1
|
Gao Z, Fan Z, Liu Z, Ye X, Zeng Y, Xuan L, Huang F, Lin R, Sun J, Liu Q, Xu N. Vedolizumab plus basiliximab as second-line therapy for steroid-refractory lower gastrointestinal acute graft-versus-host disease. Front Immunol 2024; 15:1408211. [PMID: 39021571 PMCID: PMC11252588 DOI: 10.3389/fimmu.2024.1408211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Background Steroid-resistant (SR) lower gastrointestinal (LGI) tract graft-versus-host disease (GVHD) is the predominant cause of morbidity and mortality from GVHD after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The role of vedolizumab in the treatment of SR-LGI acute GVHD (aGVHD) remains uncertain. We aimed to assess the efficacy and safety of vedolizumab combined with basiliximab as second-line therapy for SR-LGI-aGVHD. Methods This study aimed to explore the efficacy of vedolizumab combined with basiliximab for SR-LGI-aGVHD. The primary endpoint was the overall response (OR) on day 28. Secondary and safety endpoints included durable OR at day 56, overall survival (OS), chronic GVHD (cGVHD), non-relapse mortality (NRM), failure-free survival (FFS), and adverse events. Results Twenty-eight patients with SR-LGI-aGVHD were included. The median time to start of combination therapy after SR-LGI-aGVHD diagnosis was 7 (range, 4-16) days. The overall response rate (ORR) at 28 days was 75.0% (95% CI: 54.8%-88.6%), and 18 achieved a complete response (CR) (64.3%, 95% CI: 44.1%-80.7%). The durable OR at day 56 was 64.3% (95% CI: 44.1%-80.7%). The 100-day, 6-month, and 12-month OS rates for the entire cohort of patients were 60.7% (95% CI: 45.1%-81.8%), 60.7% (95% CI: 45.1%-81.8%), and 47.6% (95% CI: 31.4%-72.1%), respectively. The median failure-free survival was 276 days; (95% CI: 50-not evaluable) 12-month NRM was 42.9% (95% CI: 24.1%-60.3%). The 1-year cumulative incidence of cGVHD was 35.7%. Within 180 days after study treatments, the most common grade 3 and 4 adverse events were infections. Nine (32.1%) patients developed cytomegalovirus (CMV) reactivation complicated with bacterial infections (25.0%, CMV infection; 7.1%, CMV viremia). Epstein-Barr virus (EBV) reactivation occurred in five patients (17.9%, 95% CI: 6.8%-37.6%). Only three patients (10.7%, 95% CI: 2.8%-29.4%) in our study developed pseudomembranous colitis. Conclusions Vedolizumab plus basiliximab demonstrated efficacy in severe SR-LGI-aGVHD and was well-tolerated. Vedolizumab plus basiliximab may be considered a potential treatment option for patients with LGI-aGVHD.
Collapse
Affiliation(s)
- Zicheng Gao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xu Ye
- Department of Hematology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunxin Zeng
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Sun
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Kim N, Min GJ, Im KI, Nam YS, Song Y, Lee JS, Oh EJ, Chung NG, Jeon YW, Lee JW, Cho SG. Repeated Infusions of Bone-Marrow-Derived Mesenchymal Stem Cells over 8 Weeks for Steroid-Refractory Chronic Graft-versus-Host Disease: A Prospective, Phase I/II Clinical Study. Int J Mol Sci 2024; 25:6731. [PMID: 38928436 PMCID: PMC11204151 DOI: 10.3390/ijms25126731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is a long-term complication of allogeneic hematopoietic stem cell transplantation associated with poor quality of life and increased morbidity and mortality. Currently, there are several approved treatments for patients who do not respond to steroids, such as ruxolitinib. Nevertheless, a significant proportion of patients fail second-line treatment, indicating the need for novel approaches. Mesenchymal stem cells (MSCs) have been considered a potential treatment approach for steroid-refractory cGVHD. To evaluate the safety and efficacy of repeated infusions of MSCs, we administered intravenous MSCs every two weeks to ten patients with severe steroid-refractory cGVHD in a prospective phase I clinical trial. Each patient received a total of four doses, with each dose containing 1 × 106 cells/kg body weight from the same donor and same passage. Patients were assessed for their response to treatment using the 2014 National Institutes of Health (NIH) response criteria during each visit. Ten patients with diverse organ involvement were enrolled, collectively undergoing 40 infusions as planned. Remarkably, the MSC infusions were well tolerated without severe adverse events. Eight weeks after the initial MSC infusion, all ten patients showed partial responses characterized by the amelioration of clinical symptoms and enhancement of their quality of life. The overall response rate was 60%, with a complete response rate of 20% and a partial response (PR) rate of 40% at the last follow-up. Overall survival was 80%, with a median follow-up of 381 days. Two patients died due to relapse of their primary disease. Immunological analyses revealed a reduction in inflammatory markers, including Suppression of Tumorigenicity 2 (ST2), C-X-C motif chemokine ligand (CXCL)10, and Secreted phosphoprotein 1(SPP1), following the MSC treatment. Repeated MSC infusions proved to be both feasible and safe, and they may be an effective salvage therapy in patients with steroid-refractory cGVHD. Further large-scale clinical studies with long-term follow-up are needed in the future to determine the role of MSCs in cGVHD.
Collapse
Affiliation(s)
- Nayoun Kim
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.K.); (G.-J.M.); (K.-I.I.); (Y.-S.N.); (Y.S.); (J.-S.L.)
| | - Gi-June Min
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.K.); (G.-J.M.); (K.-I.I.); (Y.-S.N.); (Y.S.); (J.-S.L.)
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.-G.C.); (J.W.L.)
| | - Keon-Il Im
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.K.); (G.-J.M.); (K.-I.I.); (Y.-S.N.); (Y.S.); (J.-S.L.)
| | - Young-Sun Nam
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.K.); (G.-J.M.); (K.-I.I.); (Y.-S.N.); (Y.S.); (J.-S.L.)
| | - Yunejin Song
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.K.); (G.-J.M.); (K.-I.I.); (Y.-S.N.); (Y.S.); (J.-S.L.)
| | - Jun-Seok Lee
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.K.); (G.-J.M.); (K.-I.I.); (Y.-S.N.); (Y.S.); (J.-S.L.)
| | - Eun-Jee Oh
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Nack-Gyun Chung
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.-G.C.); (J.W.L.)
| | - Young-Woo Jeon
- Department of Hematology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Jong Wook Lee
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.-G.C.); (J.W.L.)
| | - Seok-Goo Cho
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.K.); (G.-J.M.); (K.-I.I.); (Y.-S.N.); (Y.S.); (J.-S.L.)
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (N.-G.C.); (J.W.L.)
| |
Collapse
|
3
|
Pavlin T, Blatnik A, Šeruga B. Challenges in the management of operable triple-negative breast cancer in a survivor of the B-cell acute lymphoblastic leukemia: a case report. Front Oncol 2024; 14:1404706. [PMID: 38817905 PMCID: PMC11137578 DOI: 10.3389/fonc.2024.1404706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
Background Operable triple-negative breast cancer (TNBC) is an unfavorable subtype of breast cancer, which usually requires an aggressive perioperative systemic treatment. When TNBC presents as a second primary cancer after cured acute leukemia, its management might be challenging. Case presentation We present a case report of a young postmenopausal woman with an operable TNBC who had a history of the B-cell acute lymphoblastic leukemia (B-ALL) and graft versus host disease (GVHD) after allogeneic stem cell transplantation (allo-SCT). A history of previous treatment with anthracyclines and radiotherapy and GVHD limited the use of doxorubicin for treatment of her TNBC. Due to the history of GVHD, perioperative treatment with pembrolizumab was omitted. Genetic testing was challenging due to the possible contamination of her tissues with the donor's cells after allo-SCT. In samples of our patient's buccal swab, peripheral blood, and tumor tissue, a pathogenic variant in the partner and localizer of BRCA2 (PALB2) gene was found. With neoadjuvant chemotherapy which included carboplatin, a pathologic complete response was achieved. Although our patient has a low risk for recurrence of TNBC, her risk for the development of new primary cancers remains substantial. Conclusion This case highlights challenges in the systemic treatment, genetic testing, and follow-up of patients with operable TNBC and other solid cancers who have a history of acute leukemia.
Collapse
Affiliation(s)
- Tina Pavlin
- Division of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Blatnik
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Clinical Cancer Genetics, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Boštjan Šeruga
- Division of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Kuroiwa K, Sato M, Narita H, Okamura R, Uesugi Y, Sasaki Y, Shimada S, Watanuki M, Fujiwara S, Kawaguchi Y, Arai N, Yanagisawa K, Iezumi K, Hattori N. Influence of FOXP3 single-nucleotide polymorphism after allogeneic hematopoietic stem cell transplantation. Int J Hematol 2024; 119:583-591. [PMID: 38418747 DOI: 10.1007/s12185-024-03726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
The impact of FOXP3 single-nucleotide polymorphisms (SNP) on clinical outcomes after allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains poorly understood. We investigated the relationship between a FOXP3 SNP (rs3761548) and clinical outcomes in 91 patients with hematological malignancies after allo-HSCT. Multivariate analysis showed that risk of severe chronic graft-versus-host disease (cGVHD) was significantly higher in patients with the FOXP3-3279C/A or FOXP3-3279A/A genotype than those with the FOXP3-3279C/C genotype [hazard ratio (HR), 2.69; 95% confidence interval (CI) 1.14-6.31; p = 0.023]. Therefore, FOXP3 at SNP rs3761548 can be a useful marker for predicting the occurrence of severe cGVHD.
Collapse
Affiliation(s)
- Kai Kuroiwa
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Misuzu Sato
- Department of Pathology and Laboratory Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hinako Narita
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Reiko Okamura
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Yuka Uesugi
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Yohei Sasaki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Shotaro Shimada
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Megumi Watanuki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Shun Fujiwara
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Yukiko Kawaguchi
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Nana Arai
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Kouji Yanagisawa
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Keiichi Iezumi
- Department of Pathology and Laboratory Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Norimichi Hattori
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan.
| |
Collapse
|
5
|
Mayer W, Mayr J, Koch F, Rechberger U, Gasser W, Hermann M, Kempel A, Edlinger M, Schennach H. Increasing the collection flow rate to 2 mL/min is effective and reduces the procedure time in off-line photopheresis. Transfusion 2023; 63:1546-1553. [PMID: 37422880 DOI: 10.1111/trf.17469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Extracorporeal photopheresis (ECP) treatment, mostly based on apheresis technology, is used for immunomodulation in various diseases such as cutaneous T-cell lymphoma, graft versus host disease and other (auto)immune disorders. The aim of this study was to collect high cell counts and purity in shorter procedure times using an ECP off-line system with an increased collection flow rate of 2 mL/min to a target volume of 200 mL buffy coat. STUDY DESIGN AND METHODS In this prospective study, data of routinely performed off-line photopheresis treatments were collected and analyzed at the Central Institute for Blood Transfusion & Department of Immunology (ZIB) of the Tirol Kliniken, to assess absolute cell counts and procedure times and to calculate collection efficiencies (CE2). RESULTS A total of 22 patients participated in this study. The processed blood volume was 4312 mL, the collection time 120 min, overall procedure time 157 min and the absolute cell counts of treated white blood cells (WBC) and mononuclear cells (MNC) were 5.0 and 4.3 × 109 respectively (median values). The calculated CE2 for WBC and MNC was 21.1% and 58.5%, the proportion of treated MNCs of the total number of MNCs present was 55.0%. CONCLUSION The data presented in this study show high therapeutically effective cell counts collected with a high MNC purity within a shorter overall collection/procedure time due to an increased collection flow rate.
Collapse
Affiliation(s)
- Wolfgang Mayer
- Central Institute for Blood Transfusion & Department of Immunology (ZIB), Tirol Kliniken GmbH, Innsbruck, Austria
| | - Jonas Mayr
- Central Institute for Blood Transfusion & Department of Immunology (ZIB), Tirol Kliniken GmbH, Innsbruck, Austria
| | - Felix Koch
- Central Institute for Blood Transfusion & Department of Immunology (ZIB), Tirol Kliniken GmbH, Innsbruck, Austria
| | - Ulrike Rechberger
- Central Institute for Blood Transfusion & Department of Immunology (ZIB), Tirol Kliniken GmbH, Innsbruck, Austria
| | - Werner Gasser
- Central Institute for Blood Transfusion & Department of Immunology (ZIB), Tirol Kliniken GmbH, Innsbruck, Austria
| | - Martin Hermann
- Department of Anesthesia and Intensive Care Medicine at the Medical University Innsbruck, Innsbruck, Austria
| | - Angela Kempel
- Pharmametrics GmbH, Institute for Health Economics & Epidemiology, Freiburg, Germany
| | - Michael Edlinger
- Institute of Medical Statistics and Informatics, Medical University Innsbruck, Innsbruck, Austria
| | - Harald Schennach
- Central Institute for Blood Transfusion & Department of Immunology (ZIB), Tirol Kliniken GmbH, Innsbruck, Austria
| |
Collapse
|
6
|
Lu K, Brauns T, Sluder AE, Poznansky MC, Dogan F. Combinatorial islet protective therapeutic approaches in β-cell transplantation: Rationally designed solutions using a target product profile. FASEB Bioadv 2023; 5:287-304. [PMID: 37415930 PMCID: PMC10320848 DOI: 10.1096/fba.2023-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 07/08/2023] Open
Abstract
While progress has been made in the development of islet cell transplantation (ICT) as a viable alternative to the use of exogenous insulin therapy in the treatment of type 1 diabetes, it has not yet achieved its full potential in clinical studies. Ideally, ICT would enable lifelong maintenance of euglycemia without the need for exogenous insulin, blood glucose monitoring or systemic immune suppression. To achieve such an optimal result, therapeutic approaches should simultaneously promote long-term islet viability, functionality, and localized immune protection. In practice, however, these factors are typically tackled individually. Furthermore, while the requirements of optimal ICT are implicitly acknowledged across numerous publications, the literature contains few comprehensive articulations of the target product profile (TPP) for an optimal ICT product, including key characteristics of safety and efficacy. This review aims to provide a novel TPP for ICT and presents promising tried and untried combinatorial approaches that could be used to achieve the target product profile. We also highlight regulatory barriers to the development and adoption of ICT, particularly in the United States, where ICT is only approved for use in academic clinical trials and is not reimbursed by insurance carriers. Overall, this review argues that the clear definition of a TPP in addition to the use of combinatorial approaches could help to overcome the clinical barriers to the widespread adoption of ICT for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Katie Lu
- Vaccine and Immunotherapy CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of BiologyStanford UniversityStanfordCaliforniaUSA
| | - Timothy Brauns
- Vaccine and Immunotherapy CenterMassachusetts General HospitalBostonMassachusettsUSA
| | - Ann E. Sluder
- Vaccine and Immunotherapy CenterMassachusetts General HospitalBostonMassachusettsUSA
| | - Mark C. Poznansky
- Vaccine and Immunotherapy CenterMassachusetts General HospitalBostonMassachusettsUSA
| | - Fatma Dogan
- Vaccine and Immunotherapy CenterMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
7
|
Li G, Cheng Y, Han C, Song C, Huang N, Du Y. Pyrazole-containing pharmaceuticals: target, pharmacological activity, and their SAR studies. RSC Med Chem 2022; 13:1300-1321. [PMID: 36439976 PMCID: PMC9667768 DOI: 10.1039/d2md00206j] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Pyrazole is a five-membered heterocycle bearing two adjacent nitrogen atoms. Both pharmaceutical agents and natural products with pyrazole as a nucleus have exhibited a broad spectrum of biological activities. In the last few decades, more than 40 pyrazole-containing drugs have been approved by the FDA for the treatment of a broad range of clinical conditions including celecoxib (anti-inflammatory), CDPPB (antipsychotic), difenamizole (analgesic), etc. Owing to the unique physicochemical properties of the pyrazole core, pyrazole-containing drugs may exert better pharmacokinetics and pharmacological effects compared with drugs containing similar heterocyclic rings. The purpose of this paper is to provide an overview of all the existing drugs bearing a pyrazole nucleus that have been approved or in clinical trials, involving their pharmacological activities and SAR studies.
Collapse
Affiliation(s)
- Guangchen Li
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Yifu Cheng
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Chi Han
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Chun Song
- State Key Laboratory of Microbial Technology, Shandong University Qing Dao City Shandong Province 266237 China
| | - Niu Huang
- National Institution of Biological Sciences Beijing, No. 7 Science Park Road, Zhongguancun Life Science Park Beijing 102206 China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University Beijing 102206 China
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| |
Collapse
|
8
|
Insights into mechanisms of graft-versus-host disease through humanised mouse models. Biosci Rep 2022; 42:231673. [PMID: 35993192 PMCID: PMC9446388 DOI: 10.1042/bsr20211986] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a major complication that occurs following allogeneic haematopoietic stem cell transplantation (HSCT) for the treatment of haematological cancers and other blood-related disorders. GVHD is an inflammatory disorder, where the transplanted donor immune cells can mediate an immune response against the recipient and attack host tissues. Despite over 60 years of research, broad-range immune suppression is still used to prevent or treat GVHD, leading to an increased risk of cancer relapse and infection. Therefore, further insights into the disease mechanisms and development of predictive and prognostic biomarkers are key to improving outcomes and reducing GVHD development following allogeneic HSCT. An important preclinical tool to examine the pathophysiology of GVHD and to understand the key mechanisms that lead to GVHD development are preclinical humanised mouse models. Such models of GVHD are now well-established and can provide valuable insights into disease development. This review will focus on models where human peripheral blood mononuclear cells are injected into immune-deficient non-obese diabetic (NOD)-scid-interleukin-2(IL-2)Rγ mutant (NOD-scid-IL2Rγnull) mice. Humanised mouse models of GVHD can mimic the clinical setting for GVHD development, with disease progression and tissues impacted like that observed in humans. This review will highlight key findings from preclinical humanised mouse models regarding the role of donor human immune cells, the function of cytokines and cell signalling molecules and their impact on specific target tissues and GVHD development. Further, specific therapeutic strategies tested in these preclinical models reveal key molecular pathways important in reducing the burden of GVHD following allogeneic HSCT.
Collapse
|
9
|
Therapeutic Perspectives of CD26 Inhibitors in Imune-Mediated Diseases. Molecules 2022; 27:molecules27144498. [PMID: 35889373 PMCID: PMC9321265 DOI: 10.3390/molecules27144498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 02/01/2023] Open
Abstract
The enzymatic activity of CD26/DPP4 (dipeptidyl peptidase 4/DPP4) is highlighted in multiple studies to play a vital role in glucose metabolism by cleaving and inactivating the incretins glucagon-like peptide-1 (GLP) and gastric inhibitory protein (GIP). A large number of studies demonstrate that CD26 also plays an integral role in the immune system, particularly in T cell activation. CD26 is extensively expressed in immune cells, such as T cells, B cells, NK cells, dendritic cells, and macrophages. The enzymatic activity of CD26 cleaves and regulates numerous chomokines and cytokines. CD26 inhibitors have been widely used for the treatment of diabetes mellitus, while it is still under investigation as a therapy for immune-mediated diseases. In addition, CD26’s involvement in cancer immunology was also described. The review aims to summarize the therapeutic effects of CD26 inhibitors on immune-mediated diseases, as well as the mechanisms that underpin them.
Collapse
|
10
|
Igarashi K, Hori T, Yamamoto M, Sohma H, Suzuki N, Tsutsumi H, Kawasaki Y, Kokai Y. CCL8 deficiency in the host abrogates early mortality of acute graft-versus-host disease in mice with dysregulated IL-6 expression. Exp Hematol 2022; 106:47-57. [PMID: 34808257 DOI: 10.1016/j.exphem.2021.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022]
Abstract
Although allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for diverse malignant and nonmalignant diseases, acute graft-versus-host disease (aGVHD) is strongly linked to mortality caused by HSCT. We previously reported that CC chemokine ligand 8 (CCL8) is closely correlated to aGVHD mortality in both humans and mice. To study the role of CCL8 in aGVHD, CCL8 knockout (CCL8-/-) mice were transplanted with fully allogeneic marrow grafts. These mice exhibited a significant reduction in mortality (90.0% vs. 23.4% survival for CCL8-/- vs. wild-type recipients at day 28, p < 0.0001). As a result, apparent prolonged median survival from 9 days in wild-type mice to 45 days in CCL8-/- mice was observed. Acute GVHD pathology and liver dysfunction in CCL8-/- mice were significantly attenuated compared with those in wild-type mice. In association with the reduced mortality, a surge of plasma interleukin (IL)-6 was observed in CCL8-/- recipients with allogeneic marrow, which was significantly increased compared with wild-type mice that received allografts. Donor T-cell expansion and plasma levels of interferon-γ and TNF-α during aGVHD were similar in both types of mice. Collectively, these findings indicate that CCL8 plays a major role in aGVHD pathogenesis with possible involvement of an IL-6 signaling cascade.
Collapse
Affiliation(s)
- Keita Igarashi
- Department of Biomedical Engineering, Research Institute of Frontier Medicine; Department of Pediatrics, Sapporo Medical University School of Medicine.
| | - Tsukasa Hori
- Department of Pediatrics, Sapporo Medical University School of Medicine
| | - Masaki Yamamoto
- Department of Pediatrics, Sapporo Medical University School of Medicine
| | - Hitoshi Sohma
- Department of Educational Development, Center for Medical Education, Sapporo Medical University, Sapporo, Japan
| | | | - Hiroyuki Tsutsumi
- Department of Pediatrics, Sapporo Medical University School of Medicine
| | - Yukihiko Kawasaki
- Department of Pediatrics, Sapporo Medical University School of Medicine
| | - Yasuo Kokai
- Department of Biomedical Engineering, Research Institute of Frontier Medicine
| |
Collapse
|
11
|
Reichardt SD, Amouret A, Muzzi C, Vettorazzi S, Tuckermann JP, Lühder F, Reichardt HM. The Role of Glucocorticoids in Inflammatory Diseases. Cells 2021; 10:cells10112921. [PMID: 34831143 PMCID: PMC8616489 DOI: 10.3390/cells10112921] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
For more than 70 years, glucocorticoids (GCs) have been a powerful and affordable treatment option for inflammatory diseases. However, their benefits do not come without a cost, since GCs also cause side effects. Therefore, strong efforts are being made to improve their therapeutic index. In this review, we illustrate the mechanisms and target cells of GCs in the pathogenesis and treatment of some of the most frequent inflammatory disorders affecting the central nervous system, the gastrointestinal tract, the lung, and the joints, as well as graft-versus-host disease, which often develops after hematopoietic stem cell transplantation. In addition, an overview is provided of novel approaches aimed at improving GC therapy based on chemical modifications or GC delivery using nanoformulations. GCs remain a topic of highly active scientific research despite being one of the oldest class of drugs in medical use.
Collapse
Affiliation(s)
- Sybille D. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Agathe Amouret
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Chiara Muzzi
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany; (S.V.); (J.P.T.)
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany; (S.V.); (J.P.T.)
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Holger M. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
- Correspondence: ; Tel.: +49-551-3963365
| |
Collapse
|
12
|
Hess NJ, Brown ME, Capitini CM. GVHD Pathogenesis, Prevention and Treatment: Lessons From Humanized Mouse Transplant Models. Front Immunol 2021; 12:723544. [PMID: 34394131 PMCID: PMC8358790 DOI: 10.3389/fimmu.2021.723544] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/15/2021] [Indexed: 01/14/2023] Open
Abstract
Graft-vs-host disease (GVHD) is the most common cause of non-relapse mortality following allogeneic hematopoietic stem cell transplantation (HSCT) despite advances in conditioning regimens, HLA genotyping and immune suppression. While murine studies have yielded important insights into the cellular responses of GVHD, differences between murine and human biology has hindered the translation of novel therapies into the clinic. Recently, the field has expanded the ability to investigate primary human T cell responses through the transplantation of human T cells into immunodeficient mice. These xenogeneic HSCT models benefit from the human T cell receptors, CD4 and CD8 proteins having cross-reactivity to murine MHC in addition to several cytokines and co-stimulatory proteins. This has allowed for the direct assessment of key factors in GVHD pathogenesis to be investigated prior to entering clinical trials. In this review, we will summarize the current state of clinical GVHD research and discuss how xenogeneic HSCT models will aid in advancing the current pipeline of novel GVHD prophylaxis therapies into the clinic.
Collapse
Affiliation(s)
- Nicholas J. Hess
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Matthew E. Brown
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|