1
|
Lyng FM, Azzam EI. Abscopal Effects, Clastogenic Effects and Bystander Effects: 70 Years of Non-Targeted Effects of Radiation. Radiat Res 2024; 202:355-367. [PMID: 38986531 DOI: 10.1667/rade-24-00040.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/29/2024] [Indexed: 07/12/2024]
Abstract
In vitro and in vivo observations accumulated over several decades have firmly shown that the biological effects of ionizing radiation can spread from irradiated cells/tissues to non-targeted cells/tissues. Redox-modulated intercellular communication mechanisms that include a role for secreted factors and gap junctions, can mediate these non-targeted effects. Clearly, the expression of such effects and their transmission to progeny cells has implications for issues related to radiation protection. Their elucidation is also relevant towards enhancing the efficacy of cancer radiotherapy and reducing its impact on the development of normal tissue toxicities. In addition, the study of non-targeted effects is pertinent to our basic understanding of intercellular communications under conditions of oxidative stress. This review will trace the history of non-targeted effects of radiation starting with early reports of abscopal effects which described radiation induced effects in tissues distant from the site of radiation exposure. A related effect involved the production of clastogenic factors in plasma following irradiation which can induce chromosome damage in unirradiated cells. Despite these early reports suggesting non-targeted effects of radiation, the classical paradigm that a direct deposition of energy in the nucleus was required still dominated. This paradigm was challenged by papers describing radiation induced bystander effects. This review will cover mechanisms of radiation-induced bystander effects and the potential impacts on radiation protection and radiation therapy.
Collapse
Affiliation(s)
- Fiona M Lyng
- Radiation and Environmental Science Centre, FOCAS Research Institute
- School of Physics, Clinical and Optometric Sciences, Technological University Dublin, Dublin, Ireland
| | - Edouard I Azzam
- Department of Radiology, Rutgers New Jersey Medical School Cancer Center, Newark, New Jersey
| |
Collapse
|
2
|
Lu Q, Yan W, Zhu A, Tubin S, Mourad WF, Yang J. Combining spatially fractionated radiation therapy (SFRT) and immunotherapy opens new rays of hope for enhancing therapeutic ratio. Clin Transl Radiat Oncol 2024; 44:100691. [PMID: 38033759 PMCID: PMC10684810 DOI: 10.1016/j.ctro.2023.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 12/02/2023] Open
Abstract
Spatially Fractionated Radiation Therapy (SFRT) is a form of radiotherapy that delivers a single large dose of radiation within the target volume in a heterogeneous pattern with regions of peak dosage and regions of under dosage. SFRT types can be defined by how the heterogeneous pattern of radiation is obtained. Immune checkpoint inhibitors (ICIs) have been approved for various malignant tumors and are widely used to treat patients with metastatic cancer. The efficacy of ICI monotherapy is limited due to the "cold" tumor microenvironment. Fractionated radiotherapy can achieve higher doses per fraction to the target tumor, and induce immune activation (immodulate tumor immunogenicity and microenvironment). Therefore, coupling ICI therapy and fractionated radiation therapy could significantly improve the outcome of metastatic cancer. This review focuses on both preclinical and clinical studies that use a combination of radiotherapy and ICI therapy in cancer.
Collapse
Affiliation(s)
- Qiuxia Lu
- Foshan Fosun Chancheng Hospital, P.R. China
- Junxin Precision Oncology Group, P.R. China
| | - Weisi Yan
- Baptist Health System, Lexington, KY, United States
- Junxin Precision Oncology Group, P.R. China
| | - Alan Zhu
- Mayo Clinic Alix School of Medicine, Scottsdale, AZ, United States
| | - Slavisa Tubin
- Albert Einstein Collage of Medicine New York, Center for Ion Therapy, Medaustron, Austria
| | - Waleed F. Mourad
- Department of Radiation Medicine Markey Cancer Center, University of Kentucky - College of Medicine, United States
| | - Jun Yang
- Foshan Fosun Chancheng Hospital, P.R. China
- Junxin Precision Oncology Group, P.R. China
| |
Collapse
|
3
|
Zivkovic Radojevic M, Milosavljevic N, Miladinovic TB, Janković S, Folic M. Review of compounds that exhibit radioprotective and/or mitigatory effects after application of diagnostic or therapeutic ionizing radiation. Int J Radiat Biol 2023; 99:594-603. [PMID: 35930681 DOI: 10.1080/09553002.2022.2110308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE Exposure to ionizing radiation can be accidental or for medical purposes. Analyzes of the frequency of radiation damage in the general population, it has been determined that by far the most common are those that occur as a result of diagnostic or therapeutic procedures. Damage caused by radiation, either accidentally or for therapeutic purposes, can be reduced by the use of radioprotectors, mitigators or other therapeutic agents. A detailed research of the available literature shows that there is little systematized data of potentially radioprotective and/or mitigating effects of drugs from the personal therapy of patients during the application of therapeutic ionizing radiation. The aim of this paper is to present review of compounds, especially personal therapy drugs, that exhibit radioprotective and/or mitigating effects after the application of diagnostic or therapeutic ionizing radiation. CONCLUSIONS Given the widespread use of ionizing radiation for diagnostic and therapeutic purposes, there is a clear need to create a strategy and recommendations of relevant institutions for the use of radioprotectors and mitigators in everyday clinical practice, with individual evaluation of the patient's condition and selection of the compounds that will show the greatest benefit in terms of radioprotection.
Collapse
Affiliation(s)
| | - Neda Milosavljevic
- Centre for Radiation Oncology, University Clinical Centre Kragujevac, Kragujevac, Serbia
| | - Tatjana B Miladinovic
- Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Slobodan Janković
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Clinical Pharmacology Department, University Clinical Centre Kragujevac, Kragujevac, Serbia
| | - Marko Folic
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Clinical Pharmacology Department, University Clinical Centre Kragujevac, Kragujevac, Serbia
| |
Collapse
|
4
|
Zhang Z, Li K, Hong M. Radiation-Induced Bystander Effect and Cytoplasmic Irradiation Studies with Microbeams. BIOLOGY 2022; 11:biology11070945. [PMID: 36101326 PMCID: PMC9312136 DOI: 10.3390/biology11070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Microbeams are useful tools in studies on non-target effects, such as the radiation-induced bystander effect, and responses related to cytoplasmic irradiation. A micrometer or even sub-micrometer-level beam size enables the precise delivery of radiation energy to a specific target. Here we summarize the observations of the bystander effect and the cytoplasmic irradiation-related effect using different kinds of microbeam irradiators as well as discuss the cellular and molecular mechanisms that are involved in these responses. Non-target effects may increase the detrimental effect caused by radiation, so a more comprehensive knowledge of the process will enable better evaluation of the damage resulting from irradiation. Abstract Although direct damage to nuclear DNA is considered as the major contributing event that leads to radiation-induced effects, accumulating evidence in the past two decades has shown that non-target events, in which cells are not directly irradiated but receive signals from the irradiated cells, or cells irradiated at extranuclear targets, may also contribute to the biological consequences of exposure to ionizing radiation. With a beam diameter at the micrometer or sub-micrometer level, microbeams can precisely deliver radiation, without damaging the surrounding area, or deposit the radiation energy at specific sub-cellular locations within a cell. Such unique features cannot be achieved by other kinds of radiation settings, hence making a microbeam irradiator useful in studies of a radiation-induced bystander effect (RIBE) and cytoplasmic irradiation. Here, studies on RIBE and different responses to cytoplasmic irradiation using microbeams are summarized. Possible mechanisms related to the bystander effect, which include gap-junction intercellular communications and soluble signal molecules as well as factors involved in cytoplasmic irradiation-induced events, are also discussed.
Collapse
Affiliation(s)
- Ziqi Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (K.L.)
| | - Kui Li
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (K.L.)
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (K.L.)
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-85280901
| |
Collapse
|
5
|
Mothersill C, Seymour C. Low dose radiation mechanisms: The certainty of uncertainty. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503451. [PMID: 35483782 DOI: 10.1016/j.mrgentox.2022.503451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
This paper reviews the current understanding of low dose radiobiology, and how it has evolved from classical target theory. It highlights the uncertainty around low dose effects, which is due in part to the complexity of "context" surrounding the ultimate expression of biological effects following low dose exposure. The paper makes special reference to low dose non-targeted effects which, are currently ignored in radiation protection and population level risk assessment, because it is unclear what they mean for risk. The view of the authors is that this "lack of clarity" about what the effects mean is precisely the point. It indicates the uncertainty of outcomes after a given exposure. The uncertainty stems from multiple outcome options resulting from the intrinsic uncertainty of the stochastic interaction of low dose radiation with matter. This uncertainty should be embraced rather than eschewed. The impacts of the uncertainties identified in this paper is explored and an approach to quantifying mutation probability in relation to dose is presented.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
6
|
Non-Targeted Effects of Synchrotron Radiation: Lessons from Experiments at the Australian and European Synchrotrons. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Studies have been conducted at synchrotron facilities in Europe and Australia to explore a variety of applications of synchrotron X-rays in medicine and biology. We discuss the major technical aspects of the synchrotron irradiation setups, paying specific attention to the Australian Synchrotron (AS) and the European Synchrotron Radiation Facility (ESRF) as those best configured for a wide range of biomedical research involving animals and future cancer patients. Due to ultra-high dose rates, treatment doses can be delivered within milliseconds, abiding by FLASH radiotherapy principles. In addition, a homogeneous radiation field can be spatially fractionated into a geometric pattern called microbeam radiotherapy (MRT); a coplanar array of thin beams of microscopic dimensions. Both are clinically promising radiotherapy modalities because they trigger a cascade of biological effects that improve tumor control, while increasing normal tissue tolerance compared to conventional radiation. Synchrotrons can deliver high doses to a very small volume with low beam divergence, thus facilitating the study of non-targeted effects of these novel radiation modalities in both in-vitro and in-vivo models. Non-targeted radiation effects studied at the AS and ESRF include monitoring cell–cell communication after partial irradiation of a cell population (radiation-induced bystander effect, RIBE), the response of tissues outside the irradiated field (radiation-induced abscopal effect, RIAE), and the influence of irradiated animals on non-irradiated ones in close proximity (inter-animal RIBE). Here we provide a summary of these experiments and perspectives on their implications for non-targeted effects in biomedical fields.
Collapse
|
7
|
Price LS, Rivera JN, Madden AJ, Herity LB, Piscitelli JA, Mageau S, Santos CM, Roques JR, Midkiff B, Feinberg NN, Darr D, Chang SX, Zamboni WC. Minibeam radiation therapy enhanced tumor delivery of PEGylated liposomal doxorubicin in a triple-negative breast cancer mouse model. Ther Adv Med Oncol 2021; 13:17588359211053700. [PMID: 34733359 PMCID: PMC8558804 DOI: 10.1177/17588359211053700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Minibeam radiation therapy is an experimental radiation therapy utilizing an array of parallel submillimeter planar X-ray beams. In preclinical studies, minibeam radiation therapy has been shown to eradicate tumors and cause significantly less damage to normal tissue compared to equivalent radiation doses delivered by conventional broadbeam radiation therapy, where radiation dose is uniformly distributed. METHODS Expanding on prior studies that suggested minibeam radiation therapy increased perfusion in tumors, we compared a single fraction of minibeam radiation therapy (peak dose:valley dose of 28 Gy:2.1 Gy and 100 Gy:7.5 Gy) and broadbeam radiation therapy (7 Gy) in their ability to enhance tumor delivery of PEGylated liposomal doxorubicin and alter the tumor microenvironment in a murine tumor model. Plasma and tumor pharmacokinetic studies of PEGylated liposomal doxorubicin and tumor microenvironment profiling were performed in a genetically engineered mouse model of claudin-low triple-negative breast cancer (T11). RESULTS Minibeam radiation therapy (28 Gy) and broadbeam radiation therapy (7 Gy) increased PEGylated liposomal doxorubicin tumor delivery by 7.1-fold and 2.7-fold, respectively, compared to PEGylated liposomal doxorubicin alone, without altering the plasma disposition. The enhanced tumor delivery of PEGylated liposomal doxorubicin by minibeam radiation therapy is consistent after repeated dosing, is associated with changes in tumor macrophages but not collagen or angiogenesis, and nontoxic to local tissues. Our study indicated that the minibeam radiation therapy's ability to enhance the drug delivery decreases from 28 to 100 Gy peak dose. DISCUSSION Our studies suggest that low-dose minibeam radiation therapy is a safe and effective method to significantly enhance the tumor delivery of nanoparticle agents.
Collapse
Affiliation(s)
- Lauren S.L. Price
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- Translational Oncology and Nanoparticle Drug Development (TOND2I) Lab, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Judith N. Rivera
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Andrew J. Madden
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- Translational Oncology and Nanoparticle Drug Development (TOND2I) Lab, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leah B. Herity
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- Translational Oncology and Nanoparticle Drug Development (TOND2I) Lab, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph A. Piscitelli
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- Translational Oncology and Nanoparticle Drug Development (TOND2I) Lab, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Savannah Mageau
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- UNC Advanced Translational Pharmacology and Analytical Chemistry (ATPAC) Lab, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charlene M. Santos
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
- The Animal Studies Core, UNC at Chapel Hill, Chapel Hill, NC, USA
| | - Jose R. Roques
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
- The Animal Studies Core, UNC at Chapel Hill, Chapel Hill, NC, USA
| | - Bentley Midkiff
- Translational Pathology Lab, UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Nana N. Feinberg
- Translational Pathology Lab, UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - David Darr
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Sha X. Chang
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
- Department of Radiation Oncology, UNC at Chapel Hill, Chapel Hill, NC, USA
| | - William C. Zamboni
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, 1022B Genetic Medicine Building, 120 Mason Farm Road, Campus Box 7361, Chapel Hill, NC 27599-7361, USA
- Translational Oncology and Nanoparticle Drug Development (TOND2I) Lab, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
- Carolina Center of Cancer Nanotechnology Excellence (C-CCNE), Chapel Hill, NC, USA
- North Carolina Biomedical Innovation Network, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Vo NTK, Singh H, Stuart M, Seymour CB, Mothersill CE. A pilot study of radiation-induced bystander effect in radio-adapting frogs at a radiologically contaminated site located on the chalk river laboratories property. Int J Radiat Biol 2021; 98:1139-1146. [PMID: 34586949 DOI: 10.1080/09553002.2021.1987558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To measure medium borne bystander effects, to study the influence of radioadaptive response (RAR) on bystander response, and to discover reliable radioresponsive biomarkers in radio-adapting frogs from Duke Swamp contaminated with an above-background radiation level and in naïve frogs from Twin Lake as the background control site. MATERIALS AND METHODS Frogs were captured at Duke Swamp and Twin Lake and brought to the lab at the Canadian Nuclear Laboratories facility. Half of the frogs from each site were irradiated with 4 Gy while the other half of the frogs were left with no further radiation treatment. Frog bladders were removed and placed in sterile culture media. Upon arrival at McMaster University, the bladders were processed for tissue cultures. After 48 h, the culture media conditioned by the bladder explants were harvested for clonogenic reporter survival assay and calcium flux measurements for assessing bystander effects. HPV-G cells were used as bystander reporter cells in all radiation-induced bystander effect (RIBE) assays. The frog bladder cultures were incubated for another 10-12 days followed by immunochemical staining for bcl-2 and c-myc expressions to analyze cellular anti-apoptotic (pro-survival) and pro-apoptotic (pro-death) responses, respectively. RESULTS Only culture media conditioned by bladders from 4-Gy-irradiated naïve frogs from Twin Lake induced bystander effects (reduction of HPV-G reporter cells' clonogenic survival and presence of strong calcium flux activities). The 4 Gy irradiation dose increased pro-apoptotic c-myc expression in naïve frogs' bladder explants. Culture media conditioned by bladders from radio-adapting frogs from Duke Swamp enhanced HPV-G's clonogenic survival and a 4 Gy irradiation challenge did not change the enhanced clonogenic survival nature nor induce calcium flux. In bladder explants from both control and 4-Gy-irradiated radio-adapting frogs, anti-apoptotic bcl-2 expression for pro-survival responses was ubiquitous while c-myc expression for pro-death responses was limited to a small fraction of cells. CONCLUSION The clonogenic RIBE reporter assay using HPV-G and calcium flux measurements are useful diagnostic tools for RIBE assessment of field biological samples, specifically those from frogs. RAR induced by environmentally relevant low-dose radiation induces protective bystander response. Bcl-2 and c-myc are reliable biomarkers for evaluating low dose radiation responses in wild populations of amphibians. Overall, this pilot study emphasizes the importance of looking at non-targeted effects (NTEs) in natural populations of non-human biota that could be vulnerable to chronic low-dose radiation exposures.
Collapse
Affiliation(s)
- Nguyen T K Vo
- Department of Medical Physics and Applied Radiation Sciences, Hamilton, Canada.,Department of Biology, McMaster University, Hamilton, Canada
| | - Harleen Singh
- Department of Medical Physics and Applied Radiation Sciences, Hamilton, Canada.,Buffalo General Hospital, Buffalo, NY, USA
| | | | - Colin B Seymour
- Department of Medical Physics and Applied Radiation Sciences, Hamilton, Canada.,Department of Biology, McMaster University, Hamilton, Canada
| | - Carmel E Mothersill
- Department of Medical Physics and Applied Radiation Sciences, Hamilton, Canada.,Department of Biology, McMaster University, Hamilton, Canada
| |
Collapse
|
9
|
A Brief Overview of the Preclinical and Clinical Radiobiology of Microbeam Radiotherapy. Clin Oncol (R Coll Radiol) 2021; 33:705-712. [PMID: 34454806 DOI: 10.1016/j.clon.2021.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/27/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022]
Abstract
Microbeam radiotherapy (MRT) is the delivery of spatially fractionated beams that have the potential to offer significant improvements in the therapeutic ratio due to the delivery of micron-sized high dose and dose rate beams. They build on longstanding clinical experience of GRID radiotherapy and more recently lattice-based approaches. Here we briefly overview the preclinical evidence for MRT efficacy and highlight the challenges for bringing this to clinical utility. The biological mechanisms underpinning MRT efficacy are still unclear, but involve vascular, bystander, stem cell and potentially immune responses. There is probably significant overlap in the mechanisms underpinning MRT responses and FLASH radiotherapy that needs to be further defined.
Collapse
|
10
|
Dawood A, Mothersill C, Seymour C. Low dose ionizing radiation and the immune response: what is the role of non-targeted effects? Int J Radiat Biol 2021; 97:1368-1382. [PMID: 34330196 DOI: 10.1080/09553002.2021.1962572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This review aims to trace the historical narrative surrounding the low dose effects of radiation on the immune system and how our understanding has changed from the beginning of the 20th century to now. The particular focus is on the non-targeted effects (NTEs) of low dose ionizing radiation (LDIR) which are effects that occur when irradiated cells emit signals that cause effects in the nearby or distant non-irradiated cells known as radiation induced bystander effect (RIBE). Moreover, radiation induced genomic instability (RIGI) and abscopal effect (AE) also regarded as NTE. This was prompted by our recent discovery that ultraviolet A (UVA) photons are emitted by the irradiated cells and that these photons can trigger NTE such as the RIBE in unirradiated recipients of these photons. Given the well-known association between UV radiation and the immune response, where these biophotons may pose as bystander signals potentiating processes in deep tissues as a consequence of LDIR, it is timely to review the field with a fresh lens. Various pathways and immune components that contribute to the beneficial and adverse types of modulation induced by LDR will also be revisited. CONCLUSION There is limited evidence for LDIR induced immune effects by way of a non-targeted mechanism in biological tissue. The literature examining low to medium dose effects of ionizing radiation on the immune system and its components is complex and controversial. Early work was compromised by lack of good dosimetry while later work mainly looks at the involvement of immune response in radiotherapy. There is a lack of research in the LDIR/NTE field focusing on immune response although bone marrow stem cells and lineages were critical in the identification and characterization of NTE where effects like RIGI and RIBE were heavily researched. This may be in part, a result of the difficulty of isolating NTE in whole organisms which are essential for good immune response studies. Models involving inter organism transmission of NTE are a promising route to overcome these issues.
Collapse
Affiliation(s)
- Annum Dawood
- Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | | | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| |
Collapse
|
11
|
Trappetti V, Fazzari JM, Fernandez-Palomo C, Scheidegger M, Volarevic V, Martin OA, Djonov VG. Microbeam Radiotherapy-A Novel Therapeutic Approach to Overcome Radioresistance and Enhance Anti-Tumour Response in Melanoma. Int J Mol Sci 2021; 22:7755. [PMID: 34299373 PMCID: PMC8303317 DOI: 10.3390/ijms22147755] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the deadliest type of skin cancer, due to its invasiveness and limited treatment efficacy. The main therapy for primary melanoma and solitary organ metastases is wide excision. Adjuvant therapy, such as chemotherapy and targeted therapies are mainly used for disseminated disease. Radiotherapy (RT) is a powerful treatment option used in more than 50% of cancer patients, however, conventional RT alone is unable to eradicate melanoma. Its general radioresistance is attributed to overexpression of repair genes in combination with cascades of biochemical repair mechanisms. A novel sophisticated technique based on synchrotron-generated, spatially fractionated RT, called Microbeam Radiation Therapy (MRT), has been shown to overcome these treatment limitations by allowing increased dose delivery. With MRT, a collimator subdivides the homogeneous radiation field into an array of co-planar, high-dose microbeams that are tens of micrometres wide and spaced a few hundred micrometres apart. Different preclinical models demonstrated that MRT has the potential to completely ablate tumours, or significantly improve tumour control while dramatically reducing normal tissue toxicity. Here, we discuss the role of conventional RT-induced immunity and the potential for MRT to enhance local and systemic anti-tumour immune responses. Comparative gene expression analysis from preclinical tumour models indicated a specific gene signature for an 'MRT-induced immune effect'. This focused review highlights the potential of MRT to overcome the inherent radioresistance of melanoma which could be further enhanced for future clinical use with combined treatment strategies, in particular, immunotherapy.
Collapse
Affiliation(s)
- Verdiana Trappetti
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Jennifer M. Fazzari
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Cristian Fernandez-Palomo
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Maximilian Scheidegger
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Vladislav Volarevic
- Department of Genetics, Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Olga A. Martin
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
- Peter MacCallum Cancer Centre, Division of Radiation Oncology, Melbourne, VIC 3000, Australia
- University of Melbourne, Parkville, VIC 3010, Australia
| | - Valentin G. Djonov
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| |
Collapse
|
12
|
Laissue JA. Elke Bräuer-Krisch: dedication, creativity and generosity: May 17, 1961-September 10, 2018. Int J Radiat Biol 2021; 98:280-287. [PMID: 34129423 DOI: 10.1080/09553002.2021.1941385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE This extraordinary woman worked her professional way from a radiation protection engineer to become the successful principal investigator of a prestigious international European project for a new radiation therapy (ERC Synergy grant, HORIZON 2020). The evaluation of the submitted proposal was very positive. The panel proposed that it be funded. Elke tragically passed away a few days before this conclusion of the panel. The present account describes her gradual career development; it includes many episodes that Elke personally chronicled in her curriculum of 2017. METHODS An internet literature search was performed using Google Scholar and other sources to assist in the writing of this narrative review and account. CONCLUSIONS In parallel to the development of the new Biomedical Beamline ID17 at the European Synchrotron Radiation Facility in Grenoble in the late nineties, Elke focused her interest and her personal and professional priorities on MRT, particularly on its clinical goals. She outlined her main objectives in several documents: (1) develop a new paradigm of cancer care by broadening the foundation for MRT. (2) Filling the gaps in basic biological knowledge about the mechanisms of MRT effects on normal and neoplastic tissues. (3) Broaden the preclinical level of evidence for the low normal organ toxicity of MRT versus standard X-ray irradiations; preclinical experiments involved the application of MRT to animal tumor patients, to animals of larger size than laboratory rodents, using larger radiation field sizes, and irradiating in a real-time scenario comparable to the one planned for human patients. (4) To foster the specific purpose of radiosurgical MRT of tumor patients at the ESRF that required development of new, specific state of the art modalities and tools for treatment planning, dosimetry, dose calculation, patient positioning and, of particular importance, redundant levels of patient safety. Just as she was about to take responsibility as principal investigator for a prestigious international European project on a new radiation therapy, death called Elke in.
Collapse
Affiliation(s)
- Jean A Laissue
- Institute of Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Forrester HB, Lobachevsky PN, Stevenson AW, Hall CJ, Martin OA, Sprung CN. Abscopal Gene Expression in Response to Synchrotron Radiation Indicates a Role for Immunological and DNA Damage Response Genes. Radiat Res 2021; 194:678-687. [PMID: 32991732 DOI: 10.1667/rade-19-00014.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 08/24/2020] [Indexed: 11/03/2022]
Abstract
Abscopal effects are an important aspect of targeted radiation therapy due to their implication in normal tissue toxicity from chronic inflammatory responses and mutagenesis. Gene expression can be used to determine abscopal effects at the molecular level. Synchrotron microbeam radiation therapy utilizing high-intensity X rays collimated into planar microbeams is a promising cancer treatment due to its reported ability to ablate tumors with less damage to normal tissues compared to conventional broadbeam radiation therapy techniques. The low scatter of synchrotron radiation enables microbeams to be delivered to tissue effectively, and is also advantageous for out-of-field studies because there is minimal interference from scatter. Mouse legs were irradiated at a dose rate of 49 Gy/s and skin samples in the out-of-field areas were collected. The out-of-field skin showed an increase in Tnf expression and a decrease in Mdm2 expression, genes associated with inflammation and DNA damage. These expression effects from microbeam exposure were similar to those found with broadbeam exposure. In immune-deficient Ccl2 knockout mice, we identified a different gene expression profile which showed an early increase in Mdm2, Tgfb1, Tnf and Ccl22 expression in out-of-field skin that was not observed in the immune-proficient mice. Our results suggest that the innate immune system is involved in out-of-field tissue responses and alterations in the immune response may not eliminate abscopal effects, but could change them.
Collapse
Affiliation(s)
- Helen B Forrester
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Monash University, Clayton, Australia.,School of Science, RMIT University, Melbourne, Australia
| | - Pavel N Lobachevsky
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia.,Advanced Analytical Technologies, Melbourne, Australia
| | - Andrew W Stevenson
- Australian Synchrotron, ANSTO, Clayton, Australia.,CSIRO Manufacturing, Clayton, Australia
| | | | - Olga A Martin
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Carl N Sprung
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Monash University, Clayton, Australia
| |
Collapse
|
14
|
Zuppone S, Bresolin A, Spinelli AE, Fallara G, Lucianò R, Scarfò F, Benigni F, Di Muzio N, Fiorino C, Briganti A, Salonia A, Montorsi F, Vago R, Cozzarini C. Pre-clinical Research on Bladder Toxicity After Radiotherapy for Pelvic Cancers: State-of-the Art and Challenges. Front Oncol 2020; 10:527121. [PMID: 33194587 PMCID: PMC7642999 DOI: 10.3389/fonc.2020.527121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/31/2020] [Indexed: 01/01/2023] Open
Abstract
Despite the dramatic advancements in pelvic radiotherapy, urinary toxicity remains a significant side-effect. The assessment of clinico-dosimetric predictors of radiation cystitis (RC) based on clinical data has improved substantially over the last decade; however, a thorough understanding of the physiopathogenetic mechanisms underlying the onset of RC, with its variegated acute and late urinary symptoms, is still largely lacking, and data from pre-clinical research is still limited. The aim of this review is to provide an overview of the main open issues and, ideally, to help investigators in orienting future research. First, anatomy and physiology of bladder, as well as the current knowledge of dose and dose-volume effects in humans, are briefly summarized. Subsequently, pre-clinical radiobiology aspects of RC are discussed. The findings suggest that pre-clinical research on RC in animal models is a lively field of research with growing interest in the development of new radioprotective agents. The availability of new high precision micro-irradiators and the rapid advances in small animal imaging might lead to big improvement into this field. In particular, studies focusing on the definition of dose and fractionation are warranted, especially considering the growing interest in hypo-fractionation and ablative therapies for prostate cancer treatment. Moreover, improvement in radiotherapy plans optimization by selectively reducing radiation dose to more radiosensitive substructures close to the bladder would be of paramount importance. Finally, thanks to new pre-clinical imaging platforms, reliable and reproducible methods to assess the severity of RC in animal models are expected to be developed.
Collapse
Affiliation(s)
- Stefania Zuppone
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Fondazione Centro San Raffaele, Milan, Italy
| | - Andrea Bresolin
- Fondazione Centro San Raffaele, Milan, Italy.,Department of Medical Physics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonello E Spinelli
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Fallara
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Lucianò
- Unit of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Scarfò
- Unit of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Benigni
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nadia Di Muzio
- Department of Radiotherapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Claudio Fiorino
- Department of Medical Physics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Briganti
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Riccardo Vago
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Cesare Cozzarini
- Department of Radiotherapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
15
|
Complete Remission of Mouse Melanoma after Temporally Fractionated Microbeam Radiotherapy. Cancers (Basel) 2020; 12:cancers12092656. [PMID: 32957691 PMCID: PMC7563854 DOI: 10.3390/cancers12092656] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Synchrotron Microbeam Radiotherapy (MRT) significantly improves local tumour control with minimal normal tissue toxicity. MRT delivers orthovoltage X-rays at an ultra-high "FLASH" dose rate in spatially fractionated beams, typically only few tens of micrometres wide. One of the biggest challenges in translating MRT to the clinic is its use of high peak doses, of around 300-600 Gy, which can currently only be delivered by synchrotron facilities. Therefore, in an effort to improve the translation of MRT to the clinic, this work studied whether the temporal fractionation of traditional MRT into several sessions with lower, more clinically feasible, peak doses could still maintain local tumour control. METHODS Two groups of twelve C57Bl/6J female mice harbouring B16-F10 melanomas in their ears were treated with microbeams of 50 µm in width spaced by 200 µm from their centres. The treatment modality was either (i) a single MRT session of 401.23 Gy peak dose (7.40 Gy valley dose, i.e., dose between beams), or (ii) three MRT sessions of 133.41 Gy peak dose (2.46 Gy valley dose) delivered over 3 days in different anatomical planes, which intersected at 45 degrees. The mean dose rate was 12,750 Gy/s, with exposure times between 34.2 and 11.4 ms, respectively. RESULTS Temporally fractionated MRT ablated 50% of B16-F10 mouse melanomas, preventing organ metastases and local tumour recurrence for 18 months. In the rest of the animals, the median survival increased by 2.5-fold in comparison to the single MRT session and by 4.1-fold with respect to untreated mice. CONCLUSIONS Temporally fractionating MRT with lower peak doses not only maintained tumour control, but also increased the efficacy of this technique. These results demonstrate that the solution to making MRT more clinically feasible is to irradiate with several fractions of intersecting arrays with lower peak doses. This provides alternatives to synchrotron sources where future microbeam radiotherapy could be delivered with less intense radiation sources.
Collapse
|
16
|
Fernandez-Palomo C, Fazzari J, Trappetti V, Smyth L, Janka H, Laissue J, Djonov V. Animal Models in Microbeam Radiation Therapy: A Scoping Review. Cancers (Basel) 2020; 12:cancers12030527. [PMID: 32106397 PMCID: PMC7139755 DOI: 10.3390/cancers12030527] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Microbeam Radiation Therapy (MRT) is an innovative approach in radiation oncology where a collimator subdivides the homogeneous radiation field into an array of co-planar, high-dose beams which are tens of micrometres wide and separated by a few hundred micrometres. OBJECTIVE This scoping review was conducted to map the available evidence and provide a comprehensive overview of the similarities, differences, and outcomes of all experiments that have employed animal models in MRT. METHODS We considered articles that employed animal models for the purpose of studying the effects of MRT. We searched in seven databases for published and unpublished literature. Two independent reviewers screened citations for inclusion. Data extraction was done by three reviewers. RESULTS After screening 5688 citations and 159 full-text papers, 95 articles were included, of which 72 were experimental articles. Here we present the animal models and pre-clinical radiation parameters employed in the existing MRT literature according to their use in cancer treatment, non-neoplastic diseases, or normal tissue studies. CONCLUSIONS The study of MRT is concentrated in brain-related diseases performed mostly in rat models. An appropriate comparison between MRT and conventional radiotherapy (instead of synchrotron broad beam) is needed. Recommendations are provided for future studies involving MRT.
Collapse
Affiliation(s)
| | - Jennifer Fazzari
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
| | - Verdiana Trappetti
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
| | - Lloyd Smyth
- Department of Obstetrics & Gynaecology, University of Melbourne, 3057 Parkville, Australia;
| | - Heidrun Janka
- Medical Library, University Library Bern, University of Bern, 3012 Bern, Switzerland;
| | - Jean Laissue
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
- Correspondence: ; Tel.: +41-31-631-8432
| |
Collapse
|
17
|
Schültke E, Bräuer-Krisch E, Blattmann H, Requardt H, Laissue JA, Hildebrandt G. Survival of rats bearing advanced intracerebral F 98 tumors after glutathione depletion and microbeam radiation therapy: conclusions from a pilot project. Radiat Oncol 2018; 13:89. [PMID: 29747666 PMCID: PMC5946497 DOI: 10.1186/s13014-018-1038-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 04/30/2018] [Indexed: 12/24/2022] Open
Abstract
Background Resistance to radiotherapy is frequently encountered in patients with glioblastoma multiforme. It is caused at least partially by the high glutathione content in the tumour tissue. Therefore, the administration of the glutathione synthesis inhibitor Buthionine-SR-Sulfoximine (BSO) should increase survival time. Methods BSO was tested in combination with an experimental synchrotron-based treatment, microbeam radiation therapy (MRT), characterized by spatially and periodically alternating microscopic dose distribution. One hundred thousand F98 glioma cells were injected into the right cerebral hemisphere of adult male Fischer rats to generate an orthotopic small animal model of a highly malignant brain tumour in a very advanced stage. Therapy was scheduled for day 13 after tumour cell implantation. At this time, 12.5% of the animals had already died from their disease. The surviving 24 tumour-bearing animals were randomly distributed in three experimental groups: subjected to MRT alone (Group A), to MRT plus BSO (Group B) and tumour-bearing untreated controls (Group C). Thus, half of the irradiated animals received an injection of 100 μM BSO into the tumour two hours before radiotherapy. Additional tumour-free animals, mirroring the treatment of the tumour-bearing animals, were included in the experiment. MRT was administered in bi-directional mode with arrays of quasi-parallel beams crossing at the tumour location. The width of the microbeams was ≈28 μm with a center-to-center distance of ≈400 μm, a peak dose of 350 Gy, and a valley dose of 9 Gy in the normal tissue and 18 Gy at the tumour location; thus, the peak to valley dose ratio (PVDR) was 31. Results After tumour-cell implantation, otherwise untreated rats had a mean survival time of 15 days. Twenty days after implantation, 62.5% of the animals receiving MRT alone (group A) and 75% of the rats given MRT + BSO (group B) were still alive. Thirty days after implantation, survival was 12.5% in Group A and 62.5% in Group B. There were no survivors on or beyond day 35 in Group A, but 25% were still alive in Group B. Thus, rats which underwent MRT with adjuvant BSO injection experienced the largest survival gain. Conclusions In this pilot project using an orthotopic small animal model of advanced malignant brain tumour, the injection of the glutathione inhibitor BSO with MRT significantly increased mean survival time.
Collapse
Affiliation(s)
- E Schültke
- Department of Radiooncology, Rostock University Medical Center, Südring 75, 18059, Rostock, Germany.
| | - E Bräuer-Krisch
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | | | - H Requardt
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - J A Laissue
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - G Hildebrandt
- Department of Radiooncology, Rostock University Medical Center, Südring 75, 18059, Rostock, Germany
| |
Collapse
|
18
|
Mothersill C, Smith R, Wang J, Rusin A, Fernandez-Palomo C, Fazzari J, Seymour C. Biological Entanglement-Like Effect After Communication of Fish Prior to X-Ray Exposure. Dose Response 2018; 16:1559325817750067. [PMID: 29479295 PMCID: PMC5818098 DOI: 10.1177/1559325817750067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/31/2017] [Accepted: 09/26/2017] [Indexed: 12/24/2022] Open
Abstract
The phenomenon by which irradiated organisms including cells in vitro communicate with unirradiated neighbors is well established in biology as the radiation-induced bystander effect (RIBE). Generally, the purpose of this communication is thought to be protective and adaptive, reflecting a highly conserved evolutionary mechanism enabling rapid adjustment to stressors in the environment. Stressors known to induce the effect were recently shown to include chemicals and even pathological agents. The mechanism is unknown but our group has evidence that physical signals such as biophotons acting on cellular photoreceptors may be implicated. This raises the question of whether quantum biological processes may occur as have been demonstrated in plant photosynthesis. To test this hypothesis, we decided to see whether any form of entanglement was operational in the system. Fish from 2 completely separate locations were allowed to meet for 2 hours either before or after which fish from 1 location only (group A fish) were irradiated. The results confirm RIBE signal production in both skin and gill of fish, meeting both before and after irradiation of group A fish. The proteomic analysis revealed that direct irradiation resulted in pro-tumorigenic proteomic responses in rainbow trout. However, communication from these irradiated fish, both before and after they had been exposed to a 0.5 Gy X-ray dose, resulted in largely beneficial proteomic responses in completely nonirradiated trout. The results suggest that some form of anticipation of a stressor may occur leading to a preconditioning effect or temporally displaced awareness after the fish become entangled.
Collapse
Affiliation(s)
| | | | - Jiaxi Wang
- Department of Chemistry, Mass Spectrometry Facility, Queen’s University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
19
|
Mothersill C, Rusin A, Fernandez-Palomo C, Seymour C. History of bystander effects research 1905-present; what is in a name? Int J Radiat Biol 2017; 94:696-707. [DOI: 10.1080/09553002.2017.1398436] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Andrej Rusin
- Department of Biology, McMaster University, Hamilton, Canada
| | | | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| |
Collapse
|
20
|
Schültke E, Balosso J, Breslin T, Cavaletti G, Djonov V, Esteve F, Grotzer M, Hildebrandt G, Valdman A, Laissue J. Microbeam radiation therapy - grid therapy and beyond: a clinical perspective. Br J Radiol 2017; 90:20170073. [PMID: 28749174 PMCID: PMC5853350 DOI: 10.1259/bjr.20170073] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Microbeam irradiation is spatially fractionated radiation on a micrometer scale. Microbeam irradiation with therapeutic intent has become known as microbeam radiation therapy (MRT). The basic concept of MRT was developed in the 1980s, but it has not yet been tested in any human clinical trial, even though there is now a large number of animal studies demonstrating its marked therapeutic potential with an exceptional normal tissue sparing effect. Furthermore, MRT is conceptually similar to macroscopic grid based radiation therapy which has been used in clinical practice for decades. In this review, the potential clinical applications of MRT are analysed for both malignant and non-malignant diseases.
Collapse
Affiliation(s)
- Elisabeth Schültke
- 1 Department of Radiooncology, Rostock University Medical Center, Rostock, Germany
| | - Jacques Balosso
- 2 Departement of Radiation Oncology and Medical Physics, University Grenoble Alpes (UGA) and Centre Hospitalier Universitaire Grenoble Alpes (CHUGA), Grenoble, France
| | - Thomas Breslin
- 3 Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden.,4 Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Guido Cavaletti
- 5 Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Valentin Djonov
- 6 Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Francois Esteve
- 2 Departement of Radiation Oncology and Medical Physics, University Grenoble Alpes (UGA) and Centre Hospitalier Universitaire Grenoble Alpes (CHUGA), Grenoble, France
| | - Michael Grotzer
- 7 Department of Oncology, University Children's Hospital of Zurich, Zurich, Switzerland
| | - Guido Hildebrandt
- 1 Department of Radiooncology, Rostock University Medical Center, Rostock, Germany
| | - Alexander Valdman
- 8 Department of Oncology and Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Jean Laissue
- 6 Institute of Anatomy, University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
Decrock E, Hoorelbeke D, Ramadan R, Delvaeye T, De Bock M, Wang N, Krysko DV, Baatout S, Bultynck G, Aerts A, Vinken M, Leybaert L. Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1099-1120. [DOI: 10.1016/j.bbamcr.2017.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 02/07/2023]
|