1
|
Dihydroartemisinin Attenuates Pulmonary Hypertension Through Inhibition of Pulmonary Vascular Remodeling in Rats. J Cardiovasc Pharmacol 2021; 76:337-348. [PMID: 32569012 DOI: 10.1097/fjc.0000000000000862] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a malignant disease characterized by pulmonary arterial remodeling because of the abnormal proliferation and migration of pulmonary arterial smooth muscle cells. Dihydroartemisinin (DHA), an artemisinin derivative used to treat malaria, is able to inhibit fibrosis, neovascularization, and tumor proliferation. In this study, we hypothesized that DHA can be beneficial in treating PAH. To test this hypothesis, a rat model of pulmonary hypertension induced with monocrotaline (MCT) was used. Compared with MCT treatment alone, treatment with 50 or 100 mg/kg DHA significantly reduced the mean pulmonary arterial pressure (30.11 ± 2.48 mm Hg vs. 21.35 ± 3.04 mm Hg and 19.18 ± 1.98 mm Hg, respectively, both P < 0.01), right ventricular transverse diameter (4.36 ± 0.41 mm vs. 3.72 ± 0.24 mm and 3.67 ± 0.27 mm, respectively, both P < 0.01), pulmonary artery medial wall thickness (57.93 ± 11.14% vs. 34.45 ± 4.39% and 25.01 ± 6.66%, respectively, both P < 0.01), and increased tricuspid annular plane systolic excursion (1.34 ± 0.17 mm vs. 1.62 ± 0.3 mm and 1.62 ± 0.16 mm, respectively, both P < 0.05). We also found that DHA inhibited platelet-derived growth factor-BB-mediated pulmonary arterial smooth muscle cells proliferation and migration in a dose-dependent manner. Moreover, DHA downregulated β-catenin levels while upregulating the levels of axis inhibition protein 2 (Axin2) and glycogen synthase kinase 3β (GSK-3β). Our findings suggest that DHA, which may be a potential candidate for PAH therapy, attenuates experimental pulmonary hypertension possibly by inhibiting pulmonary vascular remodeling.
Collapse
|
2
|
Wang D, Xu H, Wu B, Jiang S, Pan H, Wang R, Chen J. Long non‑coding RNA MALAT1 sponges miR‑124‑3p.1/KLF5 to promote pulmonary vascular remodeling and cell cycle progression of pulmonary artery hypertension. Int J Mol Med 2019; 44:871-884. [PMID: 31257528 PMCID: PMC6657969 DOI: 10.3892/ijmm.2019.4256] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/19/2019] [Indexed: 12/25/2022] Open
Abstract
Previous studies have demonstrated that long non-coding RNA (lncRNA) is involved in vascular remodeling. The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) lncRNA is associated with the proliferation and migration of vascular smooth muscle and endothelial cells; however, its biological role in pulmonary artery hypertension (PAH) is currently unclear. The aim of the present study was to investigate the post-transcriptional regulation of MALAT1 in human pulmonary artery smooth muscle cells (HPASMCs). The results revealed that MALAT1 expression levels were significantly upregulated in the pulmonary arteries (PAs) and HPASMCs obtained from patients with PAH compared with adjacent normal PA tissues and HPASMCs. Knockdown of MALAT1 suppressed the viability and proliferation of HPASMCs and prevented cells entering the G0/G1 cell cycle phase. MALAT1 overexpression exerted the opposite effects. Bioinformatics analysis predicted complementary binding of hsa-microRNA (miR)-124-3p.1 with the 3′-untranslated region of MALAT1. Luciferase reporter assays and RNA immunoprecipitation experiments demonstrated molecular binding between MALAT1 and hsa-miR-124-3p.1. This resulted in the formation of an RNA-induced silencing complex. In addition, Kruppel-like factor 5 (KLF5) was confirmed to be a target gene of MALAT1/hsa-miR-124-3p.1. MALAT1 silencing did not inhibit the proliferation and migration of HPASMCs following knockdown of hsa-miR-124-3p.1. In addition, MALAT1 knockdown was demonstrated to attenuate the expression of KLF5. Following MALAT1 knockdown, the expression level of KLF5 was rescued by inhibition of hsa-miR-124-3p.1 expression. The results of the current study indicate that the MALAT1/hsa-miR-124-3p.1/KLF5 axis may serve a key role in HPASMCs. In addition, the results contribute to what is known regarding the role of MALAT1 in PAH development and provide a novel theoretical basis for the development of new therapeutic interventions for patients with PAH.
Collapse
Affiliation(s)
- Dapeng Wang
- Department of Critical Care Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai 201620, P.R. China
| | - Hongyang Xu
- Department of Intensive Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214021, P.R. China
| | - Bo Wu
- Department of Lung Transplantation, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214021, P.R. China
| | - Shuyun Jiang
- Department of Intensive Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214021, P.R. China
| | - Hong Pan
- Department of Intensive Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214021, P.R. China
| | - Ruilan Wang
- Department of Critical Care Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai 201620, P.R. China
| | - Jingyu Chen
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214021, P.R. China
| |
Collapse
|
3
|
Nie X, Chen Y, Tan J, Dai Y, Mao W, Qin G, Ye S, Sun J, Yang Z, Chen J. MicroRNA-221-3p promotes pulmonary artery smooth muscle cells proliferation by targeting AXIN2 during pulmonary arterial hypertension. Vascul Pharmacol 2019; 116:24-35. [DOI: 10.1016/j.vph.2017.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 05/13/2017] [Accepted: 07/06/2017] [Indexed: 12/23/2022]
|
4
|
Zhang XF, Yang Y, Yang XY, Tong Q. RETRACTED: LEF-1 gene silencing inhibits pulmonary vascular remodeling and occurrence of pulmonary arterial hypertension through the β-catenin signaling pathway. Biomed Pharmacother 2018; 108:817-827. [PMID: 30372893 DOI: 10.1016/j.biopha.2018.08.118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/15/2018] [Accepted: 08/23/2018] [Indexed: 12/22/2022] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the authors as the validity of the pulmonary vascular remodeling indicators cannot be guaranteed. The authors tried post publication to reproduce the results of the cell proliferation and cell aging, however they were not able to confirm the data that was presented by the article.
Collapse
Affiliation(s)
- Xian-Feng Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Jilin University, Changchun130021, PR China
| | - Yang Yang
- Department of Cardiology, The First Affiliated Hospital of Jilin University, Changchun130021, PR China
| | - Xin-Yu Yang
- Department of Cardiology, The First Affiliated Hospital of Jilin University, Changchun130021, PR China
| | - Qian Tong
- Department of Cardiology, The First Affiliated Hospital of Jilin University, Changchun130021, PR China.
| |
Collapse
|
5
|
Luo L, Hong X, Diao B, Chen S, Hei M. Sulfur dioxide attenuates hypoxia-induced pulmonary arteriolar remodeling via Dkk1/Wnt signaling pathway. Biomed Pharmacother 2018; 106:692-698. [PMID: 29990860 DOI: 10.1016/j.biopha.2018.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE This study investigated the impact of SO2 on rats with hypoxic pulmonary vascular structural remodeling and its possible mechanisms. MATERIALS AND METHODS Pulmonary vascular morphological change was examined by HE staining. RNA-based high-throughput sequencing (RNA-seq) was performed to detect differential expression of mRNAs in Normal and Hypoxia-induced Pulmonary hypertension (HPH) rats. The Real-time quantitative RT-PCR (q RT-PCR) was used for validation of wnt7b, sfrp2, cacna1f, DKK1, CaSR and vimentin mRNA expression levels. Protein levels of CaSR, Vimentin, Caspase3, E-cadherin and P-Akt1/2/3 were detected by Western blot and immunohistochemistry. RESULTS This study showed that SO2 significantly attenuated the interstitial thickening and prominent media hypertrophy of pulmonary arteries. SO2 downregulated p-Akt1/2/3 protein level and upregulated E-cadherin protein level in lung tissues, which inhibited the proliferation and epithelial-to-mesenchymal transition (EMT) in HPH rats. RNA-seq and PCR validation results showed that levels of Wnt7b, Sfrp2 and Cacna1f mRNAs decreased and Dkk1 mRNA level increased obviously in HPH rats. Moreover, SO2 attenuated the mRNA and protein level of CaSR, which was activated in HPH rats and resulted in the proliferation of PASMCs. Besides, the mRNA and protein expression of vimentin in PASMCs significantly reduced after SO2 treatment. CONCLUSION Together, these findings indicate that SO2 could attenuate hypoxia-induced pulmonary arteriolar remodeling and may suppress the proliferation and migration of PASMCs at least in part through the Dkk1/Wnt signaling pathway.
Collapse
Affiliation(s)
- Liman Luo
- Department of Paediatrics, The 306th Hospital of PLA, Beijing, 100101, China
| | - Xiaoyang Hong
- Department of Pediatric Intensive Care Unit, BaYi Children's Hospital of PLA Army General Hospital, Beijing, 100700, China
| | - Bo Diao
- Department of Clinical Experiment, Wuhan General Hospital of Guangzhou Command & Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan, 430070, Hubei, China
| | - Siyao Chen
- Department of Cardiac Surgery, Guangdong General Hospital, Guangdong Cardiovascular Institute and Guangdong Academy of Medical Science, Guangdong, 510080, China
| | - Mingyan Hei
- Neonatal Center, Beijing Children's Hospital of Capital Medical University, Beijing, 100045, China.
| |
Collapse
|
6
|
α-Solanine reverses pulmonary vascular remodeling and vascular angiogenesis in experimental pulmonary artery hypertension. J Hypertens 2018; 35:2419-2435. [PMID: 28704260 DOI: 10.1097/hjh.0000000000001475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Similar to cancer, pulmonary arterial hypertension (PAH) is characterized by vascular remodeling, which leads to obliteration of the small pulmonary arteriole, with marked proliferation of pulmonary artery smooth muscle cells (PASMC) and/or endothelial cells dysfunction. Aberrant expression of tumor suppressor genes is closely associated with susceptibility to PAH. We hypothesized that α-solanine, a glycoalkaloid found in members of the nightshade family known to have antitumor activity in different cancers, reverses experimental PAH by activating the tumor suppressor-axis inhibition protein 2 (AXIN2). METHODS AND RESULTS We investigated the effects of α-solanine on PASMC proliferation and apoptosis by using 5-ethynyl-2'-deoxyuridine proliferation assay, proliferating cell nuclear antigen and Ki67 staining, TUNEL and Anexine V assays. Scratch wound healing and tube formation assays were also used to study migration of endothelial cells. In vitro, we demonstrated, using cultured human PASMC from PAH patients, that α-solanine reversed dysfunctional AXIN2, β-catenin and bone morphogenetic protein receptor type-2 signaling, whereas restored [Ca]i, IL-6 and IL-8, contributing to the decrease of PAH-PASMC proliferation and resistance to apoptosis. Meanwhile, α-solanine inhibits proliferation, migration and tube formation of PAH-pulmonary artery endothelial cells by inhibiting Akt/GSK-3α activation. In vivo, α-solanine administration decreases distal pulmonary arteries remodeling, mean pulmonary arteries pressure and right ventricular hypertrophy in both monocrotaline-induced and Sugen/hypoxia-induced PAH in mice. CONCLUSION This study demonstrates that AXIN2/β-catenin axis and Akt pathway can be therapeutically targeted by α-solanine in PAH. α-Solanine could be used as a new therapeutic strategy for the treatment of PAH.
Collapse
|
7
|
Nie X, Tan J, Dai Y, Liu Y, Zou J, Sun J, Ye S, Shen C, Fan L, Chen J, Bian JS. CCL5 deficiency rescues pulmonary vascular dysfunction, and reverses pulmonary hypertension via caveolin-1-dependent BMPR2 activation. J Mol Cell Cardiol 2018; 116:41-56. [PMID: 29374556 DOI: 10.1016/j.yjmcc.2018.01.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/13/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating cardiopulmonary disorder characterized by pulmonary arterial remodeling mainly due to excess cellular proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs). Reduced bone morphogenetic protein receptor 2 (BMPR2) expression in patients with PAH impairs pulmonary arterial endothelial cells (PAECs) function. This can adversely affect PAEC survival and promote PASMCs proliferation. We hypothesized that interventions to normalize the expression of genes that are targets of the BMPR2 signaling could restore PAECs function and prevent or reverse PAH. Here we characterized for the first time, in human PAECs, chemokine (C-C motif) ligand 5 (CCL5/RANTES) deficiency restore BMP-mediated PAECs function. In the cell culture experiments, we found that CCL5 deficiency increased apoptosis and tube formation of PAECs, but suppressed proliferation and migration of PASMCs. Silencing CCL5 expression in PAH PAECs restored bone morphogenetic protein (BMP) signaling responses and promoted phosphorylation of SMADs and transcription of ID genes. Moreover, CCL5 deficiency inhibited angiogenesis by increasing pSMAD-dependent and-independent BMPR2 signaling. This was linked mechanistically to enhanced interaction of BMPR2 with caveolin-1 via CCL5 deficiency-mediated stabilization of endothelial surface caveolin-1. Consistent with these functions, deletion of CCL5 significantly attenuated development of Sugen5416/hypoxia-induced PAH by restoring BMPR2 signaling in mice. Taken together, our findings suggest that CCL5 deficiency could reverse obliterative changes in pulmonary arteries via caveolin-1-dependent amplification of BMPR2 signaling. Our results shed light on better understanding of the disease pathobiology and provide a possible novel target for the treatment of PAH.
Collapse
Affiliation(s)
- Xiaowei Nie
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China; Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, PR China.
| | - Jianxin Tan
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Youai Dai
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Yun Liu
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, PR China
| | - Jian Zou
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Jie Sun
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Shugao Ye
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Chenyou Shen
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Li Fan
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Jingyu Chen
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China; Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
8
|
|
9
|
Yun X, Jiang H, Lai N, Wang J, Shimoda LA. Aquaporin 1-mediated changes in pulmonary arterial smooth muscle cell migration and proliferation involve β-catenin. Am J Physiol Lung Cell Mol Physiol 2017; 313:L889-L898. [PMID: 28798257 DOI: 10.1152/ajplung.00247.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 12/22/2022] Open
Abstract
Exposure to hypoxia induces migration and proliferation of pulmonary arterial smooth muscle cells (PASMCs), leading to vascular remodeling and contributing to the development of hypoxic pulmonary hypertension. The mechanisms controlling PASMC growth and motility are incompletely understood, although aquaporin 1 (AQP1) plays an important role. In tumor, kidney, and stem cells, AQP1 has been shown to interact with β-catenin, a dual function protein that activates the transcription of crucial target genes (i.e., c-Myc and cyclin D1) related to cell migration and proliferation. Thus the goal of this study was to examine mechanisms by which AQP1 mediates PASMC migration and proliferation, with a focus on β-catenin. Using primary rat PASMCs from resistance level pulmonary arteries infected with adenoviral constructs containing green fluorescent protein (control; AdGFP), wild-type AQP1 (AdAQP1), or AQP1 with the COOH-terminal tail deleted (AdAQP1M), we demonstrated that increasing AQP1 expression upregulated β-catenin protein levels and the expression (mRNA and protein) of the known β-catenin targets c-Myc and cyclin D1. In contrast, infection with AdAQP1M had no effect on any of these variables. Using silencing approaches to reduce β-catenin levels prevented both hypoxia- and AQP1-induced migration and proliferation of PASMCs, as well as induction of c-Myc and cyclin D1 by AQP1. Thus our results indicate that elevated AQP1 levels upregulate β-catenin protein levels, via a mechanism requiring the AQP1 COOH-terminal tail, enhancing expression of β-catenin targets and promoting PASMC proliferation and migration.
Collapse
Affiliation(s)
- Xin Yun
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; and.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ning Lai
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; and
| | - Jian Wang
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; and.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Nie X, Tan J, Dai Y, Mao W, Chen Y, Qin G, Li G, Shen C, Zhao J, Chen J. Nur77 downregulation triggers pulmonary artery smooth muscle cell proliferation and migration in mice with hypoxic pulmonary hypertension via the Axin2-β-catenin signaling pathway. Vascul Pharmacol 2016; 87:230-241. [DOI: 10.1016/j.vph.2016.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 11/03/2016] [Indexed: 01/15/2023]
|