Xunhua Zheng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Xin Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Naya Huang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Zhong Zhong
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Chengqiang Mo
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Peisong Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yating Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Jinjin Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Yun Guo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Haojie Zhong
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Jiaqi Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Zhenwei Peng
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Haiping Mao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph V Bonventre
- Department of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China.
| | - Yi Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China.
| |
Collapse
|
4
|
Bourinet M, Anty R, Gual P, Luci C. Roles of innate lymphoid cells in metabolic and alcohol-associated liver diseases. JHEP Rep 2024; 6:100962. [PMID: 38304237 PMCID: PMC10831956 DOI: 10.1016/j.jhepr.2023.100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 02/03/2024] Open
Abstract
Innate lymphoid cells (ILCs) have been identified as potent regulators of inflammation, cell death and wound healing, which are the main biological processes involved in the progression of chronic liver disease. Obesity and chronic alcohol consumption are the leading contributors to chronic liver diseases in developed countries, due to inappropriate lifestyles. In particular, inflammation is a key factor in these liver abnormalities and promotes the development of more severe lesions such as fibrosis, cirrhosis and hepatocellular carcinoma. Opposite roles of ILC subsets have been described in the development of chronic liver disease, depending on the stage and aetiology of the disease. The heterogeneous family of ILCs encompasses cytotoxic natural killer cells, the cytokine-producing type 1, 2 and 3 ILCs and lymphoid tissue inducer cells. Dysfunction of these immune cells provokes uncontrolled inflammation and tissue damage, which are the basis for tumour development. In this review, we provide an overview of the recent and putative roles of ILC subsets in obesity and alcohol-associated liver diseases, which are currently the major contributors to end-stage liver complications such as fibrosis/cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Manon Bourinet
- Université Côte d’Azur, INSERM, U1065, C3M, Nice, France
| | - Rodolphe Anty
- Université Côte d’Azur, CHU, INSERM, U1065, C3M, Nice, France
| | - Philippe Gual
- Université Côte d’Azur, INSERM, U1065, C3M, Nice, France
| | - Carmelo Luci
- Université Côte d’Azur, INSERM, U1065, C3M, Nice, France
| |
Collapse
|
7
|
Cheng C, Wu Y, Wang X, Xue Q, Huang Y, Liao F, Wang X, Duan Q, Miao C. RNA methylations in hepatic fibrosis, a gradually emerging new treatment strategy. Cell Biosci 2023; 13:126. [PMID: 37420298 DOI: 10.1186/s13578-023-01066-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Hepatic fibrosis (HF) is a pathological process caused by excessive accumulation of extracellular matrix caused by a series of causes, leading to the formation of fiber scar. RNA methylation is a newly discovered epigenetic modification that exists widely in eukaryotes and prokaryotes and plays a crucial role in the pathogenesis of many diseases. RESULTS The occurrence and development of HF are regulated by many factors, including excessive deposition of extracellular matrix, activation of hepatic stellate cells, inflammation, and oxidative stress. RNA methylations of different species have become a crucial regulatory mode of transcript expression, And participate in the pathogenesis of tumors, nervous system diseases, autoimmune diseases, and other diseases. In addition, there are five common types of RNA methylation, but only m6A plays a crucial regulatory role in HF. The pathophysiological regulation of m6A on HF is achieved by the combination of the methylated transferase, demethylated enzyme, and methylated reading protein. CONCLUSIONS RNA methylated methyltransferase, demethylase, and reading protein extensively affect the pathological mechanism of HF, which may be a new therapeutic and diagnostic target, representing a new class of therapeutic strategies.
Collapse
Affiliation(s)
- Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yajie Wu
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xin Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Faxue Liao
- Department of Orthopaedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China.
- Anhui Public Health Clinical Center, Hefei, China.
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China.
| | - Qiangjun Duan
- Department of Experimental (Practical Training) Teaching Center, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
- Institute of Rheumatism, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|