1
|
Ernst MPT, Versluis J, Valk PJM, Bierings M, Tamminga RYJ, Hooimeijer LH, Döhner K, Gresele P, Tawana K, Langemeijer SMC, Van der Reijden BA, Podgornik H, Sever M, Tvedt THA, Vulliamy T, Fitzgibbon J, Dokal I, Baliakas P, Bastida JM, Pohlkamp C, Haferlach T, Larcher L, Soulier J, Schutgens REG, Freson K, Duployez N, Löwenberg B, Ericson K, Cammenga J, Ripperger T, Raaijmakers MHGP. Disease characteristics and outcomes of acute myeloid leukemia in germline RUNX1 deficiency (Familial Platelet Disorder with associated Myeloid Malignancy). Hemasphere 2025; 9:e70057. [PMID: 39822584 PMCID: PMC11735945 DOI: 10.1002/hem3.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/14/2024] [Accepted: 09/02/2024] [Indexed: 01/19/2025] Open
Abstract
Familial Platelet Disorder with associated Myeloid Malignancy (FPDMM, FPD/AML, RUNX1-FPD), caused by monoallelic deleterious germline RUNX1 variants, is characterized by bleeding diathesis and predisposition for hematologic malignancies, particularly myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Clinical data on FPDMM-associated AML (FPDMM-AML) are limited, complicating evidence-based clinical decision-making. Here, we present retrospective genetic and clinical data of the largest cohort of FPDMM patients reported to date. We describe 159 European patients (from 94 families) of whom 134 were evaluable for the development of malignant disease. Sixty developed a hematologic malignancy (44.8%), most frequently AML (36/134, 26.9%) or MDS (18/134, 13.4%). Somatic alterations of RUNX1 by gene mutation (48%) and chromosome 21 aberrations (14.3%) were the most common somatic genetic aberrations in FPDMM-AML, followed by FLT3-ITD mutations (24.1%). Somatic RUNX1 and FLT3-ITD mutations were not detected in FPDMM-associated MDS, suggesting important contributions to leukemic transformation. Remission-induction chemotherapy resulted in complete remission in 80% of FPDMM-AML patients with a 5-year overall survival (OS) of 50.4%. Survival outcome was non-inferior compared to a large cohort of newly diagnosed adult RUNX1-mutated AML (5-year OS 36.6%, p = 0.5), with relatively infrequent concurrent adverse risk somatic aberrations (ASXL1 mutation, monosomal karyotype, monosomy 5/del 5q) in FPDMM-AML. Collectively, data support the notion that step-wise leukemic evolution in FPDMM is associated with distinct genetic events and indicate that a substantial subset of FPDMM-AML patients achieves prolonged survival with conventional AML treatment, including allogeneic stem cell transplant. These findings are anticipated to inform personalized clinical decision-making in this rare disorder.
Collapse
Affiliation(s)
- Martijn P. T. Ernst
- Department of HematologyErasmus University Medical Center and Erasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Jurjen Versluis
- Department of HematologyErasmus University Medical Center and Erasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Peter J. M. Valk
- Department of HematologyErasmus University Medical Center and Erasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Marc Bierings
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | | | | | | - Paolo Gresele
- Department of Medicine and Surgery, Section of Internal and Cardiovascular MedicineUniversity of PerugiaPerugiaItaly
| | - Kiran Tawana
- Department of HaematologyAddenbrooke's HospitalCambridgeUK
| | | | | | - Helena Podgornik
- Department of HematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Matjaz Sever
- Department of HematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | | | - Tom Vulliamy
- Blizard Institute, Faculty of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Jude Fitzgibbon
- Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Inderjeet Dokal
- Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | - José M. Bastida
- Department of HematologyComplejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomedica de Salamanca (IBSAL), Universidad de Salamanca (USAL)SalamancaSpain
| | | | | | - Lise Larcher
- Université Paris Cité, Inserm and Hôpital Saint‐Louis, APHPParisFrance
| | - Jean Soulier
- Université Paris Cité, Inserm and Hôpital Saint‐Louis, APHPParisFrance
| | - Roger E. G. Schutgens
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht and UniversityUtrechtThe Netherlands
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular BiologyUniversity of LeuvenLeuvenBelgium
| | - Nicolas Duployez
- Laboratory of HematologyBiology and Pathology Center, Centre Hospitalier Regional Universitaire de LilleLilleFrance
| | - Bob Löwenberg
- Department of HematologyErasmus University Medical Center and Erasmus MC Cancer InstituteRotterdamThe Netherlands
| | | | - Jörg Cammenga
- Department of Hematology, Skåne University Hospital and Molecular Medicine and Gene TherapyLund UniversityLundSweden
| | - Tim Ripperger
- Department of Human GeneticsHannover Medical SchoolHannoverGermany
| | - Marc H. G. P. Raaijmakers
- Department of HematologyErasmus University Medical Center and Erasmus MC Cancer InstituteRotterdamThe Netherlands
| |
Collapse
|
2
|
Mestre J, Chaparro L, Manzanares A, Xicoy B, Zamora L, Sole F, Calvete O. Beyond myeloid neoplasms germline guidelines: Validation of the thresholds criteria in the search of germline predisposition variants. EJHAEM 2024; 5:1021-1027. [PMID: 39415912 PMCID: PMC11474399 DOI: 10.1002/jha2.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
Introduction Germline predisposition to myeloid neoplasms can be suspected in patients younger than 50 years or when harboring mutations with a variant allele frequency (VAF) higher than 30% for point mutations in specific genes. To investigate the VAF thresholds' accuracy we have explored the prevalence of germline variants below the 30% VAF threshold. Methods A total of 40 variants with VAF lower than 30% in bone marrow samples of myeloid neoplasm patients were selected and studied in CD3+ cells. Results All the selected variants were not found in CD3+ cells except one variant in the SF3B1 gene. However, the whole series was found somatic. Selected variants were also evaluated with our previously studied series of 52 variants with VAF higher than 30%. Conclusion Our study suggests that variants with VAF below 30% are strong somatic candidates but the variants with VAF higher than 30% cannot be considered of germline origin.
Collapse
Affiliation(s)
- Julia Mestre
- MDS GroupJosep Carreras Leukaemia Research Institute, ICO‐Hospital Germans Trias i Pujol, Universitat Autònoma de BarcelonaBadalonaSpain
- Facultat de BiociènciesUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Lorea Chaparro
- MDS GroupJosep Carreras Leukaemia Research Institute, ICO‐Hospital Germans Trias i Pujol, Universitat Autònoma de BarcelonaBadalonaSpain
| | - Ana Manzanares
- MDS GroupJosep Carreras Leukaemia Research Institute, ICO‐Hospital Germans Trias i Pujol, Universitat Autònoma de BarcelonaBadalonaSpain
| | - Blanca Xicoy
- Department of HematologyICO‐IJC‐Hospital Germans Trias i Pujol, UABBadalonaCataloniaSpain
| | - Lurdes Zamora
- Department of HematologyICO‐IJC‐Hospital Germans Trias i Pujol, UABBadalonaCataloniaSpain
| | - Francesc Sole
- MDS GroupJosep Carreras Leukaemia Research Institute, ICO‐Hospital Germans Trias i Pujol, Universitat Autònoma de BarcelonaBadalonaSpain
- Facultat de BiociènciesUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Oriol Calvete
- MDS GroupJosep Carreras Leukaemia Research Institute, ICO‐Hospital Germans Trias i Pujol, Universitat Autònoma de BarcelonaBadalonaSpain
| |
Collapse
|
3
|
Stewart BL, Helber H, Bannon SA, Deuitch NT, Ferguson M, Fiala E, Hamilton KV, Malcolmson J, Pencheva B, Smith-Simmer K. Risk assessment and genetic counseling for hematologic malignancies-Practice resource of the National Society of Genetic Counselors. J Genet Couns 2024. [PMID: 39189353 DOI: 10.1002/jgc4.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Hematologic malignancies (HMs) are a heterogeneous group of cancers impacting individuals of all ages that have been increasingly recognized in association with various germline predisposition syndromes. Given the myriad of malignancy subtypes, expanding differential diagnoses, and unique sample selection requirements, evaluation for hereditary predisposition to HM presents both challenges as well as exciting opportunities in the ever-evolving field of genetic counseling. This practice resource has been developed as a foundational resource for genetic counseling approaches to hereditary HMs and aims to empower genetic counselors who encounter individuals and families with HMs in their practice.
Collapse
Affiliation(s)
| | - Hannah Helber
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Hematology and Cancer Center, Texas Children's Hospital, Houston, Texas, USA
| | - Sarah A Bannon
- National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Natalie T Deuitch
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Elise Fiala
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kayla V Hamilton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Janet Malcolmson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bojana Pencheva
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Kelcy Smith-Simmer
- Academic Affairs, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, UW Health, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Baliakas P, Tesi B, Cammenga J, Stray‐Pedersen A, Jahnukainen K, Andersen MK, Ågerstam H, Creignou M, Dybedal I, Raaschou‐Jensen K, Grønbæk K, Kilpivaara O, Lindberg EH, Wartiovaara‐Kautto U. How to manage patients with germline DDX41 variants: Recommendations from the Nordic working group on germline predisposition for myeloid neoplasms. Hemasphere 2024; 8:e145. [PMID: 39139355 PMCID: PMC11320078 DOI: 10.1002/hem3.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/15/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Increasing recognition of germline DDX41 variants in patients with hematological malignancies prompted us to provide DDX41-specific recommendations for diagnosis, surveillance, and treatment. Causative germline variants in the DDX41 predispose to the development of myeloid neoplasms (MNs), especially myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Almost 3%-5% of all patients with MDS or AML carry a pathogenic or likely pathogenic germline DDX41 variant, while half of them acquire a somatic second hit in the other allele. DDX41-associated MNs exhibit unique clinical characteristics compared to other hematological malignancies with germline predisposition: MNs occur mostly at advanced age and follow an indolent clinical course. Male carriers are more prone to develop MDS or AML than females. DDX41-associated MN is often hypoplastic, and the malignancy may be preceded by cytopenias.
Collapse
Affiliation(s)
- Panagiotis Baliakas
- Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Bianca Tesi
- Department of Molecular Medicine and Surgery and Centre of Molecular MedicineKarolinska InstitutetStockholmSweden
- Department of Clinical Genetics and GenomicsKarolinska University HospitalStockholmSweden
- Department of Medicine HuddingeCenter for Hematology and Regenerative Medicine, Karolinska InstitutetStockholmSweden
| | - Jörg Cammenga
- Department of Haematology, Oncology and Radiation PhysicsSkåne University HospitalLundSweden
- Molecular Medicine and Gene TherapyLund UniversityLundSweden
| | - Asbjørg Stray‐Pedersen
- Habilitation Unit, SanderudInnlandet Hospital TrustBrumunddalNorway
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent MedicineOslo University HospitalOsloNorway
| | - Kirsi Jahnukainen
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Children's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Department of Medical and Clinical Genetics/Medicum, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Mette Klarskov Andersen
- Department of Clinical GeneticsRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| | - Helena Ågerstam
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
- Department of Clinical Genetics, Pathology and Molecular DiagnosticsOffice for Medical Services, Region SkåneLundSweden
| | - Maria Creignou
- Department of Medicine HuddingeCenter for Hematology and Regenerative Medicine, Karolinska InstitutetStockholmSweden
- Phase 1 UnitCenter for Clinical Cancer Studies, Karolinska University HospitalStockholmSweden
| | - Ingunn Dybedal
- Department of HematologyOslo University Hospital, RikshospitaletOsloNorway
| | | | - Kirsten Grønbæk
- Department of HematologyRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
- Biotech Research and Innovation Center (BRIC)University of CopenhagenCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Outi Kilpivaara
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Medical and Clinical Genetics/Medicum, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- HUSLAB Laboratory of Genetics, HUS Diagnostic Center (Helsinki University Hospital)University of HelsinkiHelsinkiFinland
- Foundation for the Finnish Cancer InstituteHelsinkiFinland
| | - Eva Hellström Lindberg
- Department of Medicine HuddingeCenter for Hematology and Regenerative Medicine, Karolinska InstitutetStockholmSweden
- Department of Medicine, Division of HematologyKarolinska University HospitalHuddingeSweden
| | - Ulla Wartiovaara‐Kautto
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer CenterUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
5
|
Moore ME, Williams E, Pelkey L, Courville EL. A comparison of WHO-5 and ICC classifications in a series of myeloid neoplasms, considerations for hematopathologists and molecular pathologists. Cancer Genet 2024; 286-287:25-28. [PMID: 38964162 DOI: 10.1016/j.cancergen.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/19/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVES The International Consensus Classification (ICC) and 5th Edition of the World Health Organization Classification (WHO-5) made substantive updates to the classification of myeloid neoplasms. This study compares the systems in a series of myeloid neoplasms with increased blasts, analyzing implications for diagnostic workflow and reporting. METHODS Bone marrow biopsies categorized as myelodysplastic syndrome with excess blasts (MDS-EB) or acute myeloid leukemia (AML) by WHO-R4 were identified. Results of morphology review, karyotype, fluorescence in situ hybridization, and next-generation sequencing were compiled. Cases were retrospectively re-classified by WHO-5 and ICC. RESULTS 46 cases were reviewed. 28 cases (61 %) had ≥20 % blasts, with the remaining cases having 5-19.5 % blasts. The most common differences in classification were 1) the designation of MDS versus MDS/AML (10/46, 22 %) for cases with 10-19 % blasts and 2) the ICC's designation of TP53 variants as a separate classifier for AML (8/46, 17 %). Bi-allelic/multi-hit TP53 alterations were identified in 15 cases (33 %). Variants of potential germline significance were identified in 29 (63 %) cases. CONCLUSIONS While terminology differences between WHO-5 and ICC exist, both systems invoke similar opportunities for improved reporting: standardized classification of pathogenic variants (notably TP53), streamlined systems to evaluate for potential germline variants, and integrated reporting of morphologic and genetic data.
Collapse
Affiliation(s)
- Margaret E Moore
- University of Virginia, Department of Pathology and Laboratory Medicine, United States.
| | - Eli Williams
- University of Virginia, Department of Pathology and Laboratory Medicine, United States
| | - Lauren Pelkey
- University of Virginia, Department of Pathology and Laboratory Medicine, United States
| | - Elizabeth L Courville
- University of Virginia, Department of Pathology and Laboratory Medicine, United States
| |
Collapse
|
6
|
Torres-Esquius S, Beas F, Chen-Liang TH, Pomares H, Santiago M, Varela ND, Liquori A, Hernandez F, Xicoy B, Hermosín L, Arnan M, Tazón-Vega B, Blanco A, Cervera J, Diez-Campelo M, Lozano ML, Valcárcel D, Bosch F, Montoro MJ, Jerez A. Germline assessment for alloHSCT candidates over 50 years: A 'Fast-Track' screening in myeloid neoplasms. Br J Haematol 2024; 205:503-509. [PMID: 38639421 DOI: 10.1111/bjh.19460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/11/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Patients aged 50 or above diagnosed with myeloid neoplasms (MNs) are typically not candidates for germline testing. However, approximately 8% carry pathogenic germline variants. Allogeneic haematopoietic stem cell transplantation (alloHSCT) remains an option for those aged over 50; neglecting germline testing could mask the risk for relative donor cell-derived MN. We propose a germline-augmented somatic panel (GASP), combining MN predisposition genes with a myeloid somatic panel for timely germline variant identification when initial testing is not indicated. Out of our 133 whole-exome-sequenced MN cases aged over 50 years, 9% had pathogenic/likely variants. GASP detected 92%, compared to 50% with somatic-only panel. Our study highlights the relevance of germline screening in MN, particularly for alloHSCT candidates without established germline-testing recommendations.
Collapse
Affiliation(s)
- Sara Torres-Esquius
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Francisco Beas
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Tzu Hua Chen-Liang
- Department of Hematology, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, Murcia, Spain
| | - Helena Pomares
- Department of Hematology, Institut Català d'Oncologia. Hospital Duran i Reynals, IDIBELL. Hospitalet, Badalona, Barcelona, Spain
| | - Marta Santiago
- Department of Hematology, Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | - Nicolás Díaz Varela
- Department of Hematology, Hospital Universitario Central de Asturias, Instituto. Universitario (IUOPA), Instituto de Investigación del Principado de Asturias (ISPA), Oviedo, Spain
| | - Alessandro Liquori
- Department of Hematology, Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | | | - Blanca Xicoy
- Department of Hematology, Hospital Germans Trias i Pujol, Badalona, Spain
| | | | - Montserrat Arnan
- Department of Hematology, Institut Català d'Oncologia. Hospital Duran i Reynals, IDIBELL. Hospitalet, Badalona, Barcelona, Spain
| | - Bárbara Tazón-Vega
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Adoración Blanco
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - José Cervera
- Department of Hematology, Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | - María Diez-Campelo
- Department of Hematology, Hospital Clínico Universitario de Salamanca, Salamanca, Spain
| | - María Luisa Lozano
- Department of Hematology, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, Murcia, Spain
| | - David Valcárcel
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Francesc Bosch
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Maria Julia Montoro
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Andrés Jerez
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
7
|
Attardi E, Tiberi L, Mattiuz G, Formicola D, Dirupo E, Raddi MG, Consagra A, Vergani D, Artuso R, Santini V. Prospective genetic germline evaluation in a consecutive group of adult patients aged <60 years with myelodysplastic syndromes. Hemasphere 2024; 8:e112. [PMID: 39015540 PMCID: PMC11250510 DOI: 10.1002/hem3.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 07/18/2024] Open
Abstract
Relevance of germline (GL) predisposition in myelodysplastic syndromes (MDSs) was stressed in both 2022 WHO and International Consensus classifications, but its incidence is probably underestimated, especially in young adult patients. We selected a cohort of 31 consecutive de novo MDS patients with unusual young age (<60 years). We performed exome sequencing (ES) on DNA extracted from noninvasive sources (peripheral blood and saliva), filtering for a panel of 344 genes specifically tailored for detecting GL variants related to clonal and nonclonal cytopenia. We observed at least one high- or low-confidence GL MDS variant in 7/31 (22.6%) and 9/31 (29.0%) of cases, respectively. Four of 31 patients (12.9%) confirmed having established MDS/AML predisposing disorders. We found heterozygous variants in genes involved in DNA repair/cancer predisposition (ATM, ATR, FANCM, PARN, BRCA1, BRCA2, CHEK2, MSH2) in 9/31 (29.0%) cases and variants affecting ribosome biogenesis (SBDS), hematopoietic stem cell (GATA2), and megakaryocyte (ANKRD26) differentiation in single cases. Two cases had variants in RBBP6, a gene previously described exclusively in familial myeloproliferative neoplasms. Lastly, four cases had variants in genes related to inherited anemias (CUBN and PIEZO1 genes). Our results showed that "young" MDS patients aged 40-60 years carried reported and unreported GL variants with an unexpectedly high proportion, and these events co-occurred with somatic mutations recurrent in myeloid neoplasms. We explored the "no man's land" of the young adult MDS cases adopting a practical and scalable diagnostic tool, capable to detect GL variants avoiding invasive methods.
Collapse
Affiliation(s)
- Enrico Attardi
- MDS Unit, Hematology, AOU Careggi ‐ Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Lucia Tiberi
- Medical Genetics UnitMeyer Children's Hospital IRCCSFlorenceItaly
| | - Giorgio Mattiuz
- MDS Unit, Hematology, AOU Careggi ‐ Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | | | - Elia Dirupo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Marco G. Raddi
- MDS Unit, Hematology, AOU Careggi ‐ Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Angela Consagra
- MDS Unit, Hematology, AOU Careggi ‐ Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Debora Vergani
- Medical Genetics UnitMeyer Children's Hospital IRCCSFlorenceItaly
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Rosangela Artuso
- Medical Genetics UnitMeyer Children's Hospital IRCCSFlorenceItaly
| | - Valeria Santini
- MDS Unit, Hematology, AOU Careggi ‐ Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| |
Collapse
|
8
|
Della Porta MG, Martinelli G, Rambaldi A, Santoro A, Voso MT. A practical algorithm for acute myeloid leukaemia diagnosis following the updated 2022 classifications. Crit Rev Oncol Hematol 2024; 198:104358. [PMID: 38615870 DOI: 10.1016/j.critrevonc.2024.104358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Disease classification of complex and heterogenous diseases, such as acute myeloid leukaemia (AML), is continuously updated to define diagnoses, appropriate treatments, and assist research and education. Recent availability of molecular profiling techniques further benefits the classification of AML. The World Health Organization (WHO) classification of haematolymphoid tumours and the International Consensus Classification of myeloid neoplasms and acute leukaemia from 2022 are two updated versions of the WHO 2016 classification. As a consequence, the European LeukemiaNet 2022 recommendations on the diagnosis and management of AML in adults have been also updated. The current review provides a practical interpretation of these guidelines to facilitate the diagnosis of AML and discusses genetic testing, disease genetic heterogeneity, and FLT3 mutations. We propose a practical algorithm for the speedy diagnosis of AML. Future classifications may need to incorporate gene mutation combinations to enable personalised treatment regimens in the management of patients with AML.
Collapse
Affiliation(s)
- Matteo Giovanni Della Porta
- Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy.
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Armadori", Meldola, Italy; University of Bologna, Bologna, Italy
| | - Alessandro Rambaldi
- Department of Oncology and Hematology, University of Milan, Milan, Italy and Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Alessandra Santoro
- UOSD Laboratory of Oncohematology, Cellular Manipulation and Cytogenetics, Department of Genetic, Oncohematology a Rare Disease, AOR "Villa Sofia-Cervello", Palermo, Italy
| | - Maria Teresa Voso
- UOSD Diagnostica Avanzata Oncoematologia, Policlinico Tor Vergata, and Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
9
|
Godley LA, DiNardo CD, Bolton K. Germline Predisposition in Hematologic Malignancies: Testing, Management, and Implications. Am Soc Clin Oncol Educ Book 2024; 44:e432218. [PMID: 38768412 DOI: 10.1200/edbk_432218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Although numerous barriers for clinical germline cancer predisposition testing exist, the increasing recognition of deleterious germline DNA variants contributing to myeloid malignancy risk is yielding steady improvements in referrals for testing and testing availability. Many germline predisposition alleles are common in populations, and the increasing number of recognized disorders makes inherited myeloid malignancy risk an entity worthy of consideration for all patients regardless of age at diagnosis. Germline testing is facilitated by obtaining DNA from cultured skin fibroblasts or hair bulbs, and cascade testing is easily performed via buccal swab, saliva, or blood. Increasingly as diagnostic criteria and clinical management guidelines include germline myeloid malignancy predisposition, insurance companies recognize the value of testing and provide coverage. Once an individual is recognized to have a deleterious germline variant that confers risk for myeloid malignancies, a personalized cancer surveillance plan can be developed that incorporates screening for other cancer risk outside of the hematopoietic system and/or other organ pathology. The future may also include monitoring the development of clonal hematopoiesis, which is common for many of these cancer risk disorders and/or inclusion of strategies to delay or prevent progression to overt myeloid malignancy. As research continues to identify new myeloid predisposition disorders, we may soon recommend testing for these conditions for all patients diagnosed with a myeloid predisposition condition.
Collapse
Affiliation(s)
- Lucy A Godley
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Northwestern University, Chicago, IL
| | - Courtney D DiNardo
- Department of Leukemia, University of Texas, MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
10
|
Travaglini S, Marinoni M, Visconte V, Guarnera L. Therapy-Related Myeloid Neoplasm: Biology and Mechanistic Aspects of Malignant Progression. Biomedicines 2024; 12:1054. [PMID: 38791019 PMCID: PMC11118122 DOI: 10.3390/biomedicines12051054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Therapy-related myeloid neoplasms (t-MN) arise after a documented history of chemo/radiotherapy as treatment for an unrelated condition and account for 10-20% of myelodysplastic syndromes and acute myeloid leukemia. T-MN are characterized by a specific genetic signature, aggressive features and dismal prognosis. The nomenclature and the subsets of these conditions have changed frequently over time, and despite the fact that, in the last classification, they lost their autonomous entity status and became disease qualifiers, the recognition of this feature remains of major importance. Furthermore, in recent years, extensive studies focusing on clonal hematopoiesis and germline variants shed light on the mechanisms of positive pressure underpinning the rise of driver gene mutations in t-MN. In this manuscript, we aim to review the evolution of defining criteria and characteristics of t-MN from a clinical and biological perspective, the advances in mechanistic aspects of malignant progression and the challenges in prevention and management.
Collapse
Affiliation(s)
- Serena Travaglini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Massimiliano Marinoni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Valeria Visconte
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Luca Guarnera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
11
|
Hwang SM. Genomic testing for germline predisposition to hematologic malignancies. Blood Res 2024; 59:12. [PMID: 38485837 PMCID: PMC10923764 DOI: 10.1007/s44313-024-00012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
Germline predisposition (GPD) to hematological malignancies has gained interest because of the increased use of genetic testing in this field. Recent studies have suggested that GPD is underrecognized and requires appropriate genomic testing for an accurate diagnosis. Identification of GPD significantly affects patient management and has diverse implications for family members. This review discusses the reasons for testing GPD in hematologic malignancies and explores the considerations necessary for appropriate genomic testing. The aim is to provide insights into how these genetic insights can inform treatment strategies and genetic counseling, ultimately enhancing patient care.
Collapse
Affiliation(s)
- Sang Mee Hwang
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Gumiro 173 Beongil-82, Bundanggu, Seongnam, Gyeonggido, 13620, South Korea.
| |
Collapse
|
12
|
Jerez J, Santiago M. Unraveling germline predisposition in hematological neoplasms: Navigating complexity in the genomic era. Blood Rev 2024; 64:101143. [PMID: 37989620 DOI: 10.1016/j.blre.2023.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/14/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Genomic advancements have yielded pivotal insights into hematological neoplasms, particularly concerning germline predisposition mutations. Following the WHO 2016 revisions, dedicated segments were proposed to address these aspects. Current WHO 2022, ICC 2022, and ELN 2022 classifications recognize their significance, introducing more mutations and prompting integration into clinical practice. Approximately 5-10% of hematological neoplasm patients show germline predisposition gene mutations, rising with risk factors such as personal cancer history and familial antecedents, even in older adults. Nevertheless, technical challenges persist. Optimal DNA samples are skin fibroblast-extracted, although not universally applicable. Alternatives such as hair follicle use are explored. Moreover, the scrutiny of germline genomics mandates judicious test selection to ensure precise and accurate interpretation. Given the significant influence of genetic counseling on patient care and post-assessment procedures, there arises a demand for dedicated centers offering specialized services.
Collapse
Affiliation(s)
- Joaquín Jerez
- Hematology Department, Fundación Arturo López Pérez, Chile; Resident of Hematology, Universidad de los Andes, Chile.
| | - Marta Santiago
- Hematology Department, Hospital La Fe, 46026, Valencia, Spain; Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain.
| |
Collapse
|
13
|
Williams LS, Williams KM, Gillis N, Bolton K, Damm F, Deuitch NT, Farhadfar N, Gergis U, Keel SB, Michelis FV, Panch SR, Porter CC, Sucheston-Campbell L, Tamari R, Stefanski HE, Godley LA, Lai C. Donor-Derived Malignancy and Transplantation Morbidity: Risks of Patient and Donor Genetics in Allogeneic Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2024; 30:255-267. [PMID: 37913908 PMCID: PMC10947964 DOI: 10.1016/j.jtct.2023.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains a key treatment option for hematologic malignancies (HMs), although it carries significant risks. Up to 30% of patients relapse after allo-HSCT, of which up to 2% to 5% are donor-derived malignancies (DDMs). DDMs can arise from a germline genetic predisposition allele or clonal hematopoiesis (CH) in the donor. Increasingly, genetic testing reveals that patient and donor genetic factors contribute to the development of DDM and other allo-HSCT complications. Deleterious germline variants in CEBPA, DDX41, GATA2, and RUNX1 predispose to inferior allo-HSCT outcomes. DDM has been linked to donor-acquired somatic CH variants in DNMT3A, ASXL1, JAK2, and IDH2, often with additional new variants. We do not yet have evidence to standardize donor genetic sequencing prior to allo-HSCT. The presence of hereditary HM disorders should be considered in patients with myeloid malignancies and their related donors, and screening of unrelated donors should include family and personal history of cytopenia and HMs. Excellent multidisciplinary care is critical to ensure efficient timelines for screening and necessary discussions among medical oncologists, genetic counselors, recipients, and potential donors. After allo-HSCT, HM relapse monitoring with genetic testing effectively results in genetic sequencing of the donor, as the transplanted hematopoietic system is donor-derived, which presents ethical challenges for disclosure to patients and donors. We encourage consideration of the recent National Marrow Donor Program policy that allows donors to opt-in for notification about detection of their genetic variants after allo-HSCT, with appropriate genetic counseling when feasible. We look forward to prospective investigation of the impact of germline and acquired somatic genetic variants on hematopoietic stem cell mobilization/engraftment, graft-versus-host disease, and DDM to facilitate improved outcomes through knowledge of genetic risk.
Collapse
Affiliation(s)
- Lacey S Williams
- Lombardi Clinical Cancer Center, Georgetown University, Washington, District of Columbia.
| | - Kirsten M Williams
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | - Nancy Gillis
- Department of Cancer Epidemiology and Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kelly Bolton
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Frederik Damm
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Natalie T Deuitch
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Nosha Farhadfar
- Division of Hematology/Oncology, University of Florida College of Medicine, Gainesville, Florida
| | - Usama Gergis
- Department of Medical Oncology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Siobán B Keel
- Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | | | - Sandhya R Panch
- Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Christopher C Porter
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | | | - Roni Tamari
- Memorial Sloan Kettering, New York, New York
| | - Heather E Stefanski
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Lucy A Godley
- Division of Hematology/Oncology and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Catherine Lai
- Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Löfstedt A, Jädersten M, Meeths M, Henter JI. Malignancy-associated hemophagocytic lymphohistiocytosis in Sweden: incidence, clinical characteristics, and survival. Blood 2024; 143:233-242. [PMID: 37595287 PMCID: PMC10808245 DOI: 10.1182/blood.2023020715] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023] Open
Abstract
ABSTRACT We evaluated malignancy-associated hemophagocytic lymphohistiocytosis (mal-HLH) in Sweden regarding population-based incidence, clinical features, and survival. From 1997 to 2018, we identified 307 adults (≥18 years old) and 9 children (209 males, 107 females; P < .001) with both an HLH-related diagnosis and malignant disease, corresponding to 0.19 per 100 000 adults annually (0.15/100 000 for the entire population), increasing from 0.026 (1997-2007) to 0.34 (2008-2018) (P < .001). In the latest 7-year period (2012-2018), the annual incidence was 0.45 per 100 000 adults (n = 246). This incidence varied between the 6 health care regions in Sweden, from 0.18 to 0.71 (Region Stockholm) per 100 000 adults annually (P < .001), likely due to variable awareness. Mal-HLH was reported in 0.6% of all hematological malignancies, with the highest proportion (2.5%) in young males. Among the 316 patients, the 1-month probability of survival, likely representing the HLH episode, increased significantly from 52% (95% confidence interval [CI], 40-63) (1997-2007) to 71% (95% CI, 65-76) (2008-2018), whereas 2-year survival remained poor (25%; 95% CI, 20-30). Altogether, 52% were lymphomas, 29% leukemias, 8% other hematological malignancies, and 11% solid tumors. Males were more affected than females by mal-HLH, also taking the over-representation of males with hematological malignancies into account (P = .0012). Validation by medical-file reviews revealed 13% over-reporting of HLH. We conclude that the annual mal-HLH incidence has increased 10-fold and was at least 0.71 per 100 000 adults from 2012 to 2018, that is, 0.62 per 100 000 adults considering 13% estimated HLH over-reporting, and that early survival improved significantly, likely due to increased awareness and more HLH-directed therapy.
Collapse
Affiliation(s)
- Alexandra Löfstedt
- Department of Women’s and Children’s Health, Childhood Cancer Research Unit, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgrens Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Jädersten
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Meeths
- Department of Women’s and Children’s Health, Childhood Cancer Research Unit, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgrens Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Jan-Inge Henter
- Department of Women’s and Children’s Health, Childhood Cancer Research Unit, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgrens Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Robbins DJ, Pavletich TS, Patil AT, Pahopos D, Lasarev M, Polaki US, Gahvari ZJ, Bresnick EH, Matson DR. Linking GATA2 to myeloid dysplasia and complex cytogenetics in adult myelodysplastic neoplasm and acute myeloid leukemia. Blood Adv 2024; 8:80-92. [PMID: 38029365 PMCID: PMC10787255 DOI: 10.1182/bloodadvances.2023011554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023] Open
Abstract
ABSTRACT GATA binding protein 2 (GATA2) is a conserved zinc finger transcription factor that regulates the emergence and maintenance of complex genetic programs driving development and function of hematopoietic stem and progenitor cells (HSPCs). Patients born with monoallelic GATA2 mutations develop myelodysplastic neoplasm (MDS) and acute myeloid leukemia (AML), whereas acquired GATA2 mutations are reported in 3% to 5% of sporadic AML cases. The mechanisms by which aberrant GATA2 activity promotes MDS and AML are incompletely understood. Efforts to understand GATA2 in basic biology and disease will be facilitated by the development of broadly efficacious antibodies recognizing physiologic levels of GATA2 in diverse tissue types and assays. Here, we purified a polyclonal anti-GATA2 antibody and generated multiple highly specific anti-GATA2 monoclonal antibodies, optimized them for immunohistochemistry on patient bone marrow bioosy samples, and analyzed GATA2 expression in adults with healthy bone marrow, MDS, and acute leukemia. In healthy bone marrow, GATA2 was detected in mast cells, subsets of CD34+ HSPCs, E-cadherin-positive erythroid progenitors, and megakaryocytes. In MDS, GATA2 expression correlates with bone marrow blast percentage, positively correlates with myeloid dysplasia and complex cytogenetics, and is a nonindependent negative predictor of overall survival. In acute leukemia, the percent of GATA2+ blasts closely associates with myeloid lineage, whereas a subset of lymphoblastic and undifferentiated leukemias with myeloid features also express GATA2. However, the percent of GATA2+ blasts in AML is highly variable. Elevated GATA2 expression in AML blasts correlates with peripheral neutropenia and complex AML cytogenetics but, unlike in MDS, does not predict survival.
Collapse
Affiliation(s)
- Daniel J. Robbins
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Tatiana S. Pavletich
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Apoorva T. Patil
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Demetra Pahopos
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Michael Lasarev
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
| | - Usha S. Polaki
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | | | - Emery H. Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin-Madison, Madison, WI
| | - Daniel R. Matson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
16
|
Gupta A, Aggarwal A, Sharma S, Bafana V, Sharma S. Germline CSF3R, RUNX1 and ETV6 Pathogenic Variants in a Case of Atypical Chronic Myeloid Leukemia: Individual to Familial Unravelling by Next Generation Sequencing. Indian J Hematol Blood Transfus 2024; 40:177-178. [PMID: 38312193 PMCID: PMC10831016 DOI: 10.1007/s12288-023-01656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 04/10/2023] [Indexed: 02/06/2024] Open
Affiliation(s)
- Aastha Gupta
- Department of Hematology, Core Diagnostics, Gurugram, 122016 India
| | - Aditi Aggarwal
- Department of Hematology, Core Diagnostics, Gurugram, 122016 India
| | - Sanjeev Sharma
- Department of Hematology, Core Diagnostics, Gurugram, 122016 India
| | - Varun Bafana
- Dr. Bafna Super Speciality Clinic and Star Hospital, Rukmini Nagar, Kolhapur, Maharahtra India
| | - Shivani Sharma
- Department of Hematology, Core Diagnostics, Gurugram, 122016 India
| |
Collapse
|
17
|
Wagner JN, Al-Bazaz M, Forstreuter A, Hammada MI, Hille J, Papingi D, Bokemeyer C, Fiedler W. Case Report of a DDX41 Germline Mutation in a Family with Multiple Relatives Suffering from Leukemia. Biomedicines 2023; 12:64. [PMID: 38255170 PMCID: PMC10813731 DOI: 10.3390/biomedicines12010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
INTRODUCTION Previously, it was assumed that genetic influence played a minor role in acute myeloid leukemia (AML). Increasing evidence of germline mutations has emerged, such as DDX41 germline mutation associated with familial AML. CASE PRESENTATION A 64-year-old male patient presented with reduced exercise tolerance and shortness of breath. Following confirmation of AML diagnosis, the patient was enrolled into the AMLSG-30-18 study with a requirement for allogenic stem cell transplantation. The sister was initially selected as a fully HLA-matched donor. However, the family history showed risks for familial AML. Due to the striking family history, further diagnostic steps were initiated to detect a germline mutation. METHODS Using NGS in the patients' bone marrow AML sample, a DDX41 mutation with a VAF of 49% was detected, raising the possibility of a germline mutation. DNA from cheek swabs and eyebrows were tested for the presence of the DDX41 mutation in all siblings. RESULTS DDX41 germline mutation was detected in 5 out of 6 siblings. The sister was excluded as a related donor and the search for an unrelated donor was initiated. CONCLUSION Obtaining family history of cancer patients plays a crucial role in oncology. If a germline mutation is suspected, further family work-up should be initiated.
Collapse
Affiliation(s)
- Jan Nicolai Wagner
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.A.-B.); (A.F.); (M.I.H.); (J.H.); (C.B.)
| | - Maximilian Al-Bazaz
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.A.-B.); (A.F.); (M.I.H.); (J.H.); (C.B.)
| | - Anika Forstreuter
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.A.-B.); (A.F.); (M.I.H.); (J.H.); (C.B.)
| | - Mohammad Ibrahim Hammada
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.A.-B.); (A.F.); (M.I.H.); (J.H.); (C.B.)
| | - Jurek Hille
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.A.-B.); (A.F.); (M.I.H.); (J.H.); (C.B.)
| | - Dzhoy Papingi
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.A.-B.); (A.F.); (M.I.H.); (J.H.); (C.B.)
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.A.-B.); (A.F.); (M.I.H.); (J.H.); (C.B.)
| |
Collapse
|
18
|
Calvete O, Mestre J, Risueño RM, Manzanares A, Acha P, Xicoy B, Solé F. Two-Time Multiplexed Targeted Next-Generation Sequencing Might Help the Implementation of Germline Screening Tools for Myelodysplastic Syndromes/Hematologic Neoplasms. Biomedicines 2023; 11:3222. [PMID: 38137443 PMCID: PMC10740751 DOI: 10.3390/biomedicines11123222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Next-generation sequencing (NGS) tools have importantly helped the classification of myelodysplastic syndromes (MDS), guiding the management of patients. However, new concerns are under debate regarding their implementation in routine clinical practice for the identification of germline predisposition. Cost-effective targeted NGS tools would improve the current standardized studies and genetic counseling. Here, we present our experience in a preliminary study detecting variants using a two-time multiplexed library strategy. Samples from different MDS patients were first mixed before library preparation and later multiplexed for a sequencing run. Two different mixes including a pool of three (3×) and four (4×) samples were evaluated. The filtered variants found in the individually sequenced samples were compared with the variants found in the two-time multiplexed studies to determine the detection efficiency scores. The same candidate variants were found in the two-time multiplexed studies in comparison with the individual tNGS. The variant allele frequency (VAF) values of the candidate variants were also compared. No significant differences were found between the expected and observed VAF percentages in both the 3× (p-value 0.74) and 4× (p-value 0.34) multiplexed studies. Our preliminary results suggest that the two-time multiplexing strategy might have the potential to help reduce the cost of evaluating germline predisposition.
Collapse
Affiliation(s)
- Oriol Calvete
- MDS Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Julia Mestre
- MDS Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Ruth M. Risueño
- Leukos Biotech, 08021 Barcelona, Spain
- Faculty of Education, University of Atlántico Medio, 35017 Las Palmas, Spain
| | - Ana Manzanares
- MDS Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Pamela Acha
- MDS Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Blanca Xicoy
- Hematology Service, ICO-Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Francesc Solé
- MDS Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
19
|
Gurnari C, Robin M, Godley LA, Drozd-Sokołowska J, Włodarski MW, Raj K, Onida F, Worel N, Ciceri F, Carbacioglu S, Kenyon M, Aljurf M, Bonfim C, Makishima H, Niemeyer C, Fenaux P, Zebisch A, Hamad N, Chalandon Y, Hellström-Lindberg E, Voso MT, Mecucci C, Duarte FB, Sebert M, Sicre de Fontbrune F, Soulier J, Shimamura A, Lindsley RC, Maciejewski JP, Calado RT, Yakoub-Agha I, McLornan DP. Germline predisposition traits in allogeneic hematopoietic stem-cell transplantation for myelodysplastic syndromes: a survey-based study and position paper on behalf of the Chronic Malignancies Working Party of the EBMT. Lancet Haematol 2023; 10:e994-e1005. [PMID: 37898151 DOI: 10.1016/s2352-3026(23)00265-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 10/30/2023]
Abstract
The recent application of whole exome or whole genome sequencing unveiled a plethora of germline variants predisposing to myeloid disorders, particularly myelodysplastic neoplasms. The presence of such variants in patients with myelodysplastic syndromes has important clinical repercussions for haematopoietic stem-cell transplantation, from donor selection and conditioning regimen to graft-versus-host disease prophylaxis and genetic counselling for relatives. No international guidelines exist to harmonise management approaches to this particular clinical scenario. Moreover, the application of germline testing, and how this informs clinical decisions, differs according to the expertise of individual clinical practices and according to different countries, health-care systems, and legislations. Leveraging the global span of the European Society for Blood and Marrow Transplantation (EBMT) network, we took a snapshot of the current European situation on these matters by disseminating an electronic survey to EBMT centres experienced in myelodysplastic syndromes transplantation. An international group of haematologists, transplantation physicians, paediatricians, nurses, and experts in molecular biology and constitutional genetics with experience in myelodysplastic syndromes contributed to this Position Paper. The panel met during multiple online meetings to discuss the results of the EBMT survey and to establish suggested harmonised guidelines for such clinical situations, which are presented here.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Marie Robin
- Department of Hematology and Bone Marrow Transplantation, Hôpital Saint-Louis, AP-HP, University Paris, Paris, France
| | - Lucy A Godley
- Section of Hematology and Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Joanna Drozd-Sokołowska
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Marcin W Włodarski
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kavita Raj
- University College London NHS Foundation Trust, London, UK
| | - Francesco Onida
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nina Worel
- Department of Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Selim Carbacioglu
- Department of Paediatric Oncology, Haematology and Stem Cell Transplantation, University Children's Hospital Regensburg, Regensburg, Germany
| | - Michelle Kenyon
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Mahmoud Aljurf
- Division of Hematology, Stem Cell Transplantation and Cellular Therapy, Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Carmem Bonfim
- Pediatric Blood and Marrow Transplantation Division and Pele Pequeno Principe Research Institute, Hospital Pequeno Principe, Curitiba, Brazil
| | - Hideki Makishima
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Charlotte Niemeyer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pierre Fenaux
- Department of Hematology and Bone Marrow Transplantation, Hôpital Saint-Louis, AP-HP, University Paris, Paris, France; INSERM U944, CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, AP-HP, Paris, France
| | - Armin Zebisch
- Division of Hematology and Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Nada Hamad
- Department of Hematology, St Vincent's Hospital Sydney, NSW, Australia
| | - Yves Chalandon
- Division of Hematology, Bone Marrow Transplant Unit, University Hospital of Geneva and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eva Hellström-Lindberg
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet and Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Cristina Mecucci
- Institute of Hematology and Center for Hemato-Oncology Research, University and Hospital of Perugia, Perugia, Italy
| | | | - Marie Sebert
- Department of Hematology and Bone Marrow Transplantation, Hôpital Saint-Louis, AP-HP, University Paris, Paris, France; INSERM U944, CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, AP-HP, Paris, France
| | - Flore Sicre de Fontbrune
- Department of Hematology and Bone Marrow Transplantation, Hôpital Saint Louis, AP-HP, Université Paris Cité, Centre National de Reference des Aplasies Médullaires Acquises et Constitutionnelles, Paris, France
| | - Jean Soulier
- INSERM U944, CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, AP-HP, Paris, France
| | - Akiko Shimamura
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | - Jarosław P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rodrigo T Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | | | | |
Collapse
|
20
|
Chin HL, Lam JCM, Christopher D, Michelle PL, Junrong BY. Challenges associated with the identification of germline variants on myeloid malignancy genomic profiling-a Singaporean experience. Front Oncol 2023; 13:1182639. [PMID: 37860182 PMCID: PMC10582742 DOI: 10.3389/fonc.2023.1182639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Genomic profiling to identify myeloid-malignancy-related gene mutations is routinely performed for patients with suspected or definite myeloid malignancies. The most common specimen types in our experience are peripheral blood and bone marrow aspirates. Although primarily intended to identify somatic mutations, not infrequently, potentially clinically significant germline variants are also identified. Confirmation of the germline status of these variants is typically performed by hair follicle or skin fibroblast testing. If the germline variant is classified as a pathogenic or likely pathogenic variant and occurs in a gene known to be associated with a disease relevant to the patient's phenotype (for example, the identification of a DDX41 pathogenic variant in an individual with acute myeloid leukemia), the management algorithm is typically quite straightforward. Challenging situations may occur such as when the germline variant is classified as a pathogenic or likely pathogenic variant and occurs in a gene not known to be associated with the patient's phenotype/presenting complaint. We have encountered several such challenging cases in which potentially clinically significant germline variants were identified on the initial genomic profiling of peripheral blood or bone marrow aspirate. In this article, we present these cases and discuss the genetic counseling and management approaches.
Collapse
Affiliation(s)
- Hui-Lin Chin
- Khoo Teck Puat National University Children's Medical Institute, Department of Paediatrics, National University Hospital, Singapore, Singapore
- Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Joyce Ching Mei Lam
- Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital, Singapore, Singapore
- Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Dheepa Christopher
- Department of Haematology, Tan Tock Seng Hospital, Singapore, Singapore
- Department of Laboratory Medicine, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Poon Limei Michelle
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore, Singapore
| | - Benedict Yan Junrong
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| |
Collapse
|
21
|
Gachard N, Lafage-Pochitaloff M, Quessada J, Auger N, Collonge-Rame MA. Cytogenetics in the management of hematologic neoplasms with germline predisposition: guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103416. [PMID: 37865978 DOI: 10.1016/j.retram.2023.103416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023]
Abstract
The number of predisposing genes is continuously growing with the widespread availability of DNA sequencing, increasing the prevalence of hematologic malignancies with germline predisposition. Cytogenetic analyses provide an effective approach for the recognition of these malignancies with germline predisposition, which is critical for proper diagnosis, optimal treatment and genetic counseling. Based on the World Health Organization and the international consensus classifications as well as the European LeukemiaNet recommendations, this review first presents an advanced classification of neoplasms with germline predisposition focused on the acquired cytogenetic alterations during leukemogenesis. The various genetic rescue mechanisms and the progression to transformation are then explained. The review also outlines the specific constitutional and somatic cytogenetic aberrations indicative of germline predisposition disorders in B-acute lymphoblastic leukemia (ALL), T-ALL, bone marrow failure syndrome and myeloid neoplasms. An emphasis is made on monosomy 7 in the predisposition field, its frequency and diagnosis impact as well as its various circumstances of occurrence. Lastly, we propose cytogenetic technical recommendations and guidelines for clinical reporting of these specific aberrations.
Collapse
Affiliation(s)
- Nathalie Gachard
- Laboratoire d'hématologie, Centre de Biologie et de Recherche en Santé, CHU de Limoges, Limoges 87042, France; UMR CNRS 7276, INSERM U1262 Université de Limoges, Limoges 87025, France.
| | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France
| | - Nathalie Auger
- Laboratoire de Cytogénétique -Génétique des Tumeurs - Gustave Roussy - 144 rue Edouard Vaillant, Villejuif 94805, France
| | - Marie-Agnès Collonge-Rame
- Oncobiologie Génétique Bioinformatique, UF Cytogénétique et Génétique Moléculaire, CHU de Besançon, Besançon 25030, France
| |
Collapse
|
22
|
Maliński B, Vertemara J, Faustini E, Ladenvall C, Norberg A, Zhang Y, von Castelmur E, Baliakas P, Tisi R, Cammenga J, Lottersberger F. Novel pathological variants of NHP2 affect N-terminal domain flexibility, protein stability, H/ACA Ribonucleoprotein (RNP) complex formation and telomerase activity. Hum Mol Genet 2023; 32:2901-2912. [PMID: 37440454 PMCID: PMC10508036 DOI: 10.1093/hmg/ddad114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023] Open
Abstract
Telomere biology disorders (TBDs) are characterized by short telomeres, premature aging, bone marrow failure and cancer predisposition. Germline mutations in NHP2, encoding for one component of the telomerase cofactor H/ACA RNA binding complex together with Dyskerin, NOP10 and GAR1, have been previously reported in rare cases of TBDs. Here, we report two novel NHP2 variants (NHP2-A39T and NHP2-T44M) identified in a compound heterozygous patient affected by premature aging, bone marrow failure/myelodysplastic syndrome and gastric cancer. Although still able to support cell viability, both variants reduce the levels of hTR, the telomerase RNA component, and telomerase activity, expanding the panel of NHP2 pathological variants. Furthermore, both variants fail to be incorporated in the H/ACA RNA binding complex when in competition with wild-type endogenous NHP2, and the lack of incorporation causes their drastic proteasomal degradation. By RoseTTAFold prediction followed by molecular dynamics simulations, we reveal a dramatic distortion of residues 33-41, which normally position on top of the NHP2 core, as the main defect of NHP2-A39T, and high flexibility and the misplacement of the N-terminal region (residues 1-24) in NHP2-T44M and, to a lower degree, in NHP2-A39T. Because deletion of amino acids 2-24 causes a reduction in NHP2 levels only in the presence of wild-type NHP2, while deletion of amino acids 2-38 completely disrupts NHP2 stability, we propose that the two variants are mis-incorporated into the H/ACA binding complex due to the altered dynamics of the first 23 amino acids and/or the distortion of the residues 25-41 loop.
Collapse
Affiliation(s)
- Bartosz Maliński
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58185, Sweden
| | - Jacopo Vertemara
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Elena Faustini
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58185, Sweden
| | - Claes Ladenvall
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 90185, Sweden
| | - Anna Norberg
- Klinisk genetik, Norrlands Universitetssjukhus, Umeå 75185, Sweden
| | - Yuming Zhang
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58185, Sweden
| | - Eleonore von Castelmur
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 90185, Sweden
| | - Renata Tisi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Jörg Cammenga
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58185, Sweden
- Department of Laboratory Medicine, Lund University, Lund 22184, Sweden
| | - Francisca Lottersberger
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58185, Sweden
| |
Collapse
|
23
|
Fox LC. Seeking the right balance in hereditary hematopoietic malignancy diagnosis. Leuk Lymphoma 2023; 64:1501-1502. [PMID: 37493595 DOI: 10.1080/10428194.2023.2237151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Affiliation(s)
- Lucy C Fox
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Victoria, Australia
- University of Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Falconi G, Galossi E, Hajrullaj H, Fabiani E, Voso MT. Bone Marrow Microenvironment Involvement in t-MN: Focus on Mesenchymal Stem Cells. Mediterr J Hematol Infect Dis 2023; 15:e2023055. [PMID: 37705521 PMCID: PMC10497308 DOI: 10.4084/mjhid.2023.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Therapy-related myeloid neoplasms (t-MN) are a late complication of cytotoxic therapy (CT) used in the treatment of both malignant and non-malignant diseases. Historically, t-MN has been considered to be a direct consequence of DNA damage induced in normal hematopoietic stem or progenitor cells (HSPC) by CT. However, we now know that treatment-induced mutations in HSC are not the only players involved in t-MN development, but additional factors may contribute to the onset of t-MN. One of the known drivers involved in this field is the bone marrow microenvironment (BMM) and, in particular, bone marrow mesenchymal stem cells (BM-MSC), whose role in t-MN pathogenesis is the topic of this mini-review. BM-MSCs, physiologically, support HSC maintenance, self-renewal, and differentiation through hematopoietic-stromal interactions and the production of cytokines. In addition, BM-MSCs maintain the stability of the BM immune microenvironment and reduce the damage caused to HSC by stress stimuli. In the t-MN context, chemo/radiotherapy may induce damage to the BM-MSC and likewise alter BM-MSC functions by promoting pro-inflammatory response, clonal selection and/or the production of factors that may favor malignant hematopoiesis. Over the last decade, it has been shown that BM-MSC isolated from patients with de novo and therapy-related MN exhibit decreased proliferative and clonogenic capacity, altered morphology, increased senescence, defective osteogenic differentiation potential, impaired immune-regulatory properties, and reduced ability to support HSC growth and differentiation, as compared to normal BM-MSC. Although the understanding of the genetic and gene expression profile associated with ex vivo-expanded t-MN-MSCs remains limited and debatable, its potential role in prognostic and therapeutic terms is acting as a flywheel of attraction for many researchers.
Collapse
Affiliation(s)
- Giulia Falconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - E Galossi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - H Hajrullaj
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - E Fabiani
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - M T Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
25
|
Hamidi A, Roloff GW, Shaw R, Acevedo M, Smith S, Drazer MW. Clinical guideline variability in the diagnosis of hereditary hematopoietic malignancy syndromes. Leuk Lymphoma 2023; 64:1562-1565. [PMID: 37294121 DOI: 10.1080/10428194.2023.2220457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/10/2023]
Abstract
A growing understanding of the complexities of hematopoietic malignancies necessitates the existence of clinical recommendations that are sufficiently comprehensive. Although hereditary hematopoietic malignancies (HHMs) are increasingly recognized for conferring risk of myeloid malignancy, frequently utilized clinical recommendations have never been appraised for the ability to reliably guide HHM evaluation. We assessed established society-level clinical guidelines for inclusion of critical HHM genes and graded the strength of testing recommendations. We uncovered a substantial lack of consistency of recommendations guiding HHM evaluation. Such heterogeneity in guidelines likely contributes to refusal by payers to support HHM testing, leading to underdiagnoses and lost opportunities for clinical surveillance.
Collapse
Affiliation(s)
- Adam Hamidi
- Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Gregory W Roloff
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA
| | - Reid Shaw
- Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Maria Acevedo
- University of Illinois at Chicago School of Medicine, Chicago, IL, USA
| | - Shaili Smith
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA
| | - Michael W Drazer
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
26
|
Eriksson A, Engvall M, Mathot L, Österroos A, Rippin M, Cavelier L, Ladenvall C, Baliakas P. Somatic Exonic Deletions in RUNX1 Constitutes a Novel Recurrent Genomic Abnormality in Acute Myeloid Leukemia. Clin Cancer Res 2023; 29:2826-2834. [PMID: 37022349 DOI: 10.1158/1078-0432.ccr-23-0122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 04/07/2023]
Abstract
PURPOSE In acute myeloid leukemia (AML), somatic mutations (commonly missense, nonsense, and frameshift indels) in RUNX1 are associated with a dismal clinical outcome. Inherited RUNX1 mutations cause familial platelet disorder. As approximately 5%-10% of germline RUNX1 mutations are large exonic deletions, we hypothesized that such exonic RUNX1 aberrations may also be acquired during the development of AML. EXPERIMENTAL DESIGN Sixty patients with well-characterized AML were analyzed with multiplex ligation-dependent probe amplification (n = 60), microarray (n = 11), and/or whole-genome sequencing (n = 8). RESULTS In total, 25 (42% of the cohort) RUNX1-aberrant patients (defined by the presence of classical mutations and/or exonic deletions) were identified. Sixteen patients (27%) carried only exonic deletions, 5 (8%) carried classical mutations, and 4 (7%) carried both exonic deletions and mutations. No significant difference was observed between patients with classical RUNX1 mutations and RUNX1 exonic deletions in median overall survival (OS, 53.1 vs. 38.8 months, respectively, P = 0.63). When applying the European Leukemia Net (ELN) classification including the RUNX1-aberrant group, 20% of the patients initially stratified as intermediate-risk (5% of the whole cohort) were reassigned to the high-risk group, which improved the performance of ELN classification regarding OS between intermediate- and high-risk groups (18.9 vs. 9.6 months, P = 0.09). CONCLUSIONS Somatic RUNX1 exonic deletions constitute a novel recurrent aberration in AML. Our findings have important clinical implications regarding AML classification, risk stratification, and treatment decision. Moreover, they argue in favor of further investigating such genomic aberrations not only in RUNX1 but also in other genes implicated in cancer biology and management. See related commentary by Chakraborty and Stengel, p. 2742.
Collapse
Affiliation(s)
- Anna Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Marie Engvall
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucy Mathot
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Albin Österroos
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Martin Rippin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| | - Claes Ladenvall
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
27
|
Calvete O, Mestre J, Durmaz A, Gurnari C, Maciejewski JP, Solé F. Are the current guidelines for identification of myelodysplastic syndrome with germline predisposition strong enough? Br J Haematol 2023; 201:e5-e11. [PMID: 36717968 PMCID: PMC11104019 DOI: 10.1111/bjh.18676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Affiliation(s)
- Oriol Calvete
- Myelodysplastic Syndrome Group, Josep Carreras, Leukaemia Research Institute, ICO-Hospital Germans, Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Julia Mestre
- Myelodysplastic Syndrome Group, Josep Carreras, Leukaemia Research Institute, ICO-Hospital Germans, Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Arda Durmaz
- Department of Translational Hematology and, Oncology Research, Lerner Research Institute, Cleveland Clinic, Ohio, Cleveland, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and, Oncology Research, Lerner Research Institute, Cleveland Clinic, Ohio, Cleveland, USA
- Department of Biomedicine and Prevention, PhD, in Immunology, Molecular Medicine and Applied, Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and, Oncology Research, Lerner Research Institute, Cleveland Clinic, Ohio, Cleveland, USA
| | - Francesc Solé
- Myelodysplastic Syndrome Group, Josep Carreras, Leukaemia Research Institute, ICO-Hospital Germans, Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Förster A, Davenport C, Duployez N, Erlacher M, Ferster A, Fitzgibbon J, Göhring G, Hasle H, Jongmans MC, Kolenova A, Kronnie G, Lammens T, Mecucci C, Mlynarski W, Niemeyer CM, Sole F, Szczepanski T, Waanders E, Biondi A, Wlodarski M, Schlegelberger B, Ripperger T. European standard clinical practice - Key issues for the medical care of individuals with familial leukemia. Eur J Med Genet 2023; 66:104727. [PMID: 36775010 DOI: 10.1016/j.ejmg.2023.104727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023]
Abstract
Although hematologic malignancies (HM) are no longer considered exclusively sporadic, additional awareness of familial cases has yet to be created. Individuals carrying a (likely) pathogenic germline variant (e.g., in ETV6, GATA2, SAMD9, SAMD9L, or RUNX1) are at an increased risk for developing HM. Given the clinical and psychological impact associated with the diagnosis of a genetic predisposition to HM, it is of utmost importance to provide high-quality, standardized patient care. To address these issues and harmonize care across Europe, the Familial Leukemia Subnetwork within the ERN PaedCan has been assigned to draft an European Standard Clinical Practice (ESCP) document reflecting current best practices for pediatric patients and (healthy) relatives with (suspected) familial leukemia. The group was supported by members of the German network for rare diseases MyPred, of the Host Genome Working Group of SIOPE, and of the COST action LEGEND. The ESCP on familial leukemia is proposed by an interdisciplinary team of experts including hematologists, oncologists, and human geneticists. It is intended to provide general recommendations in areas where disease-specific recommendations do not yet exist. Here, we describe key issues for the medical care of familial leukemia that shall pave the way for a future consensus guideline: (i) identification of individuals with or suggestive of familial leukemia, (ii) genetic analysis and variant interpretation, (iii) genetic counseling and patient education, and (iv) surveillance and (psychological) support. To address the question on how to proceed with individuals suggestive of or at risk of familial leukemia, we developed an algorithm covering four different, partially linked clinical scenarios, and additionally a decision tree to guide clinicians in their considerations regarding familial leukemia in minors with HM. Our recommendations cover, not only patients but also relatives that both should have access to adequate medical care. We illustrate the importance of natural history studies and the need for respective registries for future evidence-based recommendations that shall be updated as new evidence-based standards are established.
Collapse
Affiliation(s)
- Alisa Förster
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Claudia Davenport
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Nicolas Duployez
- Department of Hematology, CHU Lille, INSERM, University Lille, Lille, France
| | - Miriam Erlacher
- Division of Pediatric Hematology-Oncology, Department of Pediatric and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Alina Ferster
- Department of Pediatric Rheumatology, Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium
| | - Jude Fitzgibbon
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Henrik Hasle
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Marjolijn C Jongmans
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alexandra Kolenova
- Department of Pediatric Hematology and Oncology, Comenius University Medical School and University Children's Hospital, Bratislava, Slovakia
| | | | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Cristina Mecucci
- Institute of Hematology and Center for Hemato-Oncology Research, University and Hospital of Perugia, Perugia, Italy
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Francesc Sole
- Josep Carreras Leukemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Tomasz Szczepanski
- Polish Pediatric Leukemia/Lymphoma Study Group, Zabrze, Poland; Medical University of Silesia, Katowice, Poland
| | - Esmé Waanders
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Andrea Biondi
- Clinica Pediatrica and Centro Ricerca Tettamanti, Università di Milano-Bicocca, Monza, Italy
| | - Marcin Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
29
|
Homan CC, Scott HS, Brown AL. Hereditary platelet disorders associated with germ line variants in RUNX1, ETV6, and ANKRD26. Blood 2023; 141:1533-1543. [PMID: 36626254 PMCID: PMC10651873 DOI: 10.1182/blood.2022017735] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
Hereditary platelet disorders (HPDs) are a group of blood disorders with variable severity and clinical impact. Although phenotypically there is much overlap, known genetic causes are many, prompting the curation of multigene panels for clinical use, which are being deployed in increasingly large-scale populations to uncover missing heritability more efficiently. For some of these disorders, in particular RUNX1, ETV6, and ANKRD26, pathogenic germ line variants in these genes also come with a risk of developing hematological malignancy (HM). Although they may initially present as similarly mild-moderate thrombocytopenia, each of these 3 disorders have distinct penetrance of HM and a different range of somatic alterations associated with malignancy development. As our ability to diagnose HPDs has improved, we are now faced with the challenges of integrating these advances into routine clinical practice for patients and how to optimize management and surveillance of patients and carriers who have not developed malignancy. The volume of genetic information now being generated has created new challenges in how to accurately assess and report identified variants. The answers to all these questions involve international initiatives on rare diseases to better understand the biology of these disorders and design appropriate models and therapies for preclinical testing and clinical trials. Partnered with this are continued technological developments, including the rapid sharing of genetic variant information and automated integration with variant classification relevant data, such as high-throughput functional data. Collective progress in this area will drive timely diagnosis and, in time, leukemia preventive therapeutic interventions.
Collapse
Affiliation(s)
- Claire C. Homan
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Hamish S. Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
- Australian Cancer Research Foundation (ACRF) Genomics Facility, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Anna L. Brown
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
30
|
Santiago M, Liquori A, Such E, Zúñiga Á, Cervera J. The Clinical Spectrum, Diagnosis, and Management of GATA2 Deficiency. Cancers (Basel) 2023; 15:cancers15051590. [PMID: 36900380 PMCID: PMC10000430 DOI: 10.3390/cancers15051590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Hereditary myeloid malignancy syndromes (HMMSs) are rare but are becoming increasingly significant in clinical practice. One of the most well-known syndromes within this group is GATA2 deficiency. The GATA2 gene encodes a zinc finger transcription factor essential for normal hematopoiesis. Insufficient expression and function of this gene as a result of germinal mutations underlie distinct clinical presentations, including childhood myelodysplastic syndrome and acute myeloid leukemia, in which the acquisition of additional molecular somatic abnormalities can lead to variable outcomes. The only curative treatment for this syndrome is allogeneic hematopoietic stem cell transplantation, which should be performed before irreversible organ damage happens. In this review, we will examine the structural characteristics of the GATA2 gene, its physiological and pathological functions, how GATA2 genetic mutations contribute to myeloid neoplasms, and other potential clinical manifestations. Finally, we will provide an overview of current therapeutic options, including recent transplantation strategies.
Collapse
Affiliation(s)
- Marta Santiago
- Hematology Department, Hospital La Fe, 46026 Valencia, Spain; (M.S.); (E.S.); (J.C.)
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Alessandro Liquori
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence:
| | - Esperanza Such
- Hematology Department, Hospital La Fe, 46026 Valencia, Spain; (M.S.); (E.S.); (J.C.)
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Ángel Zúñiga
- Genetics Unit, Hospital La Fe, 46026 Valencia, Spain;
| | - José Cervera
- Hematology Department, Hospital La Fe, 46026 Valencia, Spain; (M.S.); (E.S.); (J.C.)
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Genetics Unit, Hospital La Fe, 46026 Valencia, Spain;
| |
Collapse
|
31
|
Calvete O, Mestre J, Jerez A, Solé F. The Secondary Myelodysplastic Neoplasms (MDS) Jigsaw. Cancers (Basel) 2023; 15:1483. [PMID: 36900275 PMCID: PMC10000488 DOI: 10.3390/cancers15051483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
There is a great deal of controversy in the hematologic community regarding the classification of secondary myelodysplastic neoplasms (MDSs). Current classifications are based on the presence of genetic predisposition and MDS post-cytotoxic therapy (MDS-pCT) etiologies. However, since these risk factors are not exclusive for secondary MDSs and there are multiple overlapping scenarios, a comprehensive and definitive classification is yet to come. In addition, a sporadic MDS might arise after a primary tumor fulfills the diagnostic criteria of MDS-pCT without a causative cytotoxicity. In this review, we describe the triggering pieces of a secondary MDS jigsaw: previous cytotoxic therapy, germline predisposition and clonal hematopoiesis. Epidemiological and translational efforts are needed to put these pieces together and ascertain the real weight of each of these pieces in each MDS patient. Future classifications must contribute to understanding the role of secondary MDS jigsaw pieces in different concomitant or independent clinical scenarios associated with the primary tumor.
Collapse
Affiliation(s)
- Oriol Calvete
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08916 Barcelona, Spain
| | - Julia Mestre
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08916 Barcelona, Spain
| | - Andrés Jerez
- Experimental Hematology Unit, Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), University Hospital Vall d’Hebron, 08035 Barcelona, Spain
| | - Francesc Solé
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08916 Barcelona, Spain
| |
Collapse
|
32
|
Yun J, Song H, Kim SM, Kim S, Kwon SR, Lee YE, Jeong D, Park JH, Kwon S, Yun H, Lee DS. Analysis of clinical and genomic profiles of therapy-related myeloid neoplasm in Korea. Hum Genomics 2023; 17:13. [PMID: 36814285 PMCID: PMC9948421 DOI: 10.1186/s40246-023-00458-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Therapy-related myeloid neoplasm (T-MN) rarely occurs among cancer survivors, and was characterized by poor prognosis. T-MN has germline predisposition in a considerable proportion. Here, clinical characteristics and germline/somatic variant profiles in T-MN patients were investigated, and the findings were compared with those of previous studies. METHODS A review of medical records, cytogenetic study, targeted sequencing by next-generation sequencing, and survival analysis were performed on 53 patients with T-MN at a single institution in Korea. RESULTS The patients were relatively younger compared to T-MN patients in other studies. Our T-MN patients showed a high frequency of complex karyotypes, -5/del(5q), and -7/del(7q), which was similar to the Japanese study group but higher than the Australian study group. The most common primary disease was non-Hodgkin lymphoma, followed by breast cancer. The detailed distributions of primary diseases were different across study groups. Seven patients (13.2%) harbored deleterious presumed/potential germline variants in cancer predisposition genes (CPG) such as BRIP1, CEBPA, DDX41, FANCM, NBN, NF1, and RUNX1. In the somatic variant profile, TP53 was the most frequently mutated gene, which was consistent with the previous studies about T-MN. However, the somatic variant frequency in our study group was lower than in other studies. Adverse factors for overall survival were male sex, older age, history of previous radiotherapy, previous longer cytotoxic therapy, and -5/del(5q). CONCLUSION The findings of our study corroborate important information about T-MN patients. As well as a considerable predisposition to CPG, the clinical characteristics and somatic variant profile showed distinctive patterns. Germline variant testing should be recommended for T-MN patients. If the T-MN patients harbor pathogenic germline variants, the family members for stem cell donation should be screened for carrier status through germline variant testing to avoid donor-derived myeloid neoplasm. For the prediction of the prognosis in T-MN patients, sex, age, past treatment history, and cytogenetic findings can be considered.
Collapse
Affiliation(s)
- Jiwon Yun
- Department of Laboratory Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Laboratory Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Hyojin Song
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Sung-Min Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soonok Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seok Ryun Kwon
- Department of Laboratory Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Young Eun Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dajeong Jeong
- Department of Laboratory Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jae Hyeon Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
| | - Hongseok Yun
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Dong Soon Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Genomic Medicine Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Godley LA. Prioritization of patients for germline testing based on tumor profiling of hematopoietic malignancies. Front Oncol 2023; 13:1084736. [PMID: 36793609 PMCID: PMC9923095 DOI: 10.3389/fonc.2023.1084736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Germline predisposition to hematopoietic malignancies is more common than previously appreciated, with several clinical guidelines advocating for cancer risk testing in an expanding pool of patients. As molecular profiling of tumor cells becomes a standard practice for prognostication and defining options for targeted therapies, recognition that germline variants are present in all cells and can be identified by such testing becomes paramount. Although not to be substituted for proper germline cancer risk testing, tumor-based profiling can help prioritize DNA variants likely to be of germline origin, especially when they are present on sequential samples and persist into remission. Performing germline genetic testing as early during patient work-up as possible allows time to plan allogeneic stem cell transplantation using appropriate donors and optimize post-transplant prophylaxis. Health care providers need to be attentive to the differences between molecular profiling of tumor cells and germline genetic testing regarding ideal sample types, platform designs, capabilities, and limitations, to allow testing data to be interpreted as comprehensively as possible. The myriad of mutation types and growing number of genes involved in germline predisposition to hematopoietic malignancies makes reliance on detection of deleterious alleles using tumor-based testing alone very difficult and makes understanding how to ensure adequate testing of appropriate patients paramount.
Collapse
Affiliation(s)
- Lucy A Godley
- Section of Hematology/Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
34
|
Speight B, Hanson H, Turnbull C, Hardy S, Drummond J, Khorashad J, Wragg C, Page P, Parkin NW, Rio-Machin A, Fitzgibbon J, Kulasekararaj AG, Hamblin A, Talley P, McVeigh TP, Snape K. Germline predisposition to haematological malignancies: Best practice consensus guidelines from the UK Cancer Genetics Group (UKCGG), CanGene-CanVar and the NHS England Haematological Oncology Working Group. Br J Haematol 2023; 201:25-34. [PMID: 36744544 DOI: 10.1111/bjh.18675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 02/07/2023]
Abstract
The implementation of whole genome sequencing and large somatic gene panels in haematological malignancies is identifying an increasing number of individuals with either potential or confirmed germline predisposition to haematological malignancy. There are currently no national or international best practice guidelines with respect to management of carriers of such variants or of their at-risk relatives. To address this gap, the UK Cancer Genetics Group (UKCGG), CanGene-CanVar and the NHS England Haematological Oncology Working Group held a workshop over two days on 28-29th April 2022, with the aim of establishing consensus guidelines on relevant clinical and laboratory pathways. The workshop focussed on the management of disease-causing germline variation in the following genes: DDX41, CEBPA, RUNX1, ANKRD26, ETV6, GATA2. Using a pre-workshop survey followed by structured discussion and in-meeting polling, we achieved consensus for UK best practice in several areas. In particular, high consensus was achieved on issues regarding standardised reporting, variant classification, multidisciplinary team working and patient support. The best practice recommendations from this meeting may be applicable to an expanding number of other genes in this setting.
Collapse
Affiliation(s)
- Beverley Speight
- East Anglian Medical Genetics Service, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Helen Hanson
- South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, UK
- Institute of Cancer Research, Sutton, London, UK
| | - Clare Turnbull
- Institute of Cancer Research, Sutton, London, UK
- Cancer Genetics Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Steven Hardy
- National Disease Registration Service, NHS Digital, London, UK
| | - James Drummond
- East Anglian Medical Genetics Service, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, UK
| | | | - Christopher Wragg
- South West Genomics Laboratory Hub, Bristol Genetics Laboratory, North Bristol NHS Trust, Pathology Building, Southmead Hospital, Bristol, UK
| | - Paula Page
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Nicholas W Parkin
- Molecular Pathology Laboratory, Synnovis Analytics, King's College Hospital, London, UK
| | - Ana Rio-Machin
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jude Fitzgibbon
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Austin Gladston Kulasekararaj
- King's College Hospital NHS Foundation Trust, London, UK
- National Institute for Health and Care Research and Wellcome King's Research Facility, London, UK
- King's College London, London, UK
| | - Angela Hamblin
- Oxford University Hospitals NHS Foundation Trust and Central and South Genomic Laboratory Hub, Oxford, UK
| | - Polly Talley
- Genomics Unit, NHS UK and NHS Improvement, Leeds, UK
- North East and Yorkshire Genomic Laboratory Hub, Leeds, UK
| | - Terri P McVeigh
- Institute of Cancer Research, Sutton, London, UK
- Cancer Genetics Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Katie Snape
- South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, UK
- King's College Hospital NHS Foundation Trust, London, UK
| | | |
Collapse
|
35
|
Novel Candidate loci and Pathogenic Germline Variants Involved in Familial Hematological Malignancies Revealed by Whole-Exome Sequencing. Cancers (Basel) 2023; 15:cancers15030944. [PMID: 36765901 PMCID: PMC9913276 DOI: 10.3390/cancers15030944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The familial occurrence of hematological malignancies has been underappreciated. Recent studies suggest that up to 15% of adults with myeloid neoplasms carry germline pathogenic variants in cancer-predisposing genes. This study aimed to identify the underlying germline predisposition variant in patients with a strong family or personal onco-hematological history using whole exome sequencing on sixteen uncharacterized individuals. It was carried out in two groups of patients, one with samples available from two affected relatives (Cohort A) and one with available samples from the index case (Cohort B). In Cohort A, six families were characterized. Two families shared variants in genes associated with DNA damage response and involved in cancer development (CHEK2 and RAD54L). Pathogenic or likely pathogenic germline variants were also found in novel candidate genes (NFATC2 and TC2N). In two families, any relevant pathogenic or likely pathogenic genomic variants were identified. In Cohort B, four additional index cases were analyzed. Three of them harbor clinically relevant variants in genes with a probable role in the development of inherited forms of hematological malignancies (GATA1, MSH4 and PRF1). Overall, whole exome sequencing is a useful approach to achieve a further characterization of these patients and their mutational spectra. Moreover, further investigations may help improve optimization for disease management of affected patients and their families.
Collapse
|
36
|
Coiteux V, Fenwarth L, Duployez N, Ainaoui M, Borel C, Polomeni A, Yakoub-Agha I, Chalandon Y. [Management of genetic predisposition to hematologic malignancies in patients undergoing allogeneic hematopoietic cell transplantation (HCT): Guidelines from the SFGM-TC]. Bull Cancer 2023; 110:S13-S29. [PMID: 36307324 DOI: 10.1016/j.bulcan.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022]
Abstract
The advent of new technologies has made it possible to identify genetic predispositions to myelodysplastic syndromes (MDS) and acute leukemias (AL) more frequently. The most frequent and best characterized at present are mutations in CEBPA, RUNX1, GATA2, ETV6 and DDX41 and, either in the presence of one of these mutations with a high allelic frequency, or in the case of a personal or family history suggestive of blood abnormalities such as non-immune thrombocytopenia, it is recommended to look for the possibility of a hereditary hematological malignancy (HHM). Indeed, early recognition of these HHMs allows better adaptation of the management of patients and their relatives, as allogeneic hematopoietic stem cell transplantation (HSCT) is very often proposed for these pathologies. According to current data, with the exception of the GATA2 mutation, the constitutional or somatic nature of the mutations does not seem to influence the prognosis of hematological diseases. Therefore, the indication for an allograft will be determined according to the usual criteria. However, when searching for a family donor, it is important to ensure that there is no hereditary disease in the donor. In order to guarantee the possibility of performing the HSC allograft within a short period of time, it may be necessary to initiate a parallel procedure to find an unrelated donor. Given the limited information on the modalities of HSC transplantation in this setting, it is important to assess the benefit/risk of the disease and the procedure to decide on the type of conditioning (myeloablative or reduced intensity). In view of the limited experience with the risk of secondary cancers in the medium and long-term, it may be appropriate to recommend reduced intensity conditioning, as in the case of better characterized syndromic hematological diseases such as Fanconi anemia or telomere diseases. In summary, it seems important to evoke HHM more frequently, particularly in the presence of a family history, certain mutations or persistent blood abnormalities, in order to discuss the specific modalities of HSC allografting, particularly with regard to the search for a donor and the evaluation of certain modalities of the procedure, such as conditioning. It should be noted that the discovery of HHM, especially if the indication of an allogeneic HSC transplant is retained, will raise ethical and psychological considerations not only for the patient, but also for his family. A multidisciplinary approach involving molecular biologists, geneticists, hematologists and psychologists is essential.
Collapse
Affiliation(s)
- Valérie Coiteux
- Hôpital Huriez, CHU de Lille, service de maladies du sang, 1, place de Verdun, 59037 Lille cedex, France.
| | - Laurène Fenwarth
- Université de Lille, CHU de Lille, CNRS, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Inserm, 59000 Lille, France
| | - Nicolas Duployez
- Université de Lille, CHU de Lille, CNRS, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Inserm, 59000 Lille, France
| | - Malika Ainaoui
- Hôpital Huriez, hôpital Fontan, CHU de Lille, service de maladies du sang, service de psychiatrie de liaison, 1, place de Verdun, 59037 Lille cedex, France
| | - Cécile Borel
- CHU de Toulouse, institut universitaire du cancer de Toulouse Oncopole, service d'hématologie, 1, avenue Irène-Joliot-Curie, 31059 Toulouse, France
| | - Alice Polomeni
- AP-HP, hôpital Saint-Antoine, service d'hématologie clinique et thérapie cellulaire, 184, rue du faubourg Saint-Antoine, 75012 Paris, France
| | | | - Yves Chalandon
- Université de Genève, hôpitaux universitaires de Genève, faculté de médecine, service d'hématologie, 4, rue Gabrielle-Perret-Gentil, 1211 Genève, Suisse.
| |
Collapse
|
37
|
DeFilipp Z, Ciurea SO, Cutler C, Robin M, Warlick ED, Nakamura R, Brunner AM, Dholaria B, Walker AR, Kröger N, Bejanyan N, Atallah E, Tamari R, Solh MM, Percival ME, de Lima M, Scott B, Oran B, Garcia-Manero G, Hamadani M, Carpenter P, DeZern AE. Hematopoietic Cell Transplantation in the Management of Myelodysplastic Syndrome: An Evidence-Based Review from the American Society for Transplantation and Cellular Therapy Committee on Practice Guidelines. Transplant Cell Ther 2023; 29:71-81. [PMID: 36436780 DOI: 10.1016/j.jtct.2022.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
The sole curative therapy for myelodysplastic syndrome (MDS) is allogeneic hematopoietic cell transplantation (HCT). Here this therapeutic modality is reviewed and critically evaluated in the context of the evidence. Specific criteria were used for searching the published literature and for grading the quality and strength of the evidence and the strength of the recommendations. A panel of MDS experts comprising transplantation and nontransplantation physicians developed consensus treatment recommendations. This review summarizes the standard MDS indications for HCT and addresses areas of controversy. Recent prospective trials have confirmed that allogeneic HCT confers survival benefits in patients with advanced or high-risk MDS compared with nontransplantation approaches, and the use of HCT is increasing in older patients with good performance status. However, patients with high-risk cytogenetic or molecular mutations remain at high risk for relapse. It is unknown whether administration of novel therapies before or after transplantation may decrease the risk of disease relapse in selected populations. Ongoing and future studies will investigate revised approaches to disease risk stratification, patient selection, and post-transplantation approaches to optimize allogeneic HCT outcomes for patients with MDS.
Collapse
Affiliation(s)
- Zachariah DeFilipp
- Hematopoieitic Cell Transplant and Cell Therapy Program, Massachusetts General Hospital, Boston, Massachusetts.
| | - Stefan O Ciurea
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California Irvine, Orange, California
| | - Corey Cutler
- Division of Stem Cell Transplantation and Cellular Therapy, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Marie Robin
- Service d'Hématologie-Greffe, Hôpital Saint-Louis, APHP, Université de Paris-Cité, Paris, France
| | - Erica D Warlick
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Ryotaro Nakamura
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Andrew M Brunner
- Center for Leukemia, Massachusetts General Hospital, Boston, Massachusetts
| | - Bhagirathbhai Dholaria
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alison R Walker
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, Florida
| | - Nicolaus Kröger
- University Hospital Eppendorf, Bone Marrow Transplant Centre, Hamburg, Germany
| | - Nelli Bejanyan
- Department of Blood & Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | - Ehab Atallah
- Division of Hematology and Oncology, Medical College of Wisconsin, Cancer Center-Froedtert Hospital, Milwaukee, Wisconsin
| | - Roni Tamari
- Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melhem M Solh
- Blood and Marrow Transplant Program at Northside Hospital, Atlanta, Georgia
| | - Mary-Elizabeth Percival
- Fred Hutchinson Cancer Research Center, Clinical Research Division and University of Washington, Seattle, Washington
| | - Marcos de Lima
- The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio
| | - Bart Scott
- Fred Hutchinson Cancer Research Center, Clinical Research Division and University of Washington, Seattle, Washington
| | - Betul Oran
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Mehdi Hamadani
- Blood and Marrow Transplant and Cellular Therapy Program, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paul Carpenter
- Fred Hutchinson Cancer Research Center, Clinical Research Division and University of Washington, Seattle, Washington
| | - Amy E DeZern
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
38
|
Baranwal A, Hahn CN, Shah MV, Hiwase DK. Role of Germline Predisposition to Therapy-Related Myeloid Neoplasms. Curr Hematol Malig Rep 2022; 17:254-265. [PMID: 35986863 DOI: 10.1007/s11899-022-00676-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Therapy-related myeloid neoplasms (t-MNs) are aggressive leukemias that develop following exposure to DNA-damaging agents. A subset of patients developing t-MN may have an inherited susceptibility to develop myeloid neoplasia. Herein, we review studies reporting t-MN and their association with a germline or inherited predisposition. RECENT FINDINGS Emerging evidence suggests that development of t-MN is the result of complex interactions including generation of somatic variants in hematopoietic stem cells and/or clonal selection pressure exerted by the DNA-damaging agents, and immune evasion on top of any inherited genetic susceptibility. Conventionally, alkylating agents, topoisomerase inhibitors, and radiation have been associated with t-MN. Recently, newer modalities including poly (ADP-ribose) polymerase inhibitors (PARPi) and peptide receptor radionucleotide therapy (PRRT) are associated with t-MN. At the same time, the role of pathogenic germline variants (PGVs) in genes such as BRCA1/2, BARD1, or TP53 on the risk of t-MN is being explored. Moreover, studies have shown that while cytotoxic therapy increases the risk of developing myeloid neoplasia, it may be exposing the vulnerability of an underlying germline predisposition. t-MN remains a disease with poor prognosis. Studies are needed to better define an individual's inherited neoplastic susceptibility which will help predict the risk of myeloid neoplasia in the future. Understanding the genes driving the inherited neoplastic susceptibility will lead to better patient- and cancer-specific management including choice of therapeutic regimen to prevent, or at least delay, development of myeloid neoplasia after treatment of a prior malignancy.
Collapse
Affiliation(s)
- Anmol Baranwal
- Division of Hematology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55906, USA
| | - Christopher N Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Mithun Vinod Shah
- Division of Hematology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55906, USA.
| | - Devendra K Hiwase
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia.
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
39
|
Abstract
Myelodysplastic syndromes (MDS) are a family of myeloid cancers with diverse genotypes and phenotypes characterized by ineffective haematopoiesis and risk of transformation to acute myeloid leukaemia (AML). Some epidemiological data indicate that MDS incidence is increasing in resource-rich regions but this is controversial. Most MDS cases are caused by randomly acquired somatic mutations. In some patients, the phenotype and/or genotype of MDS overlaps with that of bone marrow failure disorders such as aplastic anaemia, paroxysmal nocturnal haemoglobinuria (PNH) and AML. Prognostic systems, such as the revised International Prognostic Scoring System (IPSS-R), provide reasonably accurate predictions of survival at the population level. Therapeutic goals in individuals with lower-risk MDS include improving quality of life and minimizing erythrocyte and platelet transfusions. Therapeutic goals in people with higher-risk MDS include decreasing the risk of AML transformation and prolonging survival. Haematopoietic cell transplantation (HCT) can cure MDS, yet fewer than 10% of affected individuals receive this treatment. However, how, when and in which patients with HCT for MDS should be performed remains controversial, with some studies suggesting HCT is preferred in some individuals with higher-risk MDS. Advances in the understanding of MDS biology offer the prospect of new therapeutic approaches.
Collapse
|
40
|
Engvall M, Karlsson Y, Kuchinskaya E, Jörnegren Å, Mathot L, Pandzic T, Palle J, Ljungström V, Cavelier L, Hellström Lindberg E, Cammenga J, Baliakas P. Familial platelet disorder due to germline exonic deletions in RUNX1: a diagnostic challenge with distinct alterations of the transcript isoform equilibrium. Leuk Lymphoma 2022; 63:2311-2320. [PMID: 35533071 DOI: 10.1080/10428194.2022.2067997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Germline pathogenic variants in RUNX1 are associated with familial platelet disorder with predisposition to myeloid malignancies (FPD/MM) with intragenic deletions in RUNX1 accounting for almost 7% of all reported variants. We present two new pedigrees with FPD/MM carrying two different germline RUNX1 intragenic deletions. The aforementioned deletions encompass exons 1-2 and 9-10 respectively, with the exon 9-10 deletion being previously unreported. RNA sequencing of patients carrying the exon 9-10 deletion revealed a fusion with LINC00160 resulting in a change in the 3' sequence of RUNX1. Expression analysis of the transcript isoform demonstrated altered RUNX1a/b/c ratios in carriers from both families compared to controls. Our data provide evidence on the impact of intragenic RUNX1 deletions on transcript isoform expression and highlight the importance of routinely performing copy number variant analysis in patients with suspected MM with germline predisposition.
Collapse
Affiliation(s)
- Marie Engvall
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ylva Karlsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ekaterina Kuchinskaya
- Department of Clinical Pathology and Clinical Genetics, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Åsa Jörnegren
- Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
| | - Lucy Mathot
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tatjana Pandzic
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Josefine Palle
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Viktor Ljungström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Eva Hellström Lindberg
- Department of Medicine, Division of Hematology, Huddinge, Karolinska University Hospital, Stockholm, Sweden.,Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jörg Cammenga
- Department of Hematology, Linköping University Hospital, Linköping, Sweden.,Department of Molecular Medicine and Virology (MMV), Division of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
41
|
Toya T, Harada H, Harada Y, Doki N. Adult-onset hereditary myeloid malignancy and allogeneic stem cell transplantation. Front Oncol 2022; 12:997530. [PMID: 36185231 PMCID: PMC9524153 DOI: 10.3389/fonc.2022.997530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Hereditary myeloid malignancies, especially in adults or elderly persons, had been considered quite rare before the next-generation sequencing era; however, increased usage of clinical sequencing has revealed much higher prevalence of inherited myeloid malignancies. DDX41 and various pathogenic germline mutations have newly been recognized as the cause of adult-onset familial leukemia and myeloid malignancies. Although germline predisposition to myeloid neoplasms had been categorized as a provisional entity in the World Health Organization classification of hematopoietic neoplasms in 2016, methodology for the identification of hereditary myeloid malignancies has not been fully established yet. In addition, many unresolved problems, such as epidemiology, the exact pathogenic mechanisms, and ideal treatment strategy, including indications of allogeneic hematopoietic stem cell transplantation, still remain. Related donor selection for stem cell transplant is a particularly sensitive issue due to the possibility of germline mutation of the candidate relatives and the risk of donor cell leukemia after transplantation. Here, we reviewed the current evidence regarding epidemiology, diagnosis, mechanisms of progression, and transplantation strategy for hereditary myeloid malignancies.
Collapse
Affiliation(s)
- Takashi Toya
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Hironori Harada
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy & Life Sciences, Tokyo, Japan
| | - Yuka Harada
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| |
Collapse
|
42
|
Ansar S, Malcolmson J, Farncombe KM, Yee K, Kim RH, Sibai H. Clinical implementation of genetic testing in adults for hereditary hematologic malignancy syndromes. Genet Med 2022; 24:2367-2379. [PMID: 36112138 DOI: 10.1016/j.gim.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE As research on hereditary hematologic malignancy syndromes (HHMS) are accumulating, cancer genetics clinics are identifying more adult hematology patients with an inherited component to their disease. However, investigations for HHMS are complex, and there is no formal consensus on genetic testing criteria. METHODS We developed genetic testing criteria for adult hematology patients through a comprehensive literature review and our experience at the Princess Margaret Cancer Centre. We validated our criteria by applying them retrospectively to patients referred to our clinic for HHMS assessment. RESULTS Our genetic testing criteria are comprehensive of myeloid malignancies, lymphoid malignancies, and bone marrow failure, including age at diagnosis, family history, and genetic test results in blood and bone marrow. Of the 104 patients who met the criteria, 26% had at least 1 actionable variant in any gene associated with an increased risk of cancer and 13% had an actionable variant resulting in an HHMS diagnosis. A total of 15 patients had incidental findings, including 11 patients with a pathogenic variant associated with carrier status for an autosomal recessive disorder and 4 patients with a mosaic result. CONCLUSION Our high gene positivity rate shows the utility of a broad approach to germline testing in an adult hematology population.
Collapse
Affiliation(s)
- Safa Ansar
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Janet Malcolmson
- Bhalwani Familial Cancer Clinic, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Kirsten M Farncombe
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Karen Yee
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Raymond H Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Bhalwani Familial Cancer Clinic, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada; Sinai Health System, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Hassan Sibai
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
43
|
Heropolitańska-Pliszka E, Piątosa B, Szmydki-Baran A, Kuczborska K, Miarka-Walczyk K, Pastorczak A, Młynarski W, Sędek Ł, Szczepański T, Ussowicz M. Case report: Successful allogeneic stem cell transplantation in a child with novel GATA2 defect associated B-cell acute lymphoblastic leukemia. Front Immunol 2022; 13:928529. [PMID: 35983050 PMCID: PMC9378963 DOI: 10.3389/fimmu.2022.928529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
GATA-binding protein 2 (GATA2) is a transcription factor responsible for the regulation of blood cell proliferation, differentiation, and maintenance in hematopoietic stem cells. Here, we describe successful bone marrow transplantation in a carrier of a novel GATA2 pathogenic variant who was diagnosed with immunodeficiency a few years after completion of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) treatment. At the age of 4 years, the patient was diagnosed with and treated for BCP-ALL. Antileukemic therapy was complicated by pulmonary cryptococcosis. Two years after completion of the maintenance therapy, the child was consulted by an immunologist because of recurrent respiratory tract infections and an episode of sepsis. Flow cytometry revealed deep monocytopenia, lymphopenia, absence of B lymphocytes, considerably reduced NK cells, poor thymic T lymphocyte production, minor defects in T cell maturation, and absence of TCRγδ+ T cells. The presence of the likely pathogenic, heterozygous missense variant within exon 5 of GATA2 (NM_032638.5: c.1047T>G, Cys349Trp) was identified in the proband and confirmed in the father of the patient, who underwent allogeneic hematopoietic stem cell transplantation (HSCT) from a matched unrelated donor due to myelodysplastic syndrome with excess blasts at the age of 22 years. An allogeneic hematopoietic stem cell transplantation with a reduced toxicity conditioning protocol was performed using a matched sibling donor. Pre-transplant conditioning included fludarabine (5 × 30 mg/m2), treosulfan (3 × 14 g/m2), and thiotepa (10 mg/kg). Complete donor chimerism was achieved on post-transplant day 17. During the 12 months of the posttransplant observation period, she remained free from symptoms of acute or chronic graft-versus-host disease, and immunosuppressive treatment was therefore stopped. This is the second reported case of BCP-ALL in a patient with GATA2 deficiency, and the first successfully treated with a reduced-toxicity conditioning HSCT protocol. The co-occurrence of lymphoid malignancies and primary immunodeficiencies points to the role of genetic counseling and family screening for possible cancer predisposition syndromes prior to the selection of related HSCT donors.
Collapse
Affiliation(s)
| | - Barbara Piątosa
- Histocompatibility Laboratory, Children’s Memorial Health Institute, Warsaw, Poland
| | - Anna Szmydki-Baran
- Department of Oncology, Pediatric Hematology, Transplantology, and Pediatrics, Children’s Hospital, Medical University of Warsaw, Warsaw, Poland
| | - Karolina Kuczborska
- Department of Pediatrics, Nutrition and Metabolic Disorders, Children’s Memorial Health Institute, Warsaw, Poland
| | | | - Agata Pastorczak
- Department of Pediatrics, Hematology and Oncology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Hematology and Oncology, Medical University of Lodz, Lodz, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Tomasz Szczepański
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Marek Ussowicz
- Department and Clinic of Pediatric Oncology, Haematology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
- *Correspondence: Marek Ussowicz,
| |
Collapse
|
44
|
Fioredda F, Onofrillo D, Farruggia P, Barone A, Veltroni M, Notarangelo LD, Menna G, Russo G, Martire B, Finocchi A, Verzegnassi F, Bonanomi S, Ramenghi U, Pillon M, Dufour C. Diagnosis and management of neutropenia in children: The approach of the Study Group on Neutropenia and Marrow Failure Syndromes of the Pediatric Italian Hemato-Oncology Association (Associazione Italiana Emato-Oncologia Pediatrica - AIEOP). Pediatr Blood Cancer 2022; 69:e29599. [PMID: 35253359 DOI: 10.1002/pbc.29599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/09/2022]
Abstract
Neutropenia refers to a group of diseases characterized by a reduction in neutrophil levels below the recommended age threshold. The present study aimed to review the diagnosis and management of neutropenia, including a diagnostic toolkit and candidate underlying genes. This study also aimed to review the progress toward the definition of autoimmune and idiopathic neutropenia rising in infancy or in late childhood but without remission, and provide suggestions for efficient diagnostics, including indications for the bone marrow and genetic testing. The management and treatment protocols for common and unique presentations are also reviewed, providing evidence tailored to a single patient.
Collapse
Affiliation(s)
| | - Daniela Onofrillo
- Pediatric Hematology and Oncology Unit, Department of Hematology, Spirito Santo Hospital, Pescara, Italy
| | - Piero Farruggia
- Department of Pediatric Onco-Hematology, University Hospital, Parma, Italy
| | - Angelica Barone
- Pediatric Hematology and Oncology Unit, ARNAS (Azienda di Rilievo Nazionale ad Alta Specializzazione) Ospedale Civico, Palermo, Italy
| | - Marinella Veltroni
- Department of Pediatric Onco-Hematology, Meyer Children's Hospital, Florence, Italy
| | - Lucia Dora Notarangelo
- Oncology-Haematology and Bone Marrow Transplantation Unit, Children's Hospital, Brescia, Italy
| | - Giuseppe Menna
- AORN (Azienda Ospedaliera Rilievo Nazionale), Santobono Pausillipon, Naples, Italy
| | - Giovanna Russo
- Pediatric Ematologi and Oncology Unit, Azienda Policlinico-Vittorio Emanuele, University of Catania, Catania, Italy
| | - Baldassarre Martire
- Unit of Pediatrics and Neonatology, "Monsignor Dimiccoli" Hospital, Barletta, Italy
| | - Andrea Finocchi
- Unit of Immune and Infectious Disease, University Department of Pediatrics DPUO, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Federico Verzegnassi
- Institute of Maternal and Child Health, IRCCS Burlo Garofalo, Trieste, Italy.,Department of Pediatric Hematology, San Gerardo Hospital, Monza, Italy
| | - Sonia Bonanomi
- MBBM (Monza e Brianza per Bambino e Mamma) Foundation, Department of Pediatrics, University of Milano - Bicocca, Monza, Italy
| | - Ugo Ramenghi
- Department of Pediatric and Public Health Sciences, University of Torino, Turin, Italy
| | - Marta Pillon
- Pediatric Onco-Hematology Unit, University Hospital of Padua, Padua, Italy
| | - Carlo Dufour
- Unit of Haematology, IRCCS - Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
45
|
Jørgensen SF, Buechner J, Myhre AE, Galteland E, Spetalen S, Kulseth MA, Sorte HS, Holla ØL, Lundman E, Alme C, Heier I, Flægstad T, Fløisand Y, Benneche A, Fevang B, Aukrust P, Stray-Pedersen A, Gedde-Dahl T, Nordøy I. A Nationwide Study of GATA2 Deficiency in Norway-the Majority of Patients Have Undergone Allo-HSCT. J Clin Immunol 2021; 42:404-420. [PMID: 34893945 PMCID: PMC8664000 DOI: 10.1007/s10875-021-01189-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/29/2021] [Indexed: 01/24/2023]
Abstract
Purpose GATA2 deficiency is a rare primary immunodeficiency that has become increasingly recognized due to improved molecular diagnostics and clinical awareness. The only cure for GATA2 deficiency is allogeneic hematopoietic stem cell transplantation (allo-HSCT). The inconsistency of genotype–phenotype correlations makes the decision regarding “who and when” to transplant challenging. Despite considerable morbidity and mortality, the reported proportion of patients with GATA2 deficiency that has undergone allo-HSCT is low (~ 35%). The purpose of this study was to explore if detailed clinical, genetic, and bone marrow characteristics could predict end-point outcome, i.e., death and allo-HSCT. Methods All medical genetics departments in Norway were contacted to identify GATA2 deficient individuals. Clinical information, genetic variants, treatment, and outcome were subsequently retrieved from the patients’ medical records. Results Between 2013 and 2020, we identified 10 index cases or probands, four additional symptomatic patients, and no asymptomatic patients with germline GATA2 variants. These patients had a diverse clinical phenotype dominated by cytopenia (13/14), myeloid neoplasia (10/14), warts (8/14), and hearing loss (7/14). No valid genotype–phenotype correlations were found in our data set, and the phenotypes varied also within families. We found that 11/14 patients (79%), with known GATA2 deficiency, had already undergone allo-HSCT. In addition, one patient is awaiting allo-HSCT. The indications to perform allo-HSCT were myeloid neoplasia, disseminated viral infection, severe obliterating bronchiolitis, and/or HPV-associated in situ carcinoma. Two patients died, 8 months and 7 years after allo-HSCT, respectively. Conclusion Our main conclusion is that the majority of patients with symptomatic GATA2 deficiency will need allo-HSCT, and a close surveillance of these patients is important to find the “optimal window” for allo-HSCT. We advocate a more offensive approach to allo-HSCT than previously described. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-021-01189-y.
Collapse
Affiliation(s)
- Silje F Jørgensen
- Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway. .,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| | - Jochen Buechner
- Department of Paediatric Haematology and Oncology, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Anders E Myhre
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Eivind Galteland
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Signe Spetalen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Mari Ann Kulseth
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Hanne S Sorte
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Øystein L Holla
- Department of Medical Genetics, Telemark Hospital, Skien, Norway
| | - Emma Lundman
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Charlotte Alme
- Department of Paediatric Haematology and Oncology, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingvild Heier
- Department of Paediatric Haematology and Oncology, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Trond Flægstad
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway.,Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway
| | - Yngvar Fløisand
- Department of Haematology, The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK.,Centre for Cancer Cell Reprogramming, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Benneche
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Børre Fevang
- Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.,Department of Paediatrics, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Tobias Gedde-Dahl
- Department of Haematology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingvild Nordøy
- Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
46
|
AML with germline DDX41 variants is a clinicopathologically distinct entity with an indolent clinical course and favorable outcome. Leukemia 2021; 36:664-674. [PMID: 34671111 DOI: 10.1038/s41375-021-01404-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022]
Abstract
Germline DDX41 variants in myeloid neoplasms (MNs) are not uncommon, and we explored the prevalence and characterized the clinical and pathologic features in a cohort of 3132 unrelated adult MN patients. By targeted next-generation sequencing, we identified 28 patients (20 men and 8 women) with pathogenic germline DDX41 variants who developed acute myeloid leukemia (AML), in which only 3 (11%) had a family history (FH) of MNs. A subacute clinical course of cytopenia (mean duration of 11.2 months, range 0-72 months) prior to the initial AML diagnosis was accompanied by a low blast count (median at 30%, range 20-70%) in hypocellular marrows (93% of all patients), in vast contrast to the typical proliferative subtypes of AML in the elderly. Most patients had a normal karyotype (75%) and acquired a second DDX41 variant (69%). A favorable overall survival (OS) was observed in comparison to that of common subtypes of AML with wild-type DDX41 in age-matched patients. Our study demonstrated that the frequent germline pathogenic DDX41 variants characterized a clinically distinct AML entity. Features characteristic of DDX41-mutated AML include male predominance, often lack of FH, indolent course, low proliferative potential, frequent somatic DDX41 variants, and a favorable OS.
Collapse
|
47
|
Tawana K, Brown AL, Churpek JE. Integrating germline variant assessment into routine clinical practice for myelodysplastic syndrome and acute myeloid leukaemia: current strategies and challenges. Br J Haematol 2021; 196:1293-1310. [PMID: 34658019 DOI: 10.1111/bjh.17855] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/24/2021] [Accepted: 09/12/2021] [Indexed: 12/28/2022]
Abstract
Over the last decade, the field of hereditary haematological malignancy syndromes (HHMSs) has gained increasing recognition among clinicians and scientists worldwide. Germline mutations now account for almost 10% of adult and paediatric myelodysplasia/acute myeloid leukaemia (MDS/AML). As our ability to diagnose HHMSs has improved, we are now faced with the challenges of integrating these advances into routine clinical practice for patients with MDS/AML and how to optimise management and surveillance of patients and asymptomatic carriers. Discoveries of novel syndromes combined with clinical, genetic and epigenetic profiling of tumour samples, have highlighted unique patterns of disease evolution across HHMSs. Despite these advances, causative lesions are detected in less than half of familial cases and evidence-based guidelines are often lacking, suggesting there is much still to learn. Future research efforts are needed to sustain current momentum within the field, led not only by advancing genetic technology but essential collaboration between clinical and academic communities.
Collapse
Affiliation(s)
- Kiran Tawana
- Department of Haematology, Addenbrooke's Hospital, Cambridge, UK
| | - Anna L Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia.,Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Jane E Churpek
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, School of Medicine and Public Health, The University of Wisconsin, Madison, WI, USA
| |
Collapse
|
48
|
Friend P, Mahon SM. Myeloid Malignancies: Recognizing the Risk of Germline Predisposition and Supporting Patients and Families. Clin J Oncol Nurs 2021; 25:519-522. [PMID: 34533515 DOI: 10.1188/21.cjon.519-522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is increasing recognition of the role of inheritance in myeloid malignancies. Differentiating germline from somatic variants in a hematologic malignancy is challenging but important. Oncology nurses need to be knowledgeable about the germline risk associated with myeloid malignancies; the inherited risk is well established and has implications for affected individuals as well as family members who may be at risk for malignancy themselves or who are being evaluated to serve as a related donor for allogeneic hematopoietic stem cell transplantation.
Collapse
|
49
|
Review of guidelines for the identification and clinical care of patients with genetic predisposition for hematological malignancies. Fam Cancer 2021; 20:295-303. [PMID: 34057692 PMCID: PMC8484082 DOI: 10.1007/s10689-021-00263-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/13/2021] [Indexed: 11/23/2022]
Abstract
Since WHO has recognized myeloid neoplasms with germline predisposition as a new entity in 2016, it has become increasingly clear that diagnosing familial leukemia has critical implications for both the patient and his/her family, and that interdisciplinary teams of hematologists and clinical geneticists should provide care for this specific patient group. Here, we summarize consensus criteria for the identification and screening of patients with genetic predisposition for hematologic malignancies, as provided by different working groups, e.g. by the Nordic MDS group and the AACR. In addition to typical clinical features, results from targeted deep sequencing may point to a genetic predisposition. We review strategies to distinguish somatic and germline variants and discuss recommendations for genetic analyses aiming to identify the underlying genetic variant that should follow established quality criteria to detect both SNVs and CNVs and to determine the pathogenicity of genetic variants. To enhance the knowledge about hematologic neoplasms with germline predisposition we recommend archiving clinical and genetic data and archiving them in international registries.
Collapse
|
50
|
What's new in the pathogenesis and treatment of therapy-related myeloid neoplasms. Blood 2021; 138:749-757. [PMID: 33876223 DOI: 10.1182/blood.2021010764] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/02/2021] [Indexed: 12/14/2022] Open
Abstract
Therapy-related myeloid neoplasms (t-MN) include diseases onsetting in patients treated with chemo- and/or radiotherapy for a primary cancer, or an autoimmune disorder. Genomic variants, in particular in familial cancer genes, may play a predisposing role. Recent advances in deep sequencing techniques have shed light on the pathogenesis of t-MN, identifying clonal hematopoiesis of indeterminate potential (CHIP) as a frequent first step in the multi-hit model of t-MN. CHIP is often detectable prior to any cytotoxic treatment, probably setting the fertile genomic background for secondary leukemogenesis. The evolution pattern towards t-MN is then a complex process, shaped by the type of cancer therapy, the aging process, and the individual exposures, that favor additional hits, such as the acquisition of TP53 mutations and unfavorable karyotype abnormalities. The pathogenesis of t-MN differs from MN associated with environmental exposure. Indeed, the genetic aberration patterns of MN developing in atomic bomb survivors show few mutations in classical DNA methylation genes, and a high prevalence of 11q and ATM alterations, together with TP53 mutations. Survival in t-MN is poor. In addition to the biology of t-MN, the patient's previous disease history and the remission status at t-MN diagnosis are significant factors contributing to unfavorable outcome. New drugs active in secondary leukemias include CPX-351, or venetoclax in combination with hypomethylating agents, monoclonal antibodies as magrolimab, or targeted drugs against pathogenic mutations. Allogeneic stem cell transplantation remains the best currently available therapeutic option with curative intent for fit patients with unfavorable genetic profiles.
Collapse
|