1
|
Kannan N, Koshy T, Raavi V, Bhaskar E, Moorthy S, Pulivadula Mohanarangam VS, Srinivas Kondaveeti S, Visweswaran S, Perumal V. Candidate Gene Expression in Regional Population and Its Relevance for Radiation Triage. Cytogenet Genome Res 2023; 163:210-222. [PMID: 37253332 DOI: 10.1159/000531258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/24/2023] [Indexed: 06/01/2023] Open
Abstract
Quantification of gene expression signatures has been substantiated as a potential and rapid marker for radiation triage and biodosimetry during nuclear emergencies. Similar to the established biodosimetry assays, the gene expression assay has drawbacks such as being highly dynamic and transient, not specific to ionizing radiation, and also influenced by confounding factors such as gender, health status, lifestyle, and inflammation. In view of that, prior knowledge of baseline expression of certain candidate genes in a population could complement the discrimination of the unexposed from the exposed individuals without the need for individual pre-exposure controls. We intended to establish a baseline expression of reported radiation-responsive genes such as CDKN1A, DDB2, FDXR, and PCNA in the blood samples of healthy human participants and then compare it with diabetic/hypertension participants (as a chronic inflammatory condition) drawn from south Indian population. Further, we have examined the appropriateness of the assay for radiation triage-like situations; i.e., the expression profiles of those genes were examined in the participants who underwent X-ray-based medical imaging. Acute inflammation induced by lipopolysaccharide exposure in the blood significantly increased the fold expression of those genes (p < 0.0001) compared to the control. Whereas the basal expression level of those genes among the participants with the inflammatory condition is marginally higher than those observed in the healthy participants; despite the excess, the fold increase in those genes between the groups did not differ significantly. Consistent with the inflammatory participants, the basal expression level of those genes in the blood sample of participants who received X-radiation during neuro-interventional and computed tomography imaging is marginally higher than those observed in the pre-exposure of respective groups. Nevertheless, the fold increase in those genes did not differ significantly as the fold change fell within the two folds. Thus, overall results suggest that the utility of CDKN1A, DDB2, FDXR, and PCNA gene expression for radiation triage specific after very low-dose radiation exposure needs to be interpreted with caution for a much more reliable triage.
Collapse
Affiliation(s)
- Nandhini Kannan
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to Be University), Chennai, India
| | - Teena Koshy
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to Be University), Chennai, India
| | - Venkateswarlu Raavi
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to Be University), Kolar, India
| | - Emmanuel Bhaskar
- Department of General Medicine, SRMC&RI, Sri Ramachandra Institute of Higher Education and Research (Deemed to Be University), Chennai, India
| | - Swathy Moorthy
- Department of General Medicine, SRMC&RI, Sri Ramachandra Institute of Higher Education and Research (Deemed to Be University), Chennai, India
| | - Venkata Sai Pulivadula Mohanarangam
- Department of Radiology and Imaging Sciences, SRMC&RI, Sri Ramachandra Institute of Higher Education and Research (Deemed to Be University), Chennai, India
| | - Satish Srinivas Kondaveeti
- Department of Radiation Oncology, SRMC&RI, Sri Ramachandra Institute of Higher Education and Research (Deemed to Be University), Chennai, India
| | - Shangamithra Visweswaran
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to Be University), Chennai, India
| | - Venkatachalam Perumal
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to Be University), Chennai, India
| |
Collapse
|
2
|
Suzuki K, Imaoka T, Tomita M, Sasatani M, Doi K, Tanaka S, Kai M, Yamada Y, Kakinuma S. Molecular and cellular basis of the dose-rate-dependent adverse effects of radiation exposure in animal models. Part I: Mammary gland and digestive tract. JOURNAL OF RADIATION RESEARCH 2023; 64:210-227. [PMID: 36773323 PMCID: PMC10036108 DOI: 10.1093/jrr/rrad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Indexed: 06/18/2023]
Abstract
While epidemiological data are available for the dose and dose-rate effectiveness factor (DDREF) for human populations, animal models have contributed significantly to providing quantitative data with mechanistic insights. The aim of the current review is to compile both the in vitro experiments with reference to the dose-rate effects of DNA damage and repair, and the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. In particular, the review focuses especially on the results pertaining to underlying biological mechanisms and discusses their possible involvement in the process of radiation-induced carcinogenesis. Because the concept of adverse outcome pathway (AOP) together with the key events has been considered as a clue to estimate radiation risks at low doses and low dose-rates, the review scrutinized the dose-rate dependency of the key events related to carcinogenesis, which enables us to unify the underlying critical mechanisms to establish a connection between animal experimental studies with human epidemiological studies.
Collapse
Affiliation(s)
- Keiji Suzuki
- Corresponding author. Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Tel: +81-95-819-7116; Fax: +81-95-819-7117;
| | | | | | | | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
3
|
Suzuki K, Imaoka T, Tomita M, Sasatani M, Doi K, Tanaka S, Kai M, Yamada Y, Kakinuma S. Molecular and cellular basis of the dose-rate-dependent adverse effects of radiation exposure in animal models. Part II: Hematopoietic system, lung and liver. JOURNAL OF RADIATION RESEARCH 2023; 64:228-249. [PMID: 36773331 PMCID: PMC10036110 DOI: 10.1093/jrr/rrad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Indexed: 06/18/2023]
Abstract
While epidemiological data have greatly contributed to the estimation of the dose and dose-rate effectiveness factor (DDREF) for human populations, studies using animal models have made significant contributions to provide quantitative data with mechanistic insights. The current article aims at compiling the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. This review focuses specifically on the results that explain the biological mechanisms underlying dose-rate effects and their potential involvement in radiation-induced carcinogenic processes. Since the adverse outcome pathway (AOP) concept together with the key events holds promise for improving the estimation of radiation risk at low doses and low dose-rates, the review intends to scrutinize dose-rate dependency of the key events in animal models and to consider novel key events involved in the dose-rate effects, which enables identification of important underlying mechanisms for linking animal experimental and human epidemiological studies in a unified manner.
Collapse
Affiliation(s)
- Keiji Suzuki
- Corresponding author, Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Tel:+81-95-819-7116; Fax:+81-95-819-7117; E-mail:
| | | | | | | | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
4
|
Ostheim P, Amundson SA, Badie C, Bazyka D, Evans AC, Ghandhi SA, Gomolka M, López Riego M, Rogan PK, Terbrueggen R, Woloschak GE, Zenhausern F, Kaatsch HL, Schüle S, Ullmann R, Port M, Abend M. Gene expression for biodosimetry and effect prediction purposes: promises, pitfalls and future directions - key session ConRad 2021. Int J Radiat Biol 2021; 98:843-854. [PMID: 34606416 DOI: 10.1080/09553002.2021.1987571] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE In a nuclear or radiological event, an early diagnostic or prognostic tool is needed to distinguish unexposed from low- and highly exposed individuals with the latter requiring early and intensive medical care. Radiation-induced gene expression (GE) changes observed within hours and days after irradiation have shown potential to serve as biomarkers for either dose reconstruction (retrospective dosimetry) or the prediction of consecutively occurring acute or chronic health effects. The advantage of GE markers lies in their capability for early (1-3 days after irradiation), high-throughput, and point-of-care (POC) diagnosis required for the prediction of the acute radiation syndrome (ARS). CONCLUSIONS As a key session of the ConRad conference in 2021, experts from different institutions were invited to provide state-of-the-art information on a range of topics including: (1) Biodosimetry: What are the current efforts to enhance the applicability of this method to perform retrospective biodosimetry? (2) Effect prediction: Can we apply radiation-induced GE changes for prediction of acute health effects as an approach, complementary to and integrating retrospective dose estimation? (3) High-throughput and point-of-care diagnostics: What are the current developments to make the GE approach applicable as a high-throughput as well as a POC diagnostic platform? (4) Low level radiation: What is the lowest dose range where GE can be used for biodosimetry purposes? (5) Methodological considerations: Different aspects of radiation-induced GE related to more detailed analysis of exons, transcripts and next-generation sequencing (NGS) were reported.
Collapse
Affiliation(s)
- Patrick Ostheim
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Christophe Badie
- PHE CRCE, Chilton, Didcot, Oxford, UK.,Environmental Research Group within the School of Public Health, Faculty of Medicine at Imperial College of Science, Technology and Medicine, London, UK
| | - Dimitry Bazyka
- National Research Centre for Radiation Medicine, Kyiv, Ukraine
| | - Angela C Evans
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA
| | - Shanaz A Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Maria Gomolka
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Milagrosa López Riego
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Peter K Rogan
- Biochemistry, University of Western Ontario, London, Canada.,CytoGnomix Inc, London, Canada
| | | | - Gayle E Woloschak
- Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Frederic Zenhausern
- Department of Basic Medical Sciences, College of Medicine, The University of Arizona, Phoenix, AZ, USA.,Center for Applied Nanobioscience and Medicine, University of Arizona, Phoenix, AZ, USA
| | - Hanns L Kaatsch
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Simone Schüle
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Reinhard Ullmann
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
5
|
Suzuki K, Amrenova A, Mitsutake N. Recent advances in radiobiology with respect to pleiotropic aspects of tissue reaction. JOURNAL OF RADIATION RESEARCH 2021; 62:i30-i35. [PMID: 33978178 PMCID: PMC8114206 DOI: 10.1093/jrr/rraa086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/09/2020] [Indexed: 06/12/2023]
Abstract
DNA double-strand breaks (DSBs) induced by ionizing radiation are the major cause of cell death, leading to tissue/organ injuries, which is a fundamental mechanism underlying the development of tissue reaction. Since unscheduled senescence, predominantly induced among epithelial tissues/organs, is one of the major modes of cell death in response to radiation exposure, its role in tissue reaction has been extensively studied, and it has become clear that senescence-mediated secretion of soluble factors is an indispensable component of the manifestation of tissue reaction. Recently, an unexpected link between cytoplasmic DSBs and innate immunity was discovered. The activation of cyclic GMP-AMP (cGAMP) synthase (cGAS) results in the stimulation of the cGAS-stimulator of interferon genes (STING) pathway, which has been shown to regulate the transactivation of a variety of secretory factors that are the same as those secreted from senescent cells. Furthermore, it has been proven that cGAS-STING pathway also mediates execution of the senescence process by itself. Hence, an autocrine/paracrine feedback loop has been discussed in previous literature in relation to its effect on the tissue microenvironment. As the tissue microenvironment plays a crucial role in cancer development, tissue reaction could be involved in the late health effects caused by radiation exposure. In this paper, the novel findings in radiation biology, which should provide a better understanding of the mechanisms underlying radiation-induced carcinogenesis, are overviewed.
Collapse
Affiliation(s)
- Keiji Suzuki
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Aidana Amrenova
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
6
|
Wang HQ. Letter: Evaluating the Cumulative Impact of Ionizing Radiation Exposure With Diagnostic Genetics. Ann Lab Med 2019; 39:417-418. [PMID: 30809992 PMCID: PMC6400715 DOI: 10.3343/alm.2019.39.4.417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/04/2019] [Accepted: 02/11/2019] [Indexed: 01/31/2023] Open
Affiliation(s)
- Hai Qiang Wang
- Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, Xi'an, China.
| |
Collapse
|
7
|
Rehani MM. Looking for solutions: vision and a call-for-attention for radiation research scientists. Int J Radiat Biol 2019; 95:793-796. [PMID: 30652955 DOI: 10.1080/09553002.2019.1569775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Purpose: The concept of benefit-risk assessment has often been propagated for clinical professionals for deciding the radiological exam for the patient. A detailed look into how to use this concept leads to several unanswered questions. The purpose of this article is to bring forth questions which have remained unanswered for several decades. These questions pertain to our inability to provide needed information to physicians for making benefit-risk assessment for deciding a frequent imaging modality like the computed tomography (CT) such as non-applicability of risk estimates to an individual patient, the concept of cumulative risk at low doses, accounting for the time gap between series of CT scans, risk variation with age, gender and disease condition. In the absence of concrete information on these, it becomes essentially benefit assessment rather than benefit-risk. The article also provides a motivation to think that there are a large number of patients getting exposed every year to radiation doses over 100 mSv of effective dose and several tens of mGy of organ doses. This may provide a very large cohort for radiation effect studies. Further, a series of ideas are presented as a vision for future studies. Conclusions: The article emphasizes the need to create a research agenda to deal with day-to-day questions faced in medical practice and provides a call-for-attention. Further, it provides some challenging ideas as outside of the box thinking points that may provide research direction for future years.
Collapse
|