1
|
Huang Y, Zhao J, Zhou Z, Guo X, Xu Y, Huang T, Meng S, Cao Z, Xu D, Zhao Q, Yin Z, Jiang H, Yu L, Wang H. Persistent hypertension induces atrial remodeling and atrial fibrillation through DNA damage and ATM/CHK2/p53 signaling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167534. [PMID: 39366645 DOI: 10.1016/j.bbadis.2024.167534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Atrial fibrillation (AF) is the most prevalent arrhythmia in clinical practice, with hypertension emerging as an independent risk factor. Previous literature has established associations between DNA damage response (DDR) and autophagy in relation to the pathogenesis of AF. The aim of this study was to evaluate the effect of atrial DNA damage response in persistent hypertension-induced atrial electrical and structural remodeling, and to further explore the potential therapeutic targets. Patient samples, spontaneous hypertensive rats (SHR) and angiotensin II (Ang II)-challenged HL-1 cells were employed to elucidate the detailed mechanisms. Bioinformatics analysis and investigation on human atrial samples revealed a critical role of DDR in the pathogenesis of AF. The markers of atrial DNA damage, DDR, autophagy, inflammation and fibrosis were detected by western blot, immunofluorescence, monodansyl cadaverine (MDC) assay and transmission electron microscopy. Compared with the control group, SHR exhibited significant atrial electrical and structural remodeling, abnormal increase of autophagy, inflammation, and fibrosis, which was accompanied by excessive activation of DDR mediated by the ATM/CHK2/p53 pathway. These detrimental changes were validated by in vitro experiments. Ang II-challenged HL-1 cells also exhibited significantly elevated γH2AX expression, and markers related to autophagy, inflammation as well as structural remodeling. Additionally, inhibition of ATM with KU55933 (a specific ATM inhibitor) significantly reversed these effects. Collectively, these data demonstrate that DNA damage and the subsequently overactivated ATM/CHK2/p53 pathway play critical roles in hypertension-induced atrial remodeling and the susceptibility to AF. Targeting ATM/CHK2/p53 signaling may serve as a potential therapeutic strategy against AF.
Collapse
Affiliation(s)
- Yuting Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jikai Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zijun Zhou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xiaodong Guo
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yinli Xu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Tao Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Shan Meng
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Jinzhou Medical University, Jinzhou, Liaoning 121001, PR China
| | - Zijun Cao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, PR China
| | - Dengyue Xu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116024, PR China
| | - Qiusheng Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zongtao Yin
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Hui Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Liming Yu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| | - Huishan Wang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
2
|
Shen Y, Ma G, Sun M, Li M, Chen M. Low plasma renin activity is associated with "Apparently" idiopathic atrial fibrillation. IJC HEART & VASCULATURE 2023; 49:101286. [PMID: 37920699 PMCID: PMC10618685 DOI: 10.1016/j.ijcha.2023.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Background Previous studies have reported the direct or indirect relationship between the renin-angiotensin-aldosterone system (RAAS) and atrial fibrillation (AF). However, in patients with "apparently" idiopathic AF without possible external influence, whether RAAS is dysregulated at an early stage of AF and its relationship with the recurrence of AF after ablation have not been studied. Methods This single-center, prospective, case-control study included apparently healthy individuals with AF (the case group) or paroxysmal supraventricular tachycardia (PSVT, the control group) referred for catheter ablation at the same period. The primary outcome was RAAS activation in these two groups. The secondary outcome was the 1-year recurrence of AF after ablation. Results This study included 51 "apparently" idiopathic AF and 91 patients with PSVT. A greater proportion of patients in the case group had plasma renin activity (PRA) levels < 1 ng/ml/h compared to the control group (25.5 % vs. 7.7 %, P = 0.003). PRA < 1 ng/ml/h was the only factor found to be associated with the diagnose of AF in both the univariate model (odds ratio [OR] 4.11, 95 % confidence interval [CI] 1.52-11.11, P = 0.005) and the model adjusted for age and sex (OR 3.98, 95 % CI 1.20-13.25, P = 0.024). A similar pattern was seen with paroxysmal AF. No significant difference in the components of RAAS was observed between 11 patients with the recurrence of AF and 40 without the recurrence at the 1-year follow-up. Conclusions This observational study revealed an association between low renin activity and the diagnosis of "apparently" idiopathic AF, particularly paroxysmal AF.
Collapse
Affiliation(s)
- Youmei Shen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Guodong Ma
- Division of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Min Sun
- Division of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Mingfang Li
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Minglong Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, China
| |
Collapse
|
3
|
Adili A, Zhu X, Cao H, Tang X, Wang Y, Wang J, Shi J, Zhou Q, Wang D. Atrial Fibrillation Underlies Cardiomyocyte Senescence and Contributes to Deleterious Atrial Remodeling during Disease Progression. Aging Dis 2022; 13:298-312. [PMID: 35111375 PMCID: PMC8782549 DOI: 10.14336/ad.2021.0619] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/19/2021] [Indexed: 11/01/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - Qing Zhou
- Correspondence should be addressed to: Dr. Qing Zhou (), Dr. Dongjin Wang (), The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Dongjin Wang
- Correspondence should be addressed to: Dr. Qing Zhou (), Dr. Dongjin Wang (), The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
4
|
Chen M, Zhong J, Wang Z, Xu H, Chen H, Sun X, Lu Y, Chen L, Xie X, Zheng L. Fibroblast Growth Factor 21 Protects Against Atrial Remodeling via Reducing Oxidative Stress. Front Cardiovasc Med 2021; 8:720581. [PMID: 34708083 PMCID: PMC8542911 DOI: 10.3389/fcvm.2021.720581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: The structural and electrical changes in the atrium, also known as atrial remodeling, are the main characteristics of atrial fibrillation (AF). Fibroblast growth factor 21 (Fgf21) is an important endocrine factor, which has been shown to play an important role in cardiovascular diseases. However, the effects of Fgf21 on atrial remodeling have not been addressed yet. The purpose of the present study is to evaluate the effects of Fgf21 on atrial remodeling. Methods and Results: Adult mice were treated with Ang II, and randomly administrated with or without Fgf21 for 2 weeks. The susceptibility to AF was assessed by electrical stimulation and optical mapping techniques. Here, we found that Fgf21 administration attenuated the inducibility of atrial fibrillation/atrial tachycardia (AF/AT), improved epicardial conduction velocity in the mice atria. Mechanistically, Fgf21 protected against atrial fibrosis and reduced oxidative stress of the atria. Consistently, in vitro study also demonstrated that Fgf21 blocked the upregulation of collagen by Tgf-β in fibroblasts and attenuated tachypacing-induced oxidative stress including reactive oxygen species (ROS), Tgf-β, and ox-CaMKII in atrial myocytes. We further found that Fgf21 attenuated oxidative stress by inducing antioxidant genes, such as SOD2 and UCP3. Fgf21 also improved tachypacing-induced myofibril degradation, downregulation of L-type calcium channel, and upregulation of p-RyR2, which implicated protective effects of Fgf21 on structural and electrical remodeling in the atria. Moreover, Nrf2 was identified as a downstream of Fgf21 and partly mediated Fgf21-induced antioxidant gene expression in atrial myocytes. Conclusion: Fgf21 administration effectively suppressed atrial remodeling by reducing oxidative stress, which provides a novel therapeutic insight for AF.
Collapse
Affiliation(s)
- Miao Chen
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiawei Zhong
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhen Wang
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongfei Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Heng Chen
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xingang Sun
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunlong Lu
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Chen
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xudong Xie
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liangrong Zheng
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Qi Z, Wang T, Chen X, Wong CK, Ding Q, Sauer H, Chen ZF, Long C, Yao X, Cai Z, Tsang SY. Extracellular and Intracellular Angiotensin II Regulate the Automaticity of Developing Cardiomyocytes via Different Signaling Pathways. Front Mol Biosci 2021; 8:699827. [PMID: 34513920 PMCID: PMC8425478 DOI: 10.3389/fmolb.2021.699827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
Angiotensin II (Ang II) plays an important role in regulating various physiological processes. However, little is known about the existence of intracellular Ang II (iAng II), whether iAng II would regulate the automaticity of early differentiating cardiomyocytes, and the underlying mechanism involved. Here, iAng II was detected by immunocytochemistry and ultra-high performance liquid chromatography combined with electrospray ionization triple quadrupole tandem mass spectrometry in mouse embryonic stem cell–derived cardiomyocytes (mESC-CMs) and neonatal rat ventricular myocytes. Expression of AT1R-YFP in mESC-CMs revealed that Ang II type 1 receptors were located on the surface membrane, while immunostaining of Ang II type 2 receptors (AT2R) revealed that AT2R were predominately located on the nucleus and the sarcoplasmic reticulum. While extracellular Ang II increased spontaneous action potentials (APs), dual patch clamping revealed that intracellular delivery of Ang II or AT2R activator C21 decreased spontaneous APs. Interestingly, iAng II was found to decrease the caffeine-induced increase in spontaneous APs and caffeine-induced calcium release, suggesting that iAng II decreased spontaneous APs via the AT2R- and ryanodine receptor–mediated pathways. This is the first study that provides evidence of the presence and function of iAng II in regulating the automaticity behavior of ESC-CMs and may therefore shed light on the role of iAng II in fate determination.
Collapse
Affiliation(s)
- Zenghua Qi
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR China.,Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| | - Tao Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, SAR China
| | - Xiangmao Chen
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Chun Kit Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR China
| | - Qianqian Ding
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR China
| | - Heinrich Sauer
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Zhi-Feng Chen
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, SAR China
| | - Suk Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR China.,Key Laboratory for Regenerative Medicine, Ministry of Education, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR China.,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR China
| |
Collapse
|
6
|
Ferrario CM, Groban L, Wang H, Cheng CP, VonCannon JL, Wright KN, Sun X, Ahmad S. The Angiotensin-(1-12)/Chymase axis as an alternate component of the tissue renin angiotensin system. Mol Cell Endocrinol 2021; 529:111119. [PMID: 33309638 PMCID: PMC8127338 DOI: 10.1016/j.mce.2020.111119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/18/2020] [Accepted: 12/06/2020] [Indexed: 02/08/2023]
Abstract
The identification of an alternate extended form of angiotensin I composed of the first twelve amino acids at the N-terminal of angiotensinogen has generated new knowledge of the importance of noncanonical mechanisms for renin independent generation of angiotensins. The human sequence of the dodecapeptide angiotensin-(1-12) [N-Asp1-Arg2-Val3-Tyr4-Ile5-His6-Pro7-Phe8-His9-Leu10-Val1-Ile12-COOH] is an endogenous substrate that in the rat has been documented to be present in multiple organs including the heart, brain, kidney, gut, adrenal gland, and the bone marrow. Newer studies have confirmed the existence of Ang-(1-12) as an Ang II-forming substrate in the blood and heart of normal and diseased patients. Studies to-date document that angiotensin II generation from angiotensin-(1-12) does not require renin participation while chymase rather than angiotensin converting enzyme shows high catalytic activity in converting this tissue substrate into angiotensin II directly.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA.
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Che Ping Cheng
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Jessica L VonCannon
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Kendra N Wright
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Sarfaraz Ahmad
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
7
|
Abstract
The Wnt signaling pathway regulates physiological processes such as cell proliferation and differentiation, cell fate decisions, and stem cell maintenance and, thus, plays essential roles in embryonic development, but also in adult tissue homeostasis and repair. The Wnt signaling pathway has been associated with heart development and repair and has been shown to be crucially involved in proliferation and differentiation of progenitor cells into cardiomyocytes. The investigation of the role of the Wnt signaling pathway and the regulation of its expression/activity in atrial fibrillation has only just begun. The present minireview (I) provides original data regarding the expression of Wnt signaling components in atrial tissue of patients with atrial fibrillation or sinus rhythm and (II) summarizes the current state of knowledge of the regulation of Wnt signaling components' expression/activity and the contribution of the various levels of the Wnt signal transduction pathway to the processes of the development, maintenance, and progression of atrial fibrillation.
Collapse
Affiliation(s)
- Carmen Wolke
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Elmer Antileo
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald D-17475, Germany
| |
Collapse
|
8
|
Corrêa T, Feltes BC, Gonzalez EA, Baldo G, Matte U. Network Analysis Reveals Proteins Associated with Aortic Dilatation in Mucopolysaccharidoses. Interdiscip Sci 2021; 13:34-43. [PMID: 33475959 DOI: 10.1007/s12539-020-00406-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Mucopolysaccharidoses are caused by a deficiency of enzymes involved in the degradation of glycosaminoglycans. Heart diseases are a significant cause of morbidity and mortality in MPS patients, even in conditions in which enzyme replacement therapy is available. In this sense, cardiovascular manifestations, such as heart hypertrophy, cardiac function reduction, increased left ventricular chamber, and aortic dilatation, are among the most frequent. However, the downstream events which influence the heart dilatation process are unclear. Here, we employed systems biology tools together with transcriptomic data to investigate new elements that may be involved in aortic dilatation in Mucopolysaccharidoses syndrome. We identified candidate genes involved in biological processes related to inflammatory responses, deposition of collagen, and lipid accumulation in the cardiovascular system that may be involved in aortic dilatation in the Mucopolysaccharidoses I and VII. Furthermore, we investigated the molecular mechanisms of losartan treatment in Mucopolysaccharidoses I mice to underscore how this drug acts to prevent aortic dilation. Our data indicate that the association between the TGF-b signaling pathway, Fos, and Col1a1 proteins can play an essential role in aortic dilation's pathophysiology and its subsequent improvement by losartan treatment.
Collapse
Affiliation(s)
- Thiago Corrêa
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, 90035-903, Brazil
- Postgraduation Program on Genetics and Molecular Biology, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Bruno César Feltes
- Institute of Informatics, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Esteban Alberto Gonzalez
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, 90035-903, Brazil
- Postgraduation Program on Genetics and Molecular Biology, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, 90035-903, Brazil
- Postgraduation Program on Genetics and Molecular Biology, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, 90035-903, Brazil.
- Postgraduation Program on Genetics and Molecular Biology, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Zhang Q, Yuan P, Li M, Fu Y, Hou Y, Sun Y, Gao L, Wei Y, Feng W, Zheng X. Effect of phenylacetamide isolated from lepidium apetalum on myocardial injury in spontaneously hypertensive rats and its possible mechanism. PHARMACEUTICAL BIOLOGY 2020; 58:597-609. [PMID: 32631115 PMCID: PMC7470167 DOI: 10.1080/13880209.2020.1778043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/30/2019] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Context: In the antihypertensive study of phenylacetamide (PA) on spontaneously hypertensive rats (SHR), it was occasionally found that PA prevents myocardial injury.Objective: Clarify the protective mechanism of PA on myocardial injury in SHR rats.Materials and methods: In vivo, SHR rats were treated with or without PA (15, 30, 45 mg/kg) for 3 weeks (12 per group). In vitro, H9c2 cells were treated with PA (1, 5, 10 μM) for 24 h, and then stimulated with H2O2 (300 μM) for 4 h. Molecular mechanisms were explored through cardiac pathology, cardiac function and biochemical markers.Results: In vivo, PA (15, 30, 45 mg/kg) reduced CVF from 14.8 ± 1.62 to 9.94 ± 1.56, 8.6 ± 1.33, 8.14 ± 1.45%; increased the LVEF relative level from 0.8 ± 0.06 to 0.83 ± 0.04, 0.86 ± 0.05, 0.9 ± 0.04. All three doses can improve the cardiac pathological structure and function (LVEDD, LVESD, LVFS, heart index, NT-proBNP, CKMB, SBP); however, 45 mg/kg works best. But different doses show different molecular mechanisms. PA (15 mg/kg) improves RAAS system (REN, ACE), inflammation (ET-1, IL-1β) and MAPK pathway (p-ERK/ERK, p-JNK/JNK) better. PA (45 mg/kg) improves oxidative stress (SOD, NOX1) and TGF-β pathway (Smad3) better. In vitro, PA improved cell viability, oxidative stress (SOD, NOX1) and Smad3 protein expression.Discussion and conclusions: PA regulates different mechanisms at different concentrations to improve myocardial injury, and high dose is the best. This experiment provides a theoretical basis for the development of new clinical drugs for cardiovascular disease.
Collapse
Affiliation(s)
- Qi Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Peipei Yuan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Meng Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Yang Fu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Ying Hou
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Yaping Sun
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Liyuan Gao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Yaxin Wei
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| |
Collapse
|
10
|
Chen Y, Qiao X, Zhang L, Li X, Liu Q. Apelin-13 regulates angiotensin ii-induced Cx43 downregulation and autophagy via the AMPK/mTOR signaling pathway in HL-1 cells. Physiol Res 2020; 69:813-822. [PMID: 32901500 DOI: 10.33549/physiolres.934488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Atrial fibrillation is associated with atrial remodeling, in which connexin 43 (Cx43) and cell hypertrophy play important roles. In this study, apelin-13, an aliphatic peptide, was used to explore the protective effects of the adenosine monophosphate-activated protein kinase (AMPK)/mTOR signaling pathway on Cx43 expression and autophagy, using murine atrial HL-1 cells. The expression of Cx43, AMPK, B-type natriuretic peptide (BNP) and pathway-related proteins was detected by Western blot analysis. Cellular fluorescence imaging was used to visualize Cx43 distribution and the cytoskeleton. Our results showed that the Cx43 expression was significantly decreased in HL-1 cells treated with angiotensin II but increased in cells additionally treated with apelin-13. Meanwhile, apelin-13 decreased BNP expression and increased AMPK expression. However, the expression of Cx43 and LC3 increased by apelin-13 was inhibited by treatment with compound C, an AMPK inhibitor. In addition, rapamycin, an mTOR inhibitor, promoted the development of autophagy, further inhibited the protective effect on Cx43 expression and increased cell hypertrophy. Thus, apelin-13 enhances Cx43 expression and autophagy via the AMPK/mTOR signaling pathway, and serving as a potential therapeutic target for atrial fibrillation.
Collapse
Affiliation(s)
- Y Chen
- Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, China. , Department of Pathophysiology, Shanxi Medical University, Taiyuan, China.
| | | | | | | | | |
Collapse
|
11
|
Elevated chymase-dependent angiotensin II-forming activity in circulating mononuclear leukocytes was observed in the patient of atrial fibrillation. Heart Vessels 2020; 35:1116-1124. [PMID: 32206865 DOI: 10.1007/s00380-020-01582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/06/2020] [Indexed: 10/24/2022]
Abstract
Chymase is an angiotensin II-forming serine proteinase and elevation of its tissue activity occurs in various cardiovascular diseases. Several authors have suggested that there is an association between the renin-angiotensin system and atrial fibrillation (AF). Chymase-dependent angiotensin II-forming activity in circulating mononuclear leukocytes (CML chymase dAIIFA) was investigated in patients with AF and patients in sinus rhythm. Consecutive outpatients were recruited at our hospital. CML chymase dAIIFA was measured using a Nma/Dnp-type fluorescence-quenching substrate of modified angiotensin I in the presence or absence of a specific serine proteinase inhibitor. To search the independent contributing factor of existence of AF, the analysis between groups was carried out using multivariate analysis after univariate analysis. The patients were classified into a sinus rhythm (SR) group (n = 459) or an AF group (n = 48). CML chymase dAIIFA was significantly higher in the AF group (622 pmol/min/mg) compared with the SR group (488 pmol/min/mg) (p < 0.001). Logistic regression analysis revealed that high CML chymase dAIIFA was an independent determinant of the existence of AF (p < 0.001). Elevation of CML chymase dAIIFA was associated with AF. Activation of chymase might be linked to atrial structural and electrical remodeling.
Collapse
|
12
|
Reyes S, Cheng CP, Roberts DJ, Yamashita T, Ahmad S, VonCannon JL, Wright KN, Dell'Italia LJ, Varagic J, Ferrario CM. Angiotensin-(1-12)/chymase axis modulates cardiomyocyte L-type calcium currents in rats expressing human angiotensinogen. Int J Cardiol 2019; 297:104-110. [PMID: 31629566 PMCID: PMC6939452 DOI: 10.1016/j.ijcard.2019.09.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Activation of the intracrine renin angiotensin systems (RAS) is increasingly recognized as contributing to human pathologies, yet non-canonical renin-independent mechanisms for angiotensin II (Ang II) biosynthesis remain controversial. Direct Ang II generation from angiotensin-(1-12) [Ang-(1-12)] by chymase is an essential intracrine source for regulation of cardiac function. Using a transgenic rat model that overexpresses the human angiotensinogen gene [TGR(hAGT)L1623] and displays increased cardiac Ang II levels, this study aimed to provide evidence for intracrine activation of L-type calcium currents (ICa-L) mediated by the Ang-(1-12)/chymase axis. METHODS AND RESULTS On patch clamp, ICa-L density was significantly higher in TGR(hAGT)L1623 (-6.4 ± 0.3 pA/pF) compared to Sprague Dawley (SD) cardiomyocytes (-4.8, ± 0.5 pA/pF). Intracellular administration of Ang II and Ang-(1-12) elicited a ICa-L increase in both SD and TGR(hAGT)L1623 cardiomyocytes, albeit blunted in transgenic cells. ICa-L activation by intracellular Ang II and Ang-(1-12) was abolished by the specific Ang II type 1 receptor blocker E-3174. Co-administration of a chymase inhibitor prevented activation of ICa-L by Ang-(1-12). Confocal micrographs revealed abundant chymase (mast cell protease 5) immunoreactive protein in SD and TGR(hAGT)L1623 cardiomyocytes. CONCLUSIONS Our data demonstrate the existence in cardiomyocytes of a calcium channel modulatory activity responsive to Ang II generated by the Ang-(1-12)/chymase axis that signals via intracellular receptors. Chronically elevated Ang II in TGR(hAGT)L1623 hearts leading to increased intracellular calcium through ICa-L suggests that activation of this Ang-(1-12)/chymase-governed cardiac intracrine RAS may contribute to the pathological phenotypes observed in the humanized model of chronic hypertension and cardiac hypertrophy.
Collapse
Affiliation(s)
- Santiago Reyes
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Che Ping Cheng
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Drew J Roberts
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Tomohisa Yamashita
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sarfaraz Ahmad
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jessica L VonCannon
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kendra N Wright
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Louis J Dell'Italia
- Birmingham Veteran Affairs Medical Center and Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jasmina Varagic
- Department of Surgery and Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carlos M Ferrario
- Departments of Surgery, Physiology and Pharmacology, and Social Sciences, Division of Public Health, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
13
|
Inhibition of UCHL1 by LDN-57444 attenuates Ang II-Induced atrial fibrillation in mice. Hypertens Res 2019; 43:168-177. [PMID: 31700166 PMCID: PMC8075865 DOI: 10.1038/s41440-019-0354-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 12/22/2022]
Abstract
Atrial fibrillation (AF) is the most common human arrhythmia in clinical practice and may be promoted by atrial inflammation and fibrosis. Ubiquitination is an important posttranslational modification process that is reversed by deubiquitinating enzymes (DUBs). DUBs play critical roles in modulating the degradation, activity, trafficking, and recycling of substrates. However, less research has focused on the role of DUBs in AF. Here, we investigated the effect of ubiquitin C-terminal hydrolase 1 (UCHL1), an important DUB, on the development of AF induced by angiotensin II (Ang II). Male wild-type mice were treated with the UCHL1 inhibitor LDN57444 (LDN) at a dose of 40 μg/kg and infused with Ang II (2000 ng/kg/min) for 3 weeks. Our results showed that Ang II-infused wild-type (WT) mice had higher systolic blood pressure and an increased incidence and duration of AF. Conversely, this effect was attenuated in LDN-treated mice. Moreover, the administration of LDN significantly reduced Ang II-induced left atrial dilation, fibrosis, inflammatory cell infiltration, and reactive oxygen species (ROS) production. Mechanistically, LDN treatment inhibited the activation of multiple signaling pathways (the AKT, ERK1/2, HIF-1α, and TGF-β/smad2/3 pathways) and the expression of CX43 protein in atrial tissues compared with that in vehicle-treated control mice. Overall, our study identified UCHL1 as a novel regulator that contributes to Ang II-induced AF and suggests that the administration of LDN may represent a potential therapeutic approach for treating hypertensive AF.
Collapse
|
14
|
Nucleoligands-repurposing G Protein-coupled Receptor Ligands to Modulate Nuclear-localized G Protein-coupled Receptors in the Cardiovascular System. J Cardiovasc Pharmacol 2019; 71:193-204. [PMID: 28858907 DOI: 10.1097/fjc.0000000000000535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is significant evidence that internal pools of G protein-coupled receptors (GPCRs) exist and may be affected by both endogenous signaling molecules and hydrophobic pharmaceutical ligands, once assumed to only affect cell surface versions of these receptors. Here, we discuss evidence that the biology of nuclear GPCRs in particular is complex, rich, and highly interactive with GPCR signaling from the cell surface. Caging existing GPCR ligands may be an excellent means of further stratifying the phenotypic effects of known pharmacophores such as β-adrenergic, angiotensin II, and type B endothelin receptor ligands in the cardiovascular system. We describe some synthetic strategies we have used to design ligands to go from in cellulo to in vivo experiments. We also consider how surface and intracellular GPCR signaling might be integrated and ways to dissect this. If they could be selectively targeted, nuclear GPCRs and their associated nucleoligands would represent a completely novel area for exploration by Pharma.
Collapse
|
15
|
Differential Gene Expression Profile of Renin-Angiotensin System in the Left Atrium in Mitral Regurgitation Patients. DISEASE MARKERS 2018; 2018:6924608. [PMID: 30581499 PMCID: PMC6276386 DOI: 10.1155/2018/6924608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/01/2018] [Indexed: 11/17/2022]
Abstract
Background Left atrial enlargement is a mortality and heart failure risk factor in primary mitral regurgitation (MR) patients. Pig models of MR have shown differential expression of genes linked to the renin-angiotensin system. Therefore, the aim of this study was to investigate the key genes of the renin-angiotensin that are expressed differentially in the left atrial myocardium in MR patients. Methods Quantitative RT-PCR was used to compare gene expression in the renin-angiotensin system in the left atrium in MR patients, aortic valve disease patients, and normal subjects. Results Plasma angiotensin II concentrations did not significantly differ between MR patients and aortic valve disease patients (P = 0.582). Compared to normal controls, however, MR patients had significantly downregulated expressions of angiotensin-converting enzyme, angiotensin I converting enzyme 2, type 1 angiotensin II receptor, glutamyl aminopeptidase, angiotensinogen, cathepsin A (CTSA), thimet oligopeptidase 1, neurolysin, alanyl aminopeptidase, cathepsin G, leucyl/cystinyl aminopeptidase (LNPEP), neprilysin, and carboxypeptidase A3 in the left atrium. The MR patients also had significantly upregulated expressions of MAS1 oncogene (MAS1) and mineralocorticoid receptor compared to normal controls. Additionally, in comparison with aortic valve disease patients, MR patients had significantly downregulated CTSA and LNPEP expression and significantly upregulated MAS1 expression in the left atrium. Conclusions Expressions of genes in the renin-angiotensin system, especially CTSA, LNPEP, and MAS1, in the left atrium in MR patients significantly differed from expressions of these genes in aortic valve disease patients and normal controls. Notably, differences in expression were independent of circulating angiotensin II levels. The results of this study provide a rationale for pharmacological therapies or posttranslational regulation therapies targeting genes expressed differentially in the renin-angiotensin system to remedy structural remodeling associated with atrial enlargement and heart failure progression in patients with MR.
Collapse
|
16
|
Bukowska A, Spiller L, Wolke C, Lendeckel U, Weinert S, Hoffmann J, Bornfleth P, Kutschka I, Gardemann A, Isermann B, Goette A. Protective regulation of the ACE2/ACE gene expression by estrogen in human atrial tissue from elderly men. Exp Biol Med (Maywood) 2017; 242:1412-1423. [PMID: 28661206 DOI: 10.1177/1535370217718808] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Data from animal experiments and clinical investigations suggest that components of the renin-angiotensin system are markedly affected by sex hormones. However, whether estrogen affects human atrial myocardium has not been investigated yet. In this study, we determined the effects of estrogen on key components of atrial renin-angiotensin system: angiotensin-converting enzyme, responsible for generation of angiotensin II and angiotensin-converting enzyme 2, counteracting majority of AngII effects, and different renin-angiotensin system receptors, AT1R, AT2R, and MAS. First, the expression levels of estrogen receptors mRNA were determined in right atrial appendages obtained from patients undergoing heart surgery. The amounts of estrogen receptor α and estrogen receptor β mRNA were similar between women ( n = 14) and men ( n = 10). Atrial tissue slices (350 µm) were prepared from male donors which were exposed to estrogen (1-100 nM; n = 21) or stimulated at 4 Hz for 24 h in the presence or absence of 100 nM estrogen ( n = 16), respectively. The administration of estrogen did not change mRNA levels of estrogen receptors, but activated MAP kinases, Erk1/2. Furthermore, estrogen increased the amounts of angiotensin-converting enzyme 2-mRNA (1.89 ± 0.23; P < 0.05) but reduced that of angiotensin-converting enzyme-mRNA (0.78 ± 0.07, P < 0.05). In addition, the transcript levels of AT2R and MAS were upregulated by estrogen. Pacing of tissue slices significantly increased the angiotensin-converting enzyme/angiotensin-converting enzyme 2 ratio at both the mRNA and protein level. During pacing, administration of estrogen substantially lowered the angiotensin-converting enzyme/angiotensin-converting enzyme 2 ratio at the transcript (0.92 ± 0.21 vs. 2.12 ± 0.27 at 4 Hz) and protein level (0.94 ± 0.20 vs. 2.14 ± 0.3 at 4 Hz). Moreover, estrogen elicited anti-inflammatory and anti-oxidative effects on renin-angiotensin system-associated downstream effectors such as pro-oxidative LOX-1 and pro-inflammatory ICAM-1. An antagonist of estrogen receptor α reversed these anti-inflammatory and anti-oxidative effects of estrogen significantly. Overall, our results demonstrated that estrogen modifies the local renin-angiotensin system homeostasis and achieves protective effects in atrial myocardium from elderly men. Impact statement The present study demonstrates that estrogen affects the human atrial myocardium and mediates protective actions through estrogen receptors-(ER) dependent signaling. Estrogen substantially modulates the local RAS via downregulation of ACE and simultaneous upregulation of ACE2, AT2R and MAS expression levels. This is indicative of a shift of the classical RAS/ACE axis to the alternative, protective RAS/ACE2 axis. In support of this view, estrogen attenuated the expression of RAS-associated downstream effectors, LOX-1, and ICAM-1. A specific antagonist of ERα reversed the anti-inflammatory and anti-oxidative effects of estrogen in paced and non-paced atrial tissue slices. In summary, our data demonstrate the existence of protective effects of estrogen in atrial tissue from elderly men which are at least in part, mediated by the regulation of local RAS homeostasis.
Collapse
Affiliation(s)
- A Bukowska
- 1 Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| | - L Spiller
- 2 Medical Department I, Division of Rheumatology, Charitá University Medicine Berlin, Berlin 12203, Germany
| | - C Wolke
- 3 Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald 17479, Germany
| | - U Lendeckel
- 3 Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald 17479, Germany
| | - S Weinert
- 4 Department of Cardiology, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| | - J Hoffmann
- 5 Department of Clinical Chemistry, Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| | - P Bornfleth
- 1 Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| | - I Kutschka
- 6 Department of Cardiothoracic Surgery, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| | - A Gardemann
- 1 Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| | - B Isermann
- 5 Department of Clinical Chemistry, Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| | - A Goette
- 1 Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany.,7 St. Vincenz-Hospital, Paderborn 33098, Germany
| |
Collapse
|
17
|
Abstract
G protein-coupled receptors (GPCRs) play key physiological roles and represent a significant target for drug development. However, historically, drugs were developed with the understanding that GPCRs as a therapeutic target exist solely on cell surface membranes. More recently, GPCRs have been detected on intracellular membranes, including the nuclear membrane, and the concept that intracellular GPCRs are functional is become more widely accepted. Nuclear GPCRs couple to effectors and regulate signaling pathways, analogous to their counterparts at the cell surface, but may serve distinct biological roles. Hence, the physiological responses mediated by GPCR ligands, or pharmacological agents, result from the integration of their actions at extracellular and intracellular receptors. The net effect depends on the ability of a given ligand or drug to access intracellular receptors, as dictated by its structure, lipophilic properties, and affinity for nuclear receptors. This review will discuss angiotensin II, endothelin, and β-adrenergic receptors located on the nuclear envelope in cardiac cells in terms of their origin, activation, and role in cardiovascular function and pathology.
Collapse
|
18
|
Lee M, Wu YL, Ovbiagele B. Trends in Incident and Recurrent Rates of First-Ever Ischemic Stroke in Taiwan between 2000 and 2011. J Stroke 2015; 18:60-5. [PMID: 26687123 PMCID: PMC4747065 DOI: 10.5853/jos.2015.01326] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/23/2015] [Accepted: 10/25/2015] [Indexed: 12/03/2022] Open
Abstract
Background and Purpose The burden of stroke is comparatively greater in Asian countries than in the Western world. While there has been a documented recent decline in the incidence of stroke in several Western nations due to better risk factor management, much less is known about the nature and trajectory of stroke in Asia over the last decade. The objective of this study was to explore risk factors, medication use, incidence, and one-year recurrence of stroke in Taiwan. Methods We conducted a nationwide cohort study by reviewing all hospitalized patients (≥ 18 years) with a primary diagnosis of ischemic stroke between 2001 and 2011 from Taiwan National Health Insurance Research Database. Results A total of 291,381 first-ever ischemic stroke patients were enrolled between 2000 and 2011. The average age was about 70 years and approximately 58.6% of them were men. While prevalence of diabetes mellitus and hyperlipidemia, as well as use of statins, antiplatelet agents, and oral anticoagulant agents for atrial fibrillation significantly increased; incidence (142.3 vs. 129.5 per 100,000 in 2000 and 2011, respectively) and one-year recurrence (9.6% vs. 7.8% in 2000 and 2011, respectively) of stroke declined during this period of time. Conclusions Over the last decade in Taiwan, rates of primary ischemic stroke and one-year recurrent stroke decreased by 9% and 18% respectively.
Collapse
Affiliation(s)
- Meng Lee
- Department of Neurology, Chang Gung University College of Medicine, Chang Gung Memorial Hospital, Chiayi branch, Taiwan
| | - Yi-Ling Wu
- Department of Neurology, Chang Gung University College of Medicine, Chang Gung Memorial Hospital, Chiayi branch, Taiwan
| | - Bruce Ovbiagele
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
19
|
Tadevosyan A, Villeneuve LR, Fournier A, Chatenet D, Nattel S, Allen BG. Caged ligands to study the role of intracellular GPCRs. Methods 2015. [PMID: 26196333 DOI: 10.1016/j.ymeth.2015.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In addition to cell surface membranes, numerous G protein-coupled receptors (GPCRs) are located on intracellular membranes including the nuclear envelope. Although the role of numerous GPCRs at the cell surface has been well characterized, the physiological function of these same receptors located on intracellular membranes remains to be determined. Here, we employ a novel caged Ang-II analog, cAng-II, to compare the effects of the activation of cell surface versus intracellular angiotensin receptors in intact cardiomyocytes. When added extracellularly to HEK 293 cells, Ang-II and photolysed cAng-II increased ERK1/2 phosphorylation (via AT1R) and cGMP production (AT2R). In contrast unphotolysed cAng-II did not. Cellular uptake of cAng-II was 6-fold greater than that of Ang-II and comparable to the HIV TAT(48-60) peptide. Intracellular photolysis of cAng-II induced an increase in nucleoplasmic Ca(2+) ([Ca(2+)]n) that was greater than that induced by extracellular application of Ang-II. We conclude that cell-permeable ligands that can access intracellular GPCRs may evoke responses distinct from those with access restricted to the same receptor located on the cell surface.
Collapse
Affiliation(s)
- Artavazd Tadevosyan
- Department of Medicine, Université de Montréal, Canada; Montreal Heart Institute, Canada
| | | | - Alain Fournier
- INRS-Institut Armand-Frappier, Université du Québec, Canada; Laboratoire International Associé Samuel de Champlain, Canada
| | - David Chatenet
- INRS-Institut Armand-Frappier, Université du Québec, Canada; Laboratoire International Associé Samuel de Champlain, Canada
| | - Stanley Nattel
- Department of Medicine, Université de Montréal, Canada; Montreal Heart Institute, Canada; Department of Pharmacology and Therapeutics, McGill University, Canada.
| | - Bruce G Allen
- Department of Medicine, Université de Montréal, Canada; Montreal Heart Institute, Canada; Department of Pharmacology and Therapeutics, McGill University, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Canada.
| |
Collapse
|
20
|
Atrial overexpression of angiotensin-converting enzyme 2 improves the canine rapid atrial pacing-induced structural and electrical remodeling. Fan, ACE2 improves atrial substrate remodeling. Basic Res Cardiol 2015; 110:45. [PMID: 26143546 PMCID: PMC7101981 DOI: 10.1007/s00395-015-0499-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 05/17/2015] [Accepted: 05/26/2015] [Indexed: 01/30/2023]
Abstract
The purpose of this study was to investigate whether atrial overexpression of angiotensin-converting enzyme 2 (ACE2) by homogeneous transmural atrial gene transfer can reverse atrial remodeling and its mechanisms in a canine atrial-pacing model. Twenty-eight mongrel dogs were randomly divided into four groups: Sham-operated, AF-control, gene therapy with adenovirus-enhanced green fluorescent protein (Ad-EGFP) and gene therapy with Ad-ACE2 (Ad-ACE2) (n = 7 per subgroup). AF was induced in all dogs except the Sham-operated group by rapid atrial pacing at 450 beats/min for 2 weeks. Ad-EGFP and Ad-ACE2 group then received epicardial gene painting. Three weeks after gene transfer, all animals except the Sham group underwent rapid atrial pacing for another 3 weeks and then invasive electrophysiological, histological and molecular studies. The Ad-ACE2 group showed an increased ACE2 and Angiotensin-(1–7) expression, and decreased Angiotensin II expression in comparison with Ad-EGFP and AF-control group. ACE2 overexpression attenuated rapid atrial pacing-induced increase in activated extracellular signal-regulated kinases and mitogen-activated protein kinases (MAPKs) levels, and decrease in MAPK phosphatase 1(MKP-1) level, resulting in attenuation of atrial fibrosis collagen protein markers and transforming growth factor-β1. Additionally, ACE2 overexpression also modulated the tachypacing-induced up-regulation of connexin 40, down-regulation of connexin 43 and Kv4.2, and significantly decreased the inducibility and duration of AF. ACE2 overexpression could shift the renin–angiotensin system balance towards the protective axis, attenuate cardiac fibrosis remodeling associated with up-regulation of MKP-1 and reduction of MAPKs activities, modulate tachypacing-induced ion channels and connexin remodeling, and subsequently reduce the inducibility and duration of AF.
Collapse
|
21
|
Ma R, Li X, Su G, Hong Y, Wu X, Wang J, Zhao Z, Song Y, Ma S. Angiotensin-converting enzyme insertion/deletion gene polymorphisms associated with risk of atrial fibrillation: A meta-analysis of 23 case-control studies. J Renin Angiotensin Aldosterone Syst 2015; 16:793-800. [PMID: 26041129 DOI: 10.1177/1470320315587179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/05/2015] [Indexed: 11/16/2022] Open
Affiliation(s)
- Runwei Ma
- Department of Cardiovascular Surgery, the No. 4 Affiliated Hospital of Kunming Medical University, China
| | - Xiang Li
- Department of Cardiovascular Surgery, the No. 4 Affiliated Hospital of Kunming Medical University, China
| | - Guoning Su
- Department of Anesthesiology, the No. 4 Affiliated Hospital of Kunming Medical University, China
| | - Yunfei Hong
- Department of Cardiology, the Third People’s Hospital of Yunnan Province, China
| | - Xingjian Wu
- Department of Cardiothoracic Surgery, The People’s Hospital of Wenshan Prefecture, China
| | - Jiyang Wang
- Department of Cardiovascular Surgery, the No. 4 Affiliated Hospital of Kunming Medical University, China
| | - Ziliang Zhao
- Department of Cardiovascular Surgery, the No. 4 Affiliated Hospital of Kunming Medical University, China
| | - Yi Song
- Department of Cardiovascular Surgery, the No. 4 Affiliated Hospital of Kunming Medical University, China
| | - Shaohong Ma
- Department of Cardiovascular Surgery, the No. 1 Affiliated Hospital of Zhongshan University, China
| |
Collapse
|
22
|
Choisy SC, Kim SJ, Hancox JC, Jones SA, James AF. Effects of candesartan, an angiotensin II receptor type I blocker, on atrial remodeling in spontaneously hypertensive rats. Physiol Rep 2015; 3:3/1/e12274. [PMID: 25626873 PMCID: PMC4387744 DOI: 10.14814/phy2.12274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hypertension‐induced structural remodeling of the left atrium (LA) has been suggested to involve the renin–angiotensin system. This study investigated whether treatment with an angiotensin receptor blocker, candesartan, regresses atrial remodeling in spontaneously hypertensive rats (SHR). Effects of treatment with candesartan were compared to treatment with a nonspecific vasodilatator, hydralazine. Thirty to 32‐week‐old adult male SHR were either untreated (n = 15) or received one of either candesartan cilexetil (n = 9; 3 mg/kg/day) or hydralazine (n = 10; 14 mg/kg/day) via their drinking water for 14 weeks prior to experiments. Untreated age‐ and sex‐matched Wistar‐Kyoto rats (WKY; n = 13) represented a normotensive control group. Untreated SHR were hypertensive, with left ventricular hypertrophy (LVH) compared to WKY, but there were no differences in systolic pressures in excised, perfused hearts. LA from SHR were hypertrophied and showed increased fibrosis compared to those from WKY, but there was no change in connexin‐43 expression or phosphorylation. Treatment with candesartan reduced systolic tail artery pressures of conscious SHR below those of normotensive WKY and caused regression of both LVH and LA hypertrophy. Although hydralazine reduced SHR arterial pressures to those of WKY and led to regression of LA hypertrophy, it had no significant effect on LVH. Notably, LA fibrosis was unaffected by treatment with either agent. These data show that candesartan, at a dose sufficient to reduce blood pressure and LVH, did not cause regression of LA fibrosis in hypertensive rats. On the other hand, the data also suggest that normalization of arterial pressure can lead to the regression of LA hypertrophy. Structural remodeling of the atria, involving atria enlargement and fibrosis, in hypertension increases the risk of atrial fibrillation (AF). Treatment of spontaneously hypertensive rats with the angiotensin receptor blocker, candesartan, reduced arterial pressure and myocardial hypertrophy to the level of normotensive rats but had no effect on atrial fibrosis. The resistance of hypertension‐associated atrial fibrosis to the AT1 receptor antagonist may provide insight into the basis to the ineffectiveness of drugs targeting the renin–angiotensin system in reducing incidence of AF in hypertensive patients.
Collapse
Affiliation(s)
- Stéphanie C Choisy
- Cardiovascular Research Laboratories, School of Physiology & Pharmacology, School of Medical Sciences, University of Bristol, Bristol, U.K
| | - Shang-Jin Kim
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Jeonju-City, South Korea
| | - Jules C Hancox
- Cardiovascular Research Laboratories, School of Physiology & Pharmacology, School of Medical Sciences, University of Bristol, Bristol, U.K
| | - Sandra A Jones
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull, U.K
| | - Andrew F James
- Cardiovascular Research Laboratories, School of Physiology & Pharmacology, School of Medical Sciences, University of Bristol, Bristol, U.K
| |
Collapse
|
23
|
Kim SK, Pak HN, Park Y. Synergistic restoring effects of isoproterenol and magnesium on KCNQ1-inhibited bradycardia cell models cultured in microelectrode array. Cardiology 2014; 128:15-24. [PMID: 24514589 DOI: 10.1159/000356955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/24/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Bradycardia is caused by loss-of-function mutations in potassium channels that regulate phase 3 repolarization of the cardiac action potential. The purpose of this study is to monitor the effects of potassium channel (KCNQ1) inhibition and to evaluate the effects of isoproterenol (ISO) and MgSO4 in restoring sinus rhythm in atrial cells. METHODS Microelectrode array was used to analyze conduction velocity, voltage amplitude and cycle length of atrial cells (HL-1). A combination of ISO and MgSO4 was used to restore sinus rhythm in these cells. RESULTS mRNA expression levels of KCNQ1 (42.2 vs. 100%, p < 0.0001), connexin 43 (29.6 vs. 100%, p = 0.0033), atrial natriuretic peptide (31.0 vs. 100%, p = 0.0030), cardiac actin (38.2 vs. 100%, p < 0.0001) and α-myosin heavy chain (31.2 vs. 100%, p = 0.00254) were significantly lower in the KCNQ1 gene-inhibited group compared to the control group. When treated with MgSO4 (1 mM) and ISO (10 μM), conduction velocity (0.0208 ± 0.0036 vs. 0.0086 ± 0.0014 m/s, p = 0.0004) and voltage amplitude (1,210.78 ± 65.81 vs. 124.1 ± 13.30 μV, p < 0.0001) were higher, and cycle length (431.55 ± 2.05 vs. 1,015.15 ± 4.31 ms, p < 0.0001) was shorter than in the gene-inhibited group. CONCLUSION Inhibition of sinus rhythm in the bradycardia cell model was recovered by treatment with ISO and MgSO4, demonstrating the potency of combination therapy in the treatment of bradycardia.
Collapse
Affiliation(s)
- Sook Kyoung Kim
- Department of Biomedical Engineering, Medical College, Korea University, Seoul, Republic of Korea
| | | | | |
Collapse
|
24
|
Tsai CF, Yang SF, Chu HJ, Ueng KC. Cross-talk between mineralocorticoid receptor/angiotensin II type 1 receptor and mitogen-activated protein kinase pathways underlies aldosterone-induced atrial fibrotic responses in HL-1 cardiomyocytes. Int J Cardiol 2013; 169:17-28. [PMID: 24120080 DOI: 10.1016/j.ijcard.2013.06.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 05/08/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Aldosterone is increasingly recognized for its involvement in atrial structural remodeling. However, the precise molecular mechanisms and signal pathways underlying aldosterone-induced atrial fibrosis are unknown. METHODS Western blotting was used to investigate the effects of aldosterone on the expression of mineralocorticoid receptor (MR), angiotensin II type I receptor (AT1), mitogen-activated protein kinases (MAPKs), and fibrotic marker proteins in cultured HL-1 cardiomyocytes. RESULTS Aldosterone upregulated MR and AT1 expressions in a concentration-dependent and time-dependent manner. Aldosterone (10(-6)M) significantly and time-dependently increased activation of the extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), p38MAPK pathways, and the protein expression of collagen 1A and 3A (COL1A and COL3A), transforming growth factor (TGF)-β1, and α-smooth muscle actin (SMA). Pre-treatment with eplerenone (10(-10)M) prevented the increased expression of MR, MAPK signals and the above profibrotic molecules, but amplified the increase in AT1 level stimulated by aldosterone (10(-6)M). Pre-treatment with losartan (10(-10)M) or MAPK pathway inhibitors (U0126 or SP600125) abolished aldosterone-induced MR upregulation and significantly inhibited the expression of the above fibrotic marker proteins, indicating the critical role of MR and the requirement for active AT1 in the development of aldosterone-induced atrial fibrosis. CONCLUSIONS Elevated MR activity plays a central role in aldosterone-mediated activation of the MAPK signaling pathway and subsequent profibrotic effects in HL-1 atrial cells. MR/AT1 and the MAPK signaling pathway interact to trigger the molecular mechanism underlying the aldosterone-induced atrial fibrotic response. Our results support the view that MR blockade in conjunction with AT1 blockade can prevent the occurrence of atrial fibrillation.
Collapse
Affiliation(s)
- Chin-Feng Tsai
- Division of Cardiology, Department of Internal Medicine, Chung Shan Medical University Hospital, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | |
Collapse
|
25
|
Gu J, Liu X, Wang QX, Guo M, Liu F, Song ZP, Zhang DD. Beneficial effects of pioglitazone on atrial structural and electrical remodeling in vitro cellular models. J Mol Cell Cardiol 2013; 65:1-8. [PMID: 24100253 DOI: 10.1016/j.yjmcc.2013.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/10/2013] [Accepted: 09/27/2013] [Indexed: 11/13/2022]
Abstract
It has been demonstrated that atrial remodeling contributes toward atrial fibrillation (AF) maintenance and angiotensin II (AngII) is involved in the pathogenesis of atrial remodeling. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists have been shown to inhibit atrial remodeling. However, the underlying mechanisms are poorly understood. In the present study we investigated the regulating effects of PPAR-γ agonist on AngII-induced atrial structural and electrical remodeling in vitro cellular models. The effects of pioglitazone on AngII-induced connective tissue growth factor (CTGF) expression and cell proliferation were assessed in primary-cultured mouse atrial fibroblasts. The influences of pioglitazone on AngII-induced L-type calcium channel (ICa-L) α1c expression and current density were evaluated in atrial myocytes (HL-1). Pioglitazone attenuated AngII-induced CTGF expression and proliferation in atrial fibroblasts, and pioglitazone also inhibited the expression or phosphorylation of AngII-induced transforming growth factor-β1 (TGF-β1), tumor necrosis factor receptor associated factor 6 (TRAF6), TGF-β-associated kinase 1 (TAK1) and Smad2/3. In HL-1 cells, pioglitazone suppressed AngII-induced ICa-L α1c expression and current density as well as CAMP responsive element binding protein (CREB) phosphorylation. Besides, pioglitazone inhibited AngII-induced production of AngII type I receptor (AT1R) and downregulation of PPAR-γ in both atrial fibroblasts and HL-1 cells. In conclusion, Pioglitazone suppresses AngII-induced CTGF expression and proliferation in atrial fibroblasts, which might be at least in part related with its inhibitory effects on TGF-β1/Smad2/3 and TGF-β1/TRAF6/TAK1 signaling pathways. Moreover, pioglitazone also attenuates AngII-induced ICa-L remodeling in HL-1 cells, which might be at least in part associated with its inhibitory effect on CREB phosphorylation. It is suggested that PPAR-γ agonist may have potential applications in preventing atrial remodeling.
Collapse
Affiliation(s)
- Jun Gu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China; Department of Cardiology, Minhang hospital, Ruijin Hospital Group, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
Wutzler A, Kestler C, Perrot A, Loehr L, Huemer M, Parwani AS, Attanasio P, Özcelik C, Schunck WH, Gollasch M, Haverkamp W, Boldt LH. Variations in the human soluble epoxide hydrolase gene and recurrence of atrial fibrillation after catheter ablation. Int J Cardiol 2013; 168:3647-51. [PMID: 23711456 DOI: 10.1016/j.ijcard.2013.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/04/2013] [Indexed: 02/01/2023]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) of EPHX2 alter sEH activity and are associated with increased [rs41507953 (K55R)] or reduced [rs751141 (R287Q)] cardiovascular risk via modulation of fibrosis, inflammation or cardiac ion channels. This indicates an effect on development and therapy response of AF. This study tested the hypothesis that variations in the EPHX2 gene encoding human soluble epoxide hydrolase (sEH) are associated with atrial fibrillation (AF) and recurrence of atrial fibrillation after catheter ablation. METHODS AND RESULTS A total of 218 consecutive patients who underwent catheter ablation for drug refractory AF and 268 controls were included. Two SNPs, rs41507953 and rs751141, were genotyped by direct sequencing. In the ablation group, holter recordings 3, 12 and 24 months after ablation were used to detect AF recurrence. No significant association of the SNPs and AF at baseline was detected. In the ablation group, recurrence of AF occurred in 20% of the patients 12 months after ablation and in 35% 24 months after ablation. The presence of the rs751141 polymorphism significantly increased the risk of AF recurrence 12 months (odds ratio [OR]: 3.2, 95% confidence interval [CI]: 1.237 to 8.276, p=0.016) and 24 months (OR: 6.076, 95% CI: 2.244 to 16.451, p<0.0001) after catheter ablation. CONCLUSIONS The presence of rs751141 polymorphism is associated with a significantly increased risk of AF recurrence after catheter ablation. These results point to stratification of catheter ablation by genotype and differential use of sEH-inhibitory drugs in the future.
Collapse
Affiliation(s)
- Alexander Wutzler
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany; Experimental and Clinical Research Center, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chilukoti RK, Mostertz J, Bukowska A, Aderkast C, Felix SB, Busch M, Völker U, Goette A, Wolke C, Homuth G, Lendeckel U. Effects of irbesartan on gene expression revealed by transcriptome analysis of left atrial tissue in a porcine model of acute rapid pacing in vivo. Int J Cardiol 2013; 168:2100-8. [PMID: 23414741 DOI: 10.1016/j.ijcard.2013.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/18/2012] [Accepted: 01/13/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is characterized by electrical and structural remodeling of the atria with atrial fibrosis being one hallmark. Angiotensin II (AngII) is a major contributing factor and blockage of its type I receptor (AT1R) prevents remodeling to some extent. Here we explored the effects of the AT1R antagonist irbesartan on global gene expression and profibrotic signaling pathways after induction of rapid atrial pacing (RAP) in vivo in pigs. METHODS AND RESULTS Microarray-based RNA profiling was used to screen left atrial (LA) tissue specimens for differences in atrial gene expression in a model of acute RAP. RAP caused an overall expression profile that reflected AngII-induced ROS production, tissue remodeling, and energy depletion. Of special note, the mRNA levels of EDN1, SGK1, and CTGF encoding pro-endothelin, stress- and glucocorticoid activated kinase-1, and of connective tissue growth factor were identified to be significantly increased after 7h of rapid pacing. These specific expression changes were additionally validated by RT-qPCR or immunoblot analyses in LA, RA, and partly in LV samples. All RAP-induced differential gene expression patterns were partially attenuated in the presence of irbesartan. Similar results were obtained after RAP of HL-1 cardiomyocytes in vitro. Furthermore, exogenously added endothelin-1 (ET1) induced CTGF expression concomitant to the transcriptional activation of SGK1 in HL-1 cells. CONCLUSIONS RAP provokes substantial changes in atrial and ventricular myocardial gene expression that could be partly reversed by irbesartan. ET1 contributes to AF-dependent atrial fibrosis by synergistic activity with AngII to stimulate SGK1 expression and enhance phosphorylation of the SGK1 protein which, in turn, induces CTGF. The latter has been consistently associated with tissue fibrosis. These findings suggest ETR antagonists as being beneficial in AF treatment.
Collapse
Affiliation(s)
- Ravi Kumar Chilukoti
- University Medicine, Ernst-Moritz-Arndt-University Greifswald, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang J, Youn JY, Kim AY, Ramirez RJ, Gao L, Ngo D, Chen P, Scovotti J, Mahajan A, Cai H. NOX4-Dependent Hydrogen Peroxide Overproduction in Human Atrial Fibrillation and HL-1 Atrial Cells: Relationship to Hypertension. Front Physiol 2012; 3:140. [PMID: 22679437 PMCID: PMC3367314 DOI: 10.3389/fphys.2012.00140] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/26/2012] [Indexed: 01/19/2023] Open
Abstract
Background/Objectives: Atrial fibrillation (AF) is the most common type of cardiac arrhythmia with patients dying frequently of stroke. In view of the unclear etiologies of AF and a potential role of oxidative stress, the present study examined cardiac reactive oxygen species production and NADPH oxidase (NOX) expression in AF patients. Methods and Results: Patients with AF were older than those without (58.8 ± 11.7 vs. 47.8 ± 19.2, p = 0.047). Whereas total O2∙- production (determined by electron spin resonance) was similar in patients with and without AF, H2O2 production was more than doubled in AF patients (149.8 ± 26.28 vs. 66.9 ± 7.14 pmol/mg/min, p = 0.0055), which correlated well with a doubling in NOX isoform 4 (NOX4) expression. AF patients with co-existing hypertension had three-fold higher H2O2 production compared to those without (239.0 ± 125.1 vs. 83.6 ± 51.3 pmol/mg/min, p = 0.003). Treatment of HL-1 atrial cells with angiotensin II, a known modulator of atrial structural remodeling, resulted in upregulation of NOX4 and H2O2 production, further implicating a potential role of NOX4 in atrial remodeling. Conclusion: Our data represent the first implication that NOX4-derived H2O2 may play an important role in the etiologies of AF.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Molecular Medicine, Cardiovascular Research Laboratories, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tadevosyan A, Vaniotis G, Allen BG, Hébert TE, Nattel S. G protein-coupled receptor signalling in the cardiac nuclear membrane: evidence and possible roles in physiological and pathophysiological function. J Physiol 2011; 590:1313-30. [PMID: 22183719 DOI: 10.1113/jphysiol.2011.222794] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptors (GPCRs) play key physiological roles in numerous tissues, including the heart, and their dysfunction influences a wide range of cardiovascular diseases. Recently, the notion of nuclear localization and action of GPCRs has become more widely accepted. Nuclear-localized receptors may regulate distinct signalling pathways, suggesting that the biological responses mediated by GPCRs are not solely initiated at the cell surface but may result from the integration of extracellular and intracellular signalling pathways. Many of the observed nuclear effects are not prevented by classical inhibitors that exclusively target cell surface receptors, presumably because of their structures, lipophilic properties, or affinity for nuclear receptors. In this topical review, we discuss specifically how angiotensin-II, endothelin, β-adrenergic and opioid receptors located on the nuclear envelope activate signalling pathways, which convert intracrine stimuli into acute responses such as generation of second messengers and direct genomic effects, and thereby participate in the development of cardiovascular disorders.
Collapse
Affiliation(s)
- Artavazd Tadevosyan
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | |
Collapse
|
30
|
Tsai CT, Chiang FT, Tseng CD, Yu CC, Wang YC, Lai LP, Hwang JJ, Lin JL. Mechanical Stretch of Atrial Myocyte Monolayer Decreases Sarcoplasmic Reticulum Calcium Adenosine Triphosphatase Expression and Increases Susceptibility to Repolarization Alternans. J Am Coll Cardiol 2011; 58:2106-15. [DOI: 10.1016/j.jacc.2011.07.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 07/05/2011] [Accepted: 07/12/2011] [Indexed: 11/25/2022]
|
31
|
Rodríguez-Penas D, Feijóo-Bandín S, Lear PV, Mosquera-Leal A, García-Rúa V, Otero MF, Rivera M, Gualillo O, González-Juanatey JR, Lago F. Aliskiren affects fatty-acid uptake and lipid-related genes in rodent and human cardiomyocytes. Biochem Pharmacol 2011; 82:491-504. [DOI: 10.1016/j.bcp.2011.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/13/2011] [Accepted: 05/18/2011] [Indexed: 12/13/2022]
|
32
|
Ko WC, Hong CY, Hou SM, Lin CH, Ong ET, Lee CF, Tsai CT, Lai LP. Elevated Expression of Connective Tissue Growth Factor in Human Atrial Fibrillation and Angiotensin II-Treated Cardiomyocytes. Circ J 2011; 75:1592-600. [DOI: 10.1253/circj.cj-10-0892] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wen-Chin Ko
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University
- Division of Cardiology, Department of Internal Medicine, Cathay General Hospital
| | - Chuang-Ye Hong
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University
- Department of Medicine, Wang Fang Hospital
| | - Shaw-Min Hou
- Division of Cardiovascular Surgery, Department of Surgery, Cathay General Hospital
| | - Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University
| | - Eng-Thiam Ong
- Division of Cardiology, Department of Internal Medicine, Cathay General Hospital
| | - Chwen-Fang Lee
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and Institute of Pharmacology, National Taiwan University Hospital
| | - Chia-Ti Tsai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and Institute of Pharmacology, National Taiwan University Hospital
| | - Ling-Ping Lai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and Institute of Pharmacology, National Taiwan University Hospital
| |
Collapse
|
33
|
Tsai CT, Chiang FT, Chen WP, Hwang JJ, Tseng CD, Wu CK, Yu CC, Wang YC, Lai LP, Lin JL. Angiotensin II induces complex fractionated electrogram in a cultured atrial myocyte monolayer mediated by calcium and sodium-calcium exchanger. Cell Calcium 2010; 49:1-11. [PMID: 21168206 DOI: 10.1016/j.ceca.2010.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/14/2010] [Accepted: 10/18/2010] [Indexed: 11/17/2022]
Abstract
Angiotensin II (AngII) has been implicated in the mechanism of atrial fibrillation (AF). There may be calcium-dependent pro-fibrillatory effect of AngII on atrial myocytes. We used cultured confluent HL-1 atrial myocyte monolayer with spontaneously propagated depolarization to study direct pro-fibrillatory effect of AngII and its molecular mechanism. AngII stimulation induced fibrillatory-like complex electrogram and calcium wave propagation. AngII shortened action potential duration and augmented calcium transient, thus increasing electrochemical gradient of forward-mode sodium-calcium exchanger (NCX) current and induced frequent irregular afterdepolarizations. AngII increased expression of sodium-calcium exchanger (NCX), further increasing calcium-membrane voltage coupling gain. The fibrillatory effect of AngII was attenuated by NCX blocker SEA0400 and NCX siRNA knockdown. AngII increased expression of L-type calcium channel and augmented calcium transient through PKC and CREB. The fibrillatory effect of AngII was also attenuated by PKC inhibitor chelerythrine and dominant negative form of CREB. In conclusions, AngII itself may electrically contribute to the mechanism of AF through increasing NCX expression and augmenting calcium transient, which is PKC and CREB dependent. Specific genetic knockdown of NCX attenuated calcium mediated afterdepolarization and complex electrogram.
Collapse
Affiliation(s)
- Chia-Ti Tsai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tsai CT, Tseng CD, Hwang JJ, Wu CK, Yu CC, Wang YC, Chen WP, Lai LP, Chiang FT, Lin JL. Tachycardia of atrial myocytes induces collagen expression in atrial fibroblasts through transforming growth factor β1. Cardiovasc Res 2010; 89:805-15. [PMID: 21134900 DOI: 10.1093/cvr/cvq322] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS We investigated the molecular mechanism of rapid-depolarization-induced atrial fibrosis. METHODS AND RESULTS We used a direct atrial myocyte-fibroblast contact co-culture and a fibroblast-specific transforming growth factor β1 (TGF-β1), connective tissue growth factor (CTGF) and procollagen type I α-1 (COL1A1) luciferase reporter system to investigate the possible molecular mechanism of rapid-depolarization-induced atrial fibrosis. Mouse atrial fibroblasts were first transfected with promoter-luciferase reporters, and then co-cultured with HL-1 atrial myocytes. Rapid depolarization of atrial myocytes by rapid electrical field stimulation induced increased TGF-β1, CTGF and COL1A1 promoter activities in the co-cultured atrial fibroblasts (2.4 ± 0.3-fold increase, P= 0.008 for TGF-β1; 2.9 ± 0.4-fold increase, P< 0.001 for CTGF; and 2.1 ± 0.2-fold increase, P= 0.008 for COL1A1). Rapid depolarization of atrial myocytes increased paracrine secretion of angiotensin II (Ang II) and reactive oxygen species in the co-culture medium. Rapid electrical field stimulation-induced ROS generation in atrial myocytes was attenuated by the membrane NADPH oxidase inhibitor, apocynin. Atrial myocyte-induced expression of TGF-β1, CTGF and COL1A1 in atrial fibroblasts was attenuated by co-treatment with the Ang II receptor blocker, losartan, and apocynin. Atrial myocyte-induced COL1A1 expression in atrial fibroblasts was attenuated by anti-TGF-β1 antibody and RNA interference knockdown of the TGF-β1 receptor. CONCLUSION We first demonstrated that tachycardia of atrial myocytes induced paracrine secretion of Ang II and reactive oxygen species, which in turn induced expression of CTGF and procollagen in co-cultured atrial fibroblasts through increasing TGF-β1 expression. The results may imply that use of an Ang II receptor blocker, in combination with an anti-oxidant, blocks rapid-depolarization-induced atrial fibrosis.
Collapse
Affiliation(s)
- Chia-Ti Tsai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hofmann B, Maybeck V, Eick S, Meffert S, Ingebrandt S, Wood P, Bamberg E, Offenhäusser A. Light induced stimulation and delay of cardiac activity. LAB ON A CHIP 2010; 10:2588-2596. [PMID: 20689860 DOI: 10.1039/c003091k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This article shows the combination of light activatable ion channels and microelectrode array (MEA) technology for bidirectionally interfacing cells. HL-1 cultures, a mouse derived cardiomyocyte-like cell line, transfected with channelrhodopsin were stimulated with a microscope coupled 473 nm laser and recorded with custom built 64 electrode MEAs. Channelrhodopsin induced depolarization of the cell can evoke action potentials (APs) in single cells. Spreading of the AP over the cell layer can then be measured with good spatiotemporal resolution using MEA recordings. The possibility for light induced pacemaker switching in cultures was shown. Furthermore, the suppression of APs can also be achieved with the laser. Possible applications include cell analysis, e.g. pacemaker interference or induced pacemaker switching, and medical applications such as a combined cardiac pacemaker and defibrillator triggered by light. Since current prosthesis research focuses on bidirectionality, this system may be applied to any electrogenic cell, including neurons or muscles, to advance this field.
Collapse
Affiliation(s)
- Boris Hofmann
- Institute of Bio- and Nanosystems-Bioelectronics (IBN-2) and Jara-FIT, Forschungszentrum Jülich, Leo-Brandt-Str., D-52425 Jülich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Caglayan AO. Different aspects of atrial fibrillation genetics. Interact Cardiovasc Thorac Surg 2010; 11:779-83. [PMID: 20696751 DOI: 10.1510/icvts.2010.245910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Atrial fibrillation (AF) is a consequence of a complex interplay of genetic, epigenetic and environmental factors. In addition, AF is a major contributor to stroke, heart failure, and mortality. Several family studies have shown a strong polygenetic predisposition for AF but, so far, most of the linkage analysis and candidate gene studies have discovered only monogenic, rare, deleterious mutations. While research in human genetics has moved from monogenic to oligogenic to complex diseases, its pharmacogenetics branch has followed, usually a few years behind. The present paper reviews the potential contributions of genetic approaches to AF.
Collapse
Affiliation(s)
- Ahmet Okay Caglayan
- Kayseri Education and Research Hospital, Department of Medical Genetics, 38010 Kayseri, Turkey.
| |
Collapse
|
37
|
Tsai CT, Chiang FT, Tseng CD, Hwang JJ, Kuo KT, Wu CK, Yu CC, Wang YC, Lai LP, Lin JL. Increased expression of mineralocorticoid receptor in human atrial fibrillation and a cellular model of atrial fibrillation. J Am Coll Cardiol 2010; 55:758-70. [PMID: 20170814 DOI: 10.1016/j.jacc.2009.09.045] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 09/01/2009] [Accepted: 09/07/2009] [Indexed: 11/16/2022]
Abstract
OBJECTIVES This study was designed to evaluate the status of steroidogenesis proteins and de novo synthesis of aldosterone in the atrium, and relationships of these factors to atrial fibrillation (AF). BACKGROUND The role of mineralocorticoid in the pathogenesis of AF is unknown. METHODS We studied atrial expression of steroidogenesis proteins and aldosterone level in patients with and without AF, and in HL-1 atrial myocytes. We also investigated the electrophysiologic effects and signal transduction of aldosterone on atrial myocytes. RESULTS We found basal expressions of mineralocorticoid receptors (MRs), glucocorticoid receptors, and 11-beta-hydroxysteroid dehydrogenase type 2 (11bHSD2) but not 11-beta-hydroxylase (CYP11B1) or aldosterone synthase (CYP11B2) in human atria and HL-1 myocytes. There was no significant difference of mean atrial aldosterone level between patients with AF and those with normal sinus rhythm. However, patients with AF had a significantly higher atrial MR expression compared with those with normal sinus rhythm (1.73 +/- 0.24-fold, p < 0.001). Using mouse HL-1 atrial myocytes as a cellular AF model, we found that rapid depolarization increased MR expression (1.97 +/- 0.72-fold, p = 0.008) through a calcium-dependent mechanism, thus augmenting the genomic effect of aldosterone signaling as evaluated by MR reporter. Aldosterone increased intracellular oxidative stress through a nongenomic pathway, which was attenuated by nicotinamide adenine dinucleotide phosphate oxidase inhibitor diphenyleneiodonium, but not by MR-blockade spironolactone. Aldosterone increased expression of the alpha-1G and -1H subunits of the T-type calcium channel and thus increased the T-type calcium current (-13.6 +/- 2.9 pA/pF vs. -4.5 +/- 1.6 pA/pF, p < 0.01) and the intracellular calcium load through a genomic pathway, which were attenuated by spironolactone, but not by diphenyleneiodonium. CONCLUSIONS Expression of MR increased in AF, thus augmenting the genomic effects of aldosterone. Aldosterone induced atrial ionic remodeling and calcium overload through a genomic pathway, which was attenuated by spironolactone. These results suggest that aldosterone may play a role in AF electrical remodeling and provide insight into the treatment of AF with MR blockade.
Collapse
Affiliation(s)
- Chia-Ti Tsai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Impact of acute myocardial ischemia reperfusion on the tissue and blood-borne renin–angiotensin system. Basic Res Cardiol 2010; 105:513-22. [DOI: 10.1007/s00395-010-0093-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/18/2010] [Accepted: 03/10/2010] [Indexed: 01/01/2023]
|
39
|
Abstract
Atrial fibrillation (AF) is the most common clinically encountered abnormal heart beat. It is associated with an increased risk of stroke and symptoms of heart failure. Current therapies are directed toward controlling the rate of ventricular activation and preventing strokes through anticoagulation. Attempts at suppressing the arrhythmia are often ineffective, in part because the underlying pathogenesis is poorly understood. Recently, structural and electrical remodeling has been shown to occur during AF. These changes involve alterations in gene regulation and help perpetuate the arrhythmia. Some signals for remodeling are have been identified. Moreover, AF is associated with oxidative stress, and this redox imbalance may contribute to the altered gene regulation. One likely mediator of this change in transcriptional regulation is the redox sensitive transcription factor, nuclear factor-kappaB (NF-kappaB). Recently, NF-kappaB has been shown to downregulate transcription of the cardiac sodium channel in response to oxidative stress. NF-kappaB may contribute to the regulation of other ion channels, transcription factors, or splicing factors altered in AF and may represent a therapeutic target in AF management.
Collapse
Affiliation(s)
- Ge Gao
- Section of Cardiology, University of Illinois at Chicago, and the Jesse Brown VA Medical Center, Chicago, Illinois 60612, USA
| | | |
Collapse
|
40
|
Wu CK, Tseng CD, Huang YT, Hsieh CS, Tsai WS, Lin JL, Chiang FT, Tsai CT. Angiotensin II does not influence expression of sarcoplasmic reticulum Ca2 + ATPase in atrial myocytes. J Renin Angiotensin Aldosterone Syst 2009; 10:121-6. [DOI: 10.1177/1470320309342732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. The sarcoplasmic reticulum Ca2+ ATPase (SERCA) is essential for the regulation of the intracellular calcium level in cardiomyocytes. Previous studies have found that angiotensin II (Ang II) decreased SERCA2 gene expression in ventricular myocytes. Alteration of SERCA activity is important in the mechanism of atrial fibrillation. The present study was undertaken to examine Ang II effects on atrial myocytes. Materials and methods. An ~1.75-kb promoter region of SERCA2 gene was cloned with the pGL3 luciferase vector. The direct effects of Ang II on SERCA2 gene expression in HL-1 atrial myocytes were examined by promoter activity assay, followed by Western blot analysis for protein levels and quantitative real-time reverse transcription polymerase chain reaction for mRNA amounts. Results. Ang II did not increase the promoter activity of the 1,754-bp promoter-receptor construct of the SERCA2 gene. The levels of SERCA2 protein and mRNA were also unchanged at different time points after Ang II treatment. Conclusions. Although Ang II had prominent effects on SERCA2 in ventricular myocytes, it did not alter SERCA2 gene expression and protein levels in atrial myocytes. We provide a model for further investigation of the regulation of SERCA2 gene expression in atrial myocytes.
Collapse
Affiliation(s)
- Cho-Kai Wu
- Department of Internal Medicine, National Taiwan University College of Medicine and Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Chuen-Den Tseng
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan,
| | - Yin-Tsen Huang
- Department of Family Medicine, Mackay Memorial Hospital, Taipei, Taiwan,
| | - Chia-Shan Hsieh
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Wei-Shan Tsai
- Department of Internal Medicine, National Taiwan University College of Medicine and Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Jiunn-Lee Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Fu-Tien Chiang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan, Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Ti Tsai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| |
Collapse
|
41
|
Park JH, Oh YS, Kim JH, Chung WB, Oh SS, Lee DH, Choi YS, Shin WS, Park CS, Youn HJ, Chung WS, Lee MY, Seung KB, Rho TH, Kim JH, Hong SJ. Effect of Angiotensin converting enzyme inhibitors and Angiotensin receptor blockers on patients following ablation of atrial fibrillation. Korean Circ J 2009; 39:185-9. [PMID: 19949577 PMCID: PMC2771783 DOI: 10.4070/kcj.2009.39.5.185] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 01/02/2009] [Accepted: 02/03/2009] [Indexed: 12/20/2022] Open
Abstract
Background and Objectives It is known that angiotensin converting enzyme inhibitors and angiotensin II type 1 receptor blockers (ACEIs and ARBs, respectively) are effective in preventing atrial fibrillation (AF) in high-risk patients. However, it is not known whether ACEIs and ARBs are effective in preventing the recurrence of AF after catheter ablation. Subjects and Methods One hundred fifty-two patients (mean age, 57±10 years; M : F=94 : 58) who underwent catheter ablation due to drug-refractory paroxysmal (mean age, 57±10 years; M : F=58 : 43) or persistent AF (mean age, 56±10 years; M : F=36 : 15) were enrolled. We compared the recurrence rates between the groups with and without ACEIs or ARBs use in paroxysmal and persistent AF. The mean duration of follow-up was 18±14 months. Results The overall recurrence rate after ablation therapy was 26% (n=39). The recurrence rate was significantly decreased in the patients with persistent AF with the use of ACEIs or ARBs (12.1% vs. 61.1%, p<0.01), but this difference was not observed in the patients with paroxysmal AF (24.2% vs. 22.9%, p=0.87). In patients with persistent AF with and without recurrence, the size of the left atrium (44.2±8.4 mm vs. 44.3±5.8 mm, respectively, p=0.45) and the ejection fraction (62±6.5% vs. 61.5±6.2%, respectively, p=0.28) were not significantly different. In multivariate analysis, the use of ACEIs or ARBs was independently associated with recurrence after adjusting for the size of the left atrium and the ejection fraction {odds ratio (OR)=0.078, 95% confidence interval (CI)=0.02-0.35, p<0.01}. Conclusion ACEIs and ARBs were shown to be effective in preventing AF recurrence after catheter ablation in patients with persistent AF.
Collapse
Affiliation(s)
- Jeong-Hwan Park
- Division of Cardiology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Current World Literature. Curr Opin Nephrol Hypertens 2009; 18:91-3. [DOI: 10.1097/mnh.0b013e32831fd875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Tsai CT, Lai LP, Hwang JJ, Lin JL, Chiang FT. Molecular genetics of atrial fibrillation. J Am Coll Cardiol 2008; 52:241-50. [PMID: 18634977 DOI: 10.1016/j.jacc.2008.02.072] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/29/2008] [Accepted: 02/19/2008] [Indexed: 12/31/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. There is genetic predisposition for the development of AF. Recently, by linkage analysis, several loci have been mapped for monogenetic AF, including 11p15.5, 21q22, 17q, 7q35-36, 5p13, 6q14-16, and 10q22. Some of these loci encode for subunits of potassium channels (KCNQ1, KCNE2, KCNJ2, and KCNH2 genes), and the remaining are yet unidentified. All of the known mutations are associated with a gain of function of repolarization potassium currents, resulting in a shortening of action potential duration and atrial refractory period, which facilitate multiple re-entrant circuits in AF. In addition to familial AF, common AF often occurs in association with acquired diseases such as hypertension, valvular heart disease, and heart failure. By genetic association study, some genetic variants or polymorphisms related to the mechanism of AF have been found to be associated with common AF, including genes encoding for subunits of potassium or sodium channels, sarcolipin gene, renin-angiotensin system gene, connexin-40 gene, endothelial nitric oxide synthase gene, and interleukin-10 gene. These observations suggest that genes related to ionic channels, calcium handling protein, fibrosis, conduction and inflammation play important roles in the pathogenesis of common AF. The complete elucidation of genetic loci for common AF is still in its infancy. However, the availability of genomewide scans with hundreds or thousands of polymorphisms has made it possible. However, challenges and pitfalls exist in association studies, and consideration of particular features of study design is necessary before making definite conclusions from these studies.
Collapse
Affiliation(s)
- Chia-Ti Tsai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|