1
|
Elayapillai SP, Dogra S, Lausen J, Parker M, Kennedy A, Benbrook DM, Moxley KM, Hannafon BN. ATR inhibition increases reliance on PARP-mediated DNA repair revealing an improved therapeutic strategy for cervical cancer. Gynecol Oncol 2024; 191:182-193. [PMID: 39427557 DOI: 10.1016/j.ygyno.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/26/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
OBJECTIVE Cervical cancer results from persistent infection with high-risk human papillomavirus (HR-HPV) and the expression of E6 and E7 oncoproteins. E6 and E7 compromise the activity of p53 and Rb, the G1-S cell cycle checkpoint, and ATM-mediated DNA damage repair (DDR), which in turn increases reliance on ATR- and PARP-mediated DDR at the G2 cell cycle checkpoint. This study aimed to determine the effects of an ATR inhibitor (ATRi, AZD6738) and a PARP-inhibitor (PARPi, AZD2281) on HR-HPV+ cervical cancer cell lines. METHODS The effects of ATRi and PARPi, alone and in combination, on metabolic viability, cell cycle arrest, apoptosis, and DDR pathways in cervical cancer cell lines were evaluated in vitro, and the in vivo tumor response was evaluated using a xenograft model. RESULTS Cervical cancer cells were sensitive to ATRi and PARPi monotherapy. The combination therapy was only synergistic in reducing metabolic viability when exposed to ATRi first, followed by PARPi, owing to ATRi-mediated upregulation of PARP expression. Combination of ATRi and PARPi induced G2 cell cycle arrest and apoptosis. PARPi induced DNA damage and γH2AX phosphorylation, which was further increased by ATRi treatment. However, PARPi-induced Rad51 foci formation was reduced by ATRi treatment, suggesting the inhibition of homologous recombination repair. ATRi significantly reduced cervical cancer xenograft tumor growth and was not affected by simultaneous PARPi treatment at the doses studied. CONCLUSIONS Our findings show that ATRi increased reliance on PARP for metabolic viability, the combination of ATRi and PARPi induced synthetic lethality in cervical cancer in vitro, and reduced tumor burden in vivo.
Collapse
Affiliation(s)
- Sugantha Priya Elayapillai
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Samrita Dogra
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - James Lausen
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Madison Parker
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Amy Kennedy
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Doris M Benbrook
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Katherine M Moxley
- Oklahoma Cancer Specialists and Research Institute, Tulsa, OK 74164, USA.
| | - Bethany N Hannafon
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
2
|
Pereira D, Alves N, Sousa Â, Valente JFA. Metal-based approaches to fight cervical cancer. Drug Discov Today 2024; 29:104073. [PMID: 38944184 DOI: 10.1016/j.drudis.2024.104073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Cervical cancer (CC) is one of the leading causes of death among women worldwide. The current treatments for this cancer consist of invasive methods such as chemotherapeutic drugs, radiation, immunotherapy and surgery, which could lead to severe side effects and hinder the patient's life quality. Although metal-based therapies, including cisplatin and ruthenium-based compounds, offer promising alternatives, they lack specificity and harm healthy cells. Combining metal nanoparticles with standard approaches has demonstrated remarkable efficacy and safety in the fight against CC. Overall, this review is intended to show the latest advancements and insights into metal-based strategies, creating a promising path for more effective and safer treatments in the battle against CC.
Collapse
Affiliation(s)
- Diana Pereira
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; CDRSP-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Marinha Grande, 2430-028 Leiria, Portugal
| | - Nuno Alves
- CDRSP-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Marinha Grande, 2430-028 Leiria, Portugal
| | - Ângela Sousa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Joana F A Valente
- CDRSP-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Marinha Grande, 2430-028 Leiria, Portugal.
| |
Collapse
|
3
|
Kumar Kore R, Shirbhate E, Singh V, Mishra A, Veerasamy R, Rajak H. New Investigational Drug's Targeting Various Molecular Pathways for Treatment of Cervical Cancer: Current Status and Future Prospects. Cancer Invest 2024; 42:627-642. [PMID: 38966000 DOI: 10.1080/07357907.2024.2373841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Currently, cervical cancer (CC) is the fourth recorded widespread cancer among women globally. There are still many cases of metastatic or recurring disease discovered, despite the incidence and fatality rates declining due to screening identification and innovative treatment approaches. Palliative chemotherapy continues to be the standard of care for patients who are not contenders for curative therapies like surgery and radiotherapy. This article seeks to provide a thorough and current summary of therapies that have been looked into for the management of CC. The authors emphasize the ongoing trials while reviewing the findings of clinical research. Agents that use biological mechanisms to target different molecular pathways such as epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), mammalian target of rapamycin (mTOR), poly ADP-ribosepolymerase (PARP), and epigenetic biological mechanisms epitomize and offer intriguing research prospects.
Collapse
Affiliation(s)
- Rakesh Kumar Kore
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, Chhattisgarh, India
| | - Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, Chhattisgarh, India
| | - Vaibhav Singh
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, Chhattisgarh, India
| | - Achal Mishra
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, Chhattisgarh, India
| | | | - Harish Rajak
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, Chhattisgarh, India
| |
Collapse
|
4
|
Ketch PW, Zaharias RS, Leath CA. Pharmacotherapy for cervical cancer: current standard of care and new perspectives. Expert Opin Pharmacother 2024; 25:1591-1603. [PMID: 39164924 PMCID: PMC11453679 DOI: 10.1080/14656566.2024.2395379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 08/22/2024]
Abstract
INTRODUCTION Cervical cancer, while highly preventable, remains an international public health challenge especially in under resourced regions. Although early-stage cervix confined cancers are often amenable to surgical resection, larger tumors deemed locally advanced cervical cancer (LACC) necessitate systemic therapy as part of chemoradiation therapy. Moreover, systemic therapy is the standard therapeutic approach for those presenting with primary metastasis or recurrence. AREAS COVERED While several agents have been approved to treat recurrent cervical cancer including checkpoint inhibitors as well as both biomarker agnostic and specific antibody drug conjugates, the development of agents added to chemoradiation has been less fruitful. Until recently, the addition of novel therapies to chemoradiation has been negative in terms of improving outcomes; however, results of a recent Phase III clinical trial (NCT04221945) in LACC demonstrated that the addition of pembrolizumab to standard of care chemoradiation was associated with an improvement in progression-free survival and resulted in an FDA approval for this therapy. This observation led to the first change in treating LACC since the early 2000s. EXPERT OPINION Improvements in systemic therapy both alone and in combination with chemoradiation for cervical cancer have been realized. Ongoing research is needed for therapeutic options following immunotherapy.
Collapse
Affiliation(s)
- Peter W. Ketch
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rennan S. Zaharias
- Division of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Charles A. Leath
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Fernandes I, Chehade R, MacKay H. PARP inhibitors in non-ovarian gynecologic cancers. Ther Adv Med Oncol 2024; 16:17588359241255174. [PMID: 38882441 PMCID: PMC11179472 DOI: 10.1177/17588359241255174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) have transformed the treatment of ovarian cancer, particularly benefiting patients whose tumors harbor genomic events that result in impaired homologous recombination (HR) repair. The use of PARPi over recent years has expanded to include subpopulations of patients with breast, pancreatic, and prostate cancers. Their potential to benefit patients with non-ovarian gynecologic cancers is being recognized. This review examines the underlying biological rationale for exploring PARPi in non-ovarian gynecologic cancers. We consider the clinical data and place this in the context of the current treatment landscape. We review the development of PARPi strategies for treating patients with endometrial, cervical, uterine leiomyosarcoma, and vulvar cancers. Furthermore, we discuss future directions and the importance of understanding HR deficiency in the context of each cancer type.
Collapse
Affiliation(s)
| | - Rania Chehade
- Sunnybrook Odette Cancer Centre, Toronto, ON, Canada
| | - Helen MacKay
- Sunnybrook Odette Cancer Centre, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| |
Collapse
|
6
|
D'Oria O, Bogani G, Cuccu I, D'Auge TG, Di Donato V, Caserta D, Giannini A. Pharmacotherapy for the treatment of recurrent cervical cancer: an update of the literature. Expert Opin Pharmacother 2024; 25:55-65. [PMID: 38159033 DOI: 10.1080/14656566.2023.2298329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Cervical cancer is the fourth most common cause of cancer-related death worldwide. High-risk locally advanced or recurrent/metastatic cervical cancers have a poor prognosis with routine treatments. The objective of this study is to analyze the data available in the literature on therapies and molecules currently in use to improve the prognosis of recurrent cervical cancer. AREAS COVERED An extensive literature search was conducted by authors to identify relevant trials on various databases. Articles in English published until September 2023 that investigate different pharmacotherapy strategies for the treatment of recurrent cervical cancer, were included. Results of various pharmacological regimens including different combinations of chemotherapy, immune checkpoint inhibitors, DNA damage repair inhibitors and antibody-drug conjugates were analyzed. EXPERT OPINION In recent years, there have been significant improvements in the outcomes of recurrent/metastatic cervical cancer. However, these improvements do not address the unmet need in terms of oncological outcomes. The introduction of immunotherapy and targeted therapies showed advantages in cervical cancer patients. New therapies and combination strategies must be implemented. Centralization of care and enrollment in clinical trials are of paramount importance. Primary and secondary prevention remains the fundamental goal to reduce the burden of cervical cancer.
Collapse
Affiliation(s)
- Ottavia D'Oria
- Department of Medical and Surgical Sciences and Translational Medicine, Course in "Translational Medicine and Oncology", Sapienza University, Rome, Italy
- Obstetrics and Gynecological Unit, Department of Woman's and Child's Health, San Camillo-Forlanini Hospital, Rome, Italy
| | - Giorgio Bogani
- Gynecologic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Ilaria Cuccu
- Department of Gynecological, Obstetrical and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Tullio Golia D'Auge
- Department of Gynecological, Obstetrical and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Violante Di Donato
- Department of Gynecological, Obstetrical and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Donatella Caserta
- Gynecology Division, Department of Medical and Surgical Sciences and Translational Medicine, Sant'Andrea University Hospital Sapienza University of Rome, Rome, Italy
| | - Andrea Giannini
- Department of Medical and Surgical Sciences and Translational Medicine, Course in "Translational Medicine and Oncology", Sapienza University, Rome, Italy
- Department of Gynecological, Obstetrical and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
7
|
Zhang C, Sheng Y, Sun X, Wang Y. New insights for gynecological cancer therapies: from molecular mechanisms and clinical evidence to future directions. Cancer Metastasis Rev 2023; 42:891-925. [PMID: 37368179 PMCID: PMC10584725 DOI: 10.1007/s10555-023-10113-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
Advanced and recurrent gynecological cancers lack effective treatment and have poor prognosis. Besides, there is urgent need for conservative treatment for fertility protection of young patients. Therefore, continued efforts are needed to further define underlying therapeutic targets and explore novel targeted strategies. Considerable advancements have been made with new insights into molecular mechanisms on cancer progression and breakthroughs in novel treatment strategies. Herein, we review the research that holds unique novelty and potential translational power to alter the current landscape of gynecological cancers and improve effective treatments. We outline the advent of promising therapies with their targeted biomolecules, including hormone receptor-targeted agents, inhibitors targeting epigenetic regulators, antiangiogenic agents, inhibitors of abnormal signaling pathways, poly (ADP-ribose) polymerase (PARP) inhibitors, agents targeting immune-suppressive regulators, and repurposed existing drugs. We particularly highlight clinical evidence and trace the ongoing clinical trials to investigate the translational value. Taken together, we conduct a thorough review on emerging agents for gynecological cancer treatment and further discuss their potential challenges and future opportunities.
Collapse
Affiliation(s)
- Chunxue Zhang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yaru Sheng
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiao Sun
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yudong Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| |
Collapse
|
8
|
Wang L, Evans JC, Ahmed L, Allen C. Folate receptor targeted nanoparticles containing niraparib and doxorubicin as a potential candidate for the treatment of high grade serous ovarian cancer. Sci Rep 2023; 13:3226. [PMID: 36828860 PMCID: PMC9958112 DOI: 10.1038/s41598-023-28424-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/18/2023] [Indexed: 02/26/2023] Open
Abstract
Combination chemotherapy is an established approach used to manage toxicities while eliciting an enhanced therapeutic response. Delivery of drug combinations at specific molar ratios has been considered a means to achieve synergistic effects resulting in improvements in efficacy while minimizing dose related adverse drug reactions. The benefits of this approach have been realized with the FDA approval of Vyxeos®, the first liposome formulation to deliver a synergistic drug combination leading to improved overall survival against standard of care. In the current study, we demonstrate the synergistic potential of the PARP inhibitor niraparib and doxorubicin for the treatment of ovarian cancer. Through in vitro screening in a panel of ovarian cancer cell lines, we find that niraparib and doxorubicin demonstrate consistent synergy/additivity at the majority of evaluated molar ratio combinations. Further to these findings, we report formulation of a nanoparticle encapsulating our identified synergistic combination. We describe a rational design process to achieve highly stable liposomes that are targeted with folate to folate-receptor-alpha, which is known to be overexpressed on the surface of ovarian cancer cells. With this approach, we aim to achieve targeted delivery of niraparib and doxorubicin at a pre-determined synergistic molar ratio via increased receptor-mediated endocytosis.
Collapse
Affiliation(s)
- Lucy Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - James C Evans
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Lubabah Ahmed
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
9
|
Chelariu-Raicu A, Trillsch F, Burges A, Czogalla B, Hester A, Wuerstlein R, Harbeck N, Mahner S. PARP inhibitors: risk factors for toxicity and matching patients to the proper poly (ADP-ribose) polymerase inhibitor (PARPi) therapy. Int J Gynecol Cancer 2023; 33:812-822. [PMID: 36707086 DOI: 10.1136/ijgc-2022-003990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The past 5 years have seen several fundamental advances in ovarian cancer, with important new insights towards novel therapeutic opportunities within the DNA repair pathway. With the incorporation of poly (ADP-ribose) polymerase inhibitors (PARPi) into maintenance treatment regimens, the management of short- and long-term adverse events are key clinical priorities. Currently, three different PARPi are clinically beneficial and have been approved for primary and recurrent ovarian cancer: olaparib, niraparib, and rucaparib. The duration of treatment with PARPi in patients with ovarian cancer varies; patients can receive treatment for up to 2 or 3 years in first-line setting, or continue treatment until unacceptable toxicity or progression occurs in recurrent disease. Despite their similar mechanisms of action, these three inhibitors have specific toxicity profiles, which may lead to dose interruptions or discontinuation of treatment. This review summarizes the current indications for PARPi, including their role in recurrent and first-line maintenance treatment for advanced ovarian cancer. We also outline dose modifications leading to treatment disruption and potential changes in quality of life after prolonged treatment. Finally, we highlight the patient groups most likely to benefit from each of the three different PARPi.
Collapse
Affiliation(s)
- Anca Chelariu-Raicu
- Department of Obstetrics and Gynecology, Breast Center, Gynecologic Cancer Center and CCC Munich, Ludwig Maximilians University Munich, Munich, Bayern, Germany .,German Cancer Consortium (DKTK), partner site Munich, German Cancer Research Center, Munich, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, Breast Center, Gynecologic Cancer Center and CCC Munich, Ludwig Maximilians University Munich, Munich, Bayern, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, Breast Center, Gynecologic Cancer Center and CCC Munich, Ludwig Maximilians University Munich, Munich, Bayern, Germany
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, Breast Center, Gynecologic Cancer Center and CCC Munich, Ludwig Maximilians University Munich, Munich, Bayern, Germany
| | - Anna Hester
- Department of Obstetrics and Gynecology, Breast Center, Gynecologic Cancer Center and CCC Munich, Ludwig Maximilians University Munich, Munich, Bayern, Germany
| | - Rahel Wuerstlein
- Department of Obstetrics and Gynecology, Breast Center, Gynecologic Cancer Center and CCC Munich, Ludwig Maximilians University Munich, Munich, Bayern, Germany
| | - Nadia Harbeck
- Department of Obstetrics and Gynecology, Breast Center, Gynecologic Cancer Center and CCC Munich, Ludwig Maximilians University Munich, Munich, Bayern, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, Breast Center, Gynecologic Cancer Center and CCC Munich, Ludwig Maximilians University Munich, Munich, Bayern, Germany.,German Cancer Consortium (DKTK), partner site Munich, German Cancer Research Center, Munich, Germany
| |
Collapse
|
10
|
Gross M, Spencer RJ. Recurrent Cervical Cancer Treated Successfully with Single-Agent PARP-Inhibitor, Olaparib. Case Rep Obstet Gynecol 2022; 2022:6579715. [PMID: 36330376 PMCID: PMC9626235 DOI: 10.1155/2022/6579715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Recurrent cervical cancer has a grim prognosis with 5-year survival <5%. Current treatment options are limited; standards of care such as palliative chemotherapy and surgical resection often provide a small survival advantage. To date, only one targeted agent has FDA approval for the treatment of recurrent cervical cancer. We present the case of a novel application of olaparib, a poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitor, as single-agent therapy for recurrent metastatic clear cell cervical cancer in a patient with a somatic BRCA2 mutation. The patient had excellent response to therapy with stable disease without evidence of progression until 14 months of therapy, at which time she was switched to an alternative regimen.
Collapse
Affiliation(s)
- Maya Gross
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison School of Medicine and Public Health, USA
| | - Ryan J. Spencer
- Division of Gynecologic Oncology, University of Wisconsin-Madison School of Medicine and Public Health, USA
| |
Collapse
|
11
|
Wicks AJ, Krastev DB, Pettitt SJ, Tutt ANJ, Lord CJ. Opinion: PARP inhibitors in cancer-what do we still need to know? Open Biol 2022; 12:220118. [PMID: 35892198 PMCID: PMC9326299 DOI: 10.1098/rsob.220118] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/08/2022] [Indexed: 02/07/2023] Open
Abstract
PARP inhibitors (PARPi) have been demonstrated to exhibit profound anti-tumour activity in individuals whose cancers have a defect in the homologous recombination DNA repair pathway. Here, we describe the current consensus as to how PARPi work and how drug resistance to these agents emerges. We discuss the need to refine the current repertoire of clinical-grade companion biomarkers to be used with PARPi, so that patient stratification can be improved, the early emergence of drug resistance can be detected and dose-limiting toxicity can be predicted. We also highlight current thoughts about how PARPi resistance might be treated.
Collapse
Affiliation(s)
- Andrew J. Wicks
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Dragomir B. Krastev
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Andrew N. J. Tutt
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| |
Collapse
|
12
|
Burmeister CA, Khan SF, Schäfer G, Mbatani N, Adams T, Moodley J, Prince S. Cervical cancer therapies: Current challenges and future perspectives. Tumour Virus Res 2022; 13:200238. [PMID: 35460940 PMCID: PMC9062473 DOI: 10.1016/j.tvr.2022.200238] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer is the fourth most common female cancer worldwide and results in over 300 000 deaths globally. The causative agent of cervical cancer is persistent infection with high-risk subtypes of the human papillomavirus and the E5, E6 and E7 viral oncoproteins cooperate with host factors to induce and maintain the malignant phenotype. Cervical cancer is a largely preventable disease and early-stage detection is associated with significantly improved survival rates. Indeed, in high-income countries with established vaccination and screening programs it is a rare disease. However, the disease is a killer for women in low- and middle-income countries who, due to limited resources, often present with advanced and untreatable disease. Treatment options include surgical interventions, chemotherapy and/or radiotherapy either alone or in combination. This review describes the initiation and progression of cervical cancer and discusses in depth the advantages and challenges faced by current cervical cancer therapies, followed by a discussion of promising and efficacious new therapies to treat cervical cancer including immunotherapies, targeted therapies, combination therapies, and genetic treatment approaches.
Collapse
Affiliation(s)
- Carly A Burmeister
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Saif F Khan
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Georgia Schäfer
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town, Observatory, 7925, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Observatory, 7925, South Africa; Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, South Africa
| | - Nomonde Mbatani
- South African Medical Research Council Gynaecology Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa; Department of Obstetrics and Gynecology. Faculty of Health Sciences. University of Cape Town,Observatory. Cape Town, South Africa
| | - Tracey Adams
- South African Medical Research Council Gynaecology Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa; Department of Obstetrics and Gynecology. Faculty of Health Sciences. University of Cape Town,Observatory. Cape Town, South Africa; UCT Global Surgery, Department of Surgery, Groote Schuur Hospital, Cape Town, South Africa
| | - Jennifer Moodley
- Women's Health Research Unit, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape, Town, South Africa; Cancer Research Initiative, Faculty of Health Sciences, University of Cape Town, Observatory, Cape, Town, South Africa; South African Medical Research Council Gynaecology Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Sharon Prince
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| |
Collapse
|
13
|
Jia Y, Wang M, Sang X, Liu P, Gao J, Jiang K, Cheng H. Phenethyl Isothiocyanate Enhances the Cytotoxic Effects of PARP Inhibitors in High-Grade Serous Ovarian Cancer Cells. Front Oncol 2022; 11:812264. [PMID: 35155204 PMCID: PMC8825372 DOI: 10.3389/fonc.2021.812264] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/24/2021] [Indexed: 11/29/2022] Open
Abstract
While PARP inhibitor (PARPi) therapies have shown promising results in the treatment of high-grade serous ovarian cancer (HGSOC) harboring homologous recombination deficiencies, primary resistance to PARPi frequently occurs and even initial responders may eventually become resistant. Therefore, the development of novel effective combinatorial strategies to treat HGSOC is urgently needed. Here, we report that H2O2-induced oxidative stress sensitized HGSOC cells to PARPi BMN 673. Furthermore, Phenethyl isothiocyanate (PEITC) as a ROS-inducing agent significantly enhanced the cytotoxic effects of BMN 673. Mechanistically, combined use of PEITC and BMN 673 resulted in ROS overproduction and accumulation, enhanced DNA damage, G2/M arrest and apoptosis, all of which were significantly reversed by the ROS scavenger N-Acetyl-L-cysteine. We also showed that while PEITC did not further enhance the ability of BMN 673 on PARP1 trapping in HGSOC cells, the therapeutic effects of the PEITC/BMN 673 combination were at least in part dependent on the presence of PARP1. Importantly, the PEITC/BMN 673 combination potently abrogated the growth of HGSOC tumor spheroids and patient-derived organoid models of HGSOC and cervical cancer. Our findings provide a basis for further investigation of the utility of PARPi combination regimen in HGSOC and cervical cancer through ROS-mediated mechanisms.
Collapse
Affiliation(s)
- Yaxun Jia
- Cancer Institute, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, The Second Hospital of Dalian Medical University, Dalian, China
| | - Min Wang
- Cancer Institute, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xiaolin Sang
- Cancer Institute, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, The Second Hospital of Dalian Medical University, Dalian, China
| | - Pixu Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jingchun Gao
- Department of Obstetrics and Gynecology, The First Hospital of Dalian Medical University, Dalian, China
| | - Kui Jiang
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Hailing Cheng
- Cancer Institute, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
14
|
Martincuks A, Song J, Kohut A, Zhang C, Li YJ, Zhao Q, Mak E, Rodriguez-Rodriguez L, Yu H, Cristea M. PARP Inhibition Activates STAT3 in Both Tumor and Immune Cells Underlying Therapy Resistance and Immunosuppression In Ovarian Cancer. Front Oncol 2021; 11:724104. [PMID: 34956861 PMCID: PMC8693573 DOI: 10.3389/fonc.2021.724104] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Despite the promising activity of poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) in many cancer types with defects in the DNA damage response the majority of the treated patients acquire PARPi resistance and succumb to their diseases. Consequently, there is an urgent need to identify the mechanisms of PARPi resistance. Here, we show that PARPi treatment promotes STAT3 activation in ovarian cancer cells, tumor-associated immune cells and fibroblasts, resulting in PARPi resistance and immunosuppression. Comparison of ovarian cancer patient-matched tumor biopsies before and after PARPi therapy revealed that STAT3 activity was significantly higher in tumor cells and tumor-associated immune cells and fibroblasts post PARPi treatment. Moreover, one-time PARPi treatment activated STAT3 both in tumor cells as well as diverse immune subsets and fibroblasts. PARPi-treated immune cells exhibited decreased expression of immunostimulatory interferon (IFN)-γ and Granzyme B while increasing immunosuppressive cytokine IL-10. Finally, we demonstrate that the acquisition of PARPi resistance in ovarian cancer cells was accompanied by increased STAT3 activity. Ablating STAT3 inhibited PARPi-resistant ovarian tumor cell growth and/or restored PARPi sensitivity. Therefore, our study has identified a critical mechanism intrinsic to PARPi that promotes resistance to PARPi and induces immunosuppression during PARPi treatment by activating STAT3 in tumor cells and tumor-associated immune cells/fibroblasts.
Collapse
Affiliation(s)
- Antons Martincuks
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center (COH), Duarte, CA, United States
| | - Jieun Song
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center (COH), Duarte, CA, United States
| | - Adrian Kohut
- Department of Surgery, Division of Gynecologic Oncology, City of Hope National Medical Center (COH), Duarte, CA, United States
| | - Chunyan Zhang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center (COH), Duarte, CA, United States
| | - Yi-Jia Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center (COH), Duarte, CA, United States
| | - Qianqian Zhao
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center (COH), Duarte, CA, United States
| | - Edward Mak
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center (COH), Duarte, CA, United States
| | - Lorna Rodriguez-Rodriguez
- Department of Surgery, Division of Gynecologic Oncology, City of Hope National Medical Center (COH), Duarte, CA, United States
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center (COH), Duarte, CA, United States
| | - Mihaela Cristea
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center (COH), Duarte, CA, United States
| |
Collapse
|
15
|
Le Gac M, Koual M, Delanoy N, Perkins G, Nguyen-Xuan HT, Blons H, Le Frère-Belda MA, Laurent-Puig P, Bentivegna E, Durdux C, Azaïs H, Bats AS. [Place of PARP inhibitors in the treatment of endometrial and cervical cancers]. Bull Cancer 2021; 109:65-75. [PMID: 34801228 DOI: 10.1016/j.bulcan.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022]
Abstract
New molecular therapeutic approaches have emerged in recent years for advanced gynaecological cancers, including targeted therapies such as poly-ADP-ribose polymerase inhibitors (PARPi). These have demonstrated efficacy in high-grade serous ovarian cancers in patients carrying a mutation in the BRCA gene, which predisposes them to breast and ovarian cancers. Clinical and pre-clinical data suggest that the activity of PARPi inhibitors may not be limited to BRCA mutated tumours and may involve the homologous recombination pathway. These data raise the question of the potential efficacy of PARPi in advanced endometrial and cervical cancers where treatment options are currently limited. At present, there are few data available on the activity of PARPi in endometrial and cervical cancers, but some results seem promising. In this review, we present a synthesis of the available studies concerning PARPi in endometrial and cervical cancer.
Collapse
Affiliation(s)
- Marjolaine Le Gac
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France.
| | - Meriem Koual
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital Européen Georges-Pompidou, chirurgie cancérologique gynécologique et du sein, 75015 Paris, France; Inserm UMR-S 1124, université de Paris, centre universitaire des Saints-Pères, 45, rue des Saints-Pères, 75006 Paris, France
| | - Nicolas Delanoy
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital européen Georges-Pompidou, oncologie médicale, 75015 Paris, France
| | - Géraldine Perkins
- Centre de recherche des Cordeliers, Inserm, CNRS, Sorbonne université, USPC, université Paris Descartes, université Paris Diderot, équipe labellisée ligue nationale contre le cancer, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital européen Georges-Pompidou, oncogénétique, 75015 Paris, France
| | - Huyên-Thu Nguyen-Xuan
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France
| | - Hélène Blons
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France; Centre de recherche des Cordeliers, Inserm, CNRS, Sorbonne université, USPC, université Paris Descartes, université Paris Diderot, équipe labellisée ligue nationale contre le cancer, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital européen Georges-Pompidou, biochimie, 75015 Paris, France
| | | | - Pierre Laurent-Puig
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France; Centre de recherche des Cordeliers, Inserm, CNRS, Sorbonne université, USPC, université Paris Descartes, université Paris Diderot, équipe labellisée ligue nationale contre le cancer, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital européen Georges-Pompidou, oncologie médicale, 75015 Paris, France
| | - Enrica Bentivegna
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France
| | - Catherine Durdux
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital européen Georges-Pompidou, oncologie médicale, 75015 Paris, France
| | - Henri Azaïs
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital Européen Georges-Pompidou, chirurgie cancérologique gynécologique et du sein, 75015 Paris, France; Centre de recherche des Cordeliers, Inserm, CNRS, Sorbonne université, USPC, université Paris Descartes, université Paris Diderot, équipe labellisée ligue nationale contre le cancer, 15, rue de l'École-de-Médecine, 75006 Paris, France
| | - Anne-Sophie Bats
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital Européen Georges-Pompidou, chirurgie cancérologique gynécologique et du sein, 75015 Paris, France; Centre de recherche des Cordeliers, Inserm, CNRS, Sorbonne université, USPC, université Paris Descartes, université Paris Diderot, équipe labellisée ligue nationale contre le cancer, 15, rue de l'École-de-Médecine, 75006 Paris, France
| |
Collapse
|
16
|
LeVee A, Lin CY, Posadas E, Figlin R, Bhowmick NA, Di Vizio D, Ellis L, Rosser CJ, Freeman MR, Theodorescu D, Freedland SJ, Gong J. Clinical Utility of Olaparib in the Treatment of Metastatic Castration-Resistant Prostate Cancer: A Review of Current Evidence and Patient Selection. Onco Targets Ther 2021; 14:4819-4832. [PMID: 34552338 PMCID: PMC8450162 DOI: 10.2147/ott.s315170] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is an aggressive and fatal disease with a median survival of 36 months. With the advent of genetic sequencing to identify individual genomic profiles and acquired tumor-specific pathways, targeted therapies have revolutionized cancer treatment, including the treatment strategy in mCRPC. Poly(adenosine 5'-diphosphate) ribose polymerase inhibitors (PARPi) are oral drugs that target mutations in the homologous recombination repair (HRR) pathway, which are found in approximately 27% of prostate cancer patients. In May 2020, the first PARP inhibitor, olaparib, was approved by the US Food and Drug Administration for men with mCRPC with HHR gene mutations based on the findings of the Phase III PROfound trial that showed improved overall survival in men with mCRPC who received olaparib and whose disease had progressed on a novel hormonal agent. This review summarizes the current evidence and clinical utility of olaparib as treatment in men with mCRPC. We describe the mechanism of action of PARPi, key clinical trials of olaparib in men with mCRPC, and ongoing Phase II and III clinical trials investigating olaparib in combination therapy and as front-line therapy in mCRPC.
Collapse
Affiliation(s)
- Alexis LeVee
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ching Ying Lin
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edwin Posadas
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robert Figlin
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Neil A Bhowmick
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and Therapeutics, Biomedical Sciences, and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leigh Ellis
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Charlos J Rosser
- Department of Surgery, Division of Urology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Department of Surgery, Division of Cancer Biology and Therapeutics, Biomedical Sciences, and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Theodorescu
- Department of Surgery, Division of Cancer Biology and Therapeutics, Biomedical Sciences, and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen J Freedland
- Department of Surgery, Division of Urology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Section of Urology, Durham VA Medical Center, Durham, NC, USA
| | - Jun Gong
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
17
|
Crowley FJ, O'Cearbhaill RE, Collins DC. Exploiting somatic alterations as therapeutic targets in advanced and metastatic cervical cancer. Cancer Treat Rev 2021; 98:102225. [PMID: 34082256 DOI: 10.1016/j.ctrv.2021.102225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 01/05/2023]
Abstract
It is estimated that 604,127 patients were diagnosed with cervical cancer worldwide in 2020. While a small percentage of patients will have metastatic disease at diagnosis, a large percentage (15-61%) later develop advanced disease. For this cohort, treatment with systemic chemotherapy remains the standard of care, with a static 5-year survival rate over the last thirty years. Data on targetable molecular alterations in cervical cancer have lagged behind other more common tumor types thus stunting the development of targeted agents. In recent years, tumor genomic testing has been increasingly incorporated into our clinical practice, opening the door for a potential new era of personalized treatment for advanced cervical cancer. The interim results from the NCI-MATCH study reported an actionability rate of 28.4% for the cervical cancer cohort, suggesting a subset of patients may harbor mutations which that are targetable. This review sets out to summarize the key targeted agents currently under exploration either alone or in combination with existing treatments for cervical cancer.
Collapse
Affiliation(s)
- F J Crowley
- Department of Internal Medicine, Mount Sinai Morningside and Mount Sinai West, NY, USA.
| | - R E O'Cearbhaill
- Department of Medicine, Memorial Sloan Kettering Cancer Centre and Weill Cornell Medical College, NY, USA.
| | - D C Collins
- Department of Medical Oncology, Cork University Hospital, Cork, Ireland; Cancer Research @UCC, College of Medicine and Health, University College Cork, Cork, Ireland.
| |
Collapse
|
18
|
Harkenrider MM, Markham MJ, Dizon DS, Jhingran A, Salani R, Serour RK, Lynn J, Kohn EC. Moving Forward in Cervical Cancer: Enhancing Susceptibility to DNA Repair Inhibition and Damage, an NCI Clinical Trials Planning Meeting Report. J Natl Cancer Inst 2021; 112:1081-1088. [PMID: 32219419 DOI: 10.1093/jnci/djaa041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer is the fourth most common cancer in women worldwide, and prognosis is poor for those who experience recurrence or develop metastatic disease, in part due to the lack of active therapeutic directions. The National Cancer Institute convened a Cervical Cancer Clinical Trials Planning Meeting in October 2018 to facilitate the design of hypothesis-driven clinical trials focusing on locally advanced, metastatic, and recurrent cervical cancer around the theme of enhancing susceptibility to DNA repair inhibition and DNA damage. Before the meeting, a group of experts in the field summarized available preclinical and clinical data to identify potentially active inducers and inhibitors of DNA. The goals of the Clinical Trials Planning Meeting focused on identification of novel experimental strategies capitalizing on DNA damage and repair (DDR) regulators and cell cycle aberrations, optimization of radiotherapy as a DDR agent, and design of clinical trials incorporating DDR regulation into the primary and recurrent or metastatic therapies for cervical carcinoma. Meeting deliverables were novel clinical trial concepts to move into the National Clinical Trials Network. This report provides an overview for the rationale of this meeting and the state of the science related to DDR regulation in cervical cancer.
Collapse
Affiliation(s)
- Matthew M Harkenrider
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, USA
| | - Merry Jennifer Markham
- Division of Hematology and Oncology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Don S Dizon
- Division of Hematology and Oncology, Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Anuja Jhingran
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ritu Salani
- The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Jean Lynn
- Coordinating Center for Clinical Trials, National Cancer Institute, Bethesda, MD, USA
| | - Elise C Kohn
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
19
|
Montero-Macias R, Koual M, Crespel C, Le Frére-Belda MA, Hélène HB, Nguyen-Xuan HT, Garinet S, Perkins G, Balay V, Durdux C, Florin M, Péré H, Bats AS. Complete pathological response to olaparib and bevacizumab in advanced cervical cancer following chemoradiation in a BRCA1 mutation carrier: a case report. J Med Case Rep 2021; 15:210. [PMID: 33888155 PMCID: PMC8063354 DOI: 10.1186/s13256-021-02767-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Homologous recombination deficiency is a marker of response to poly(ADP-ribose) polymerase inhibitors in different cancer types including ovary, prostate, and pancreatic cancer. To date, no report about poly(ADP-ribose) polymerase inhibitors has been published on cervical cancer. CASE PRESENTATION Here we present the case of a patient with cervical cancer treated in this setting. A 49-year-old woman diagnosed with International Federation of Obstetricians and Gynecologists stage 2018 IIIC2 locally advanced undifferentiated cervical cancer received first-line chemoradiotherapy followed by carboplatin, paclitaxel, and bevacizumab with partial response. Because of a family history of cancers, the patient was tested and found positive for a pathogenic BRCA1 germline and somatic mutation, which motivated bevacizumab plus olaparib maintenance treatment. A simple hysterectomy was performed after 2 years stable disease; pathological report showed complete pathological response, and 12 months follow-up showed no recurrence. CONCLUSION Poly(ADP-ribose) polymerase inhibitors could be an alternative maintenance treatment for patients with persistent advanced cervical cancer previously treated with platinum, especially when familial history of cancers is reported. Clinical trials using poly(ADP-ribose) polymerase inhibitors for advanced cervical cancer are warranted.
Collapse
Affiliation(s)
- Rosa Montero-Macias
- Department of Gynaecologic and Breast Oncological Surgery, European Georges-Pompidou Hospital, APHP. Centre, 20, rue Leblanc, 75908, Paris Cedex 15, France
| | - Meriem Koual
- Department of Gynaecologic and Breast Oncological Surgery, European Georges-Pompidou Hospital, APHP. Centre, 20, rue Leblanc, 75908, Paris Cedex 15, France. .,Faculty of Medicine, Paris University, Paris, France. .,Centre Universitaire des Saints-Pères, INSERM UMR-S 1124, Université de Paris, Paris, France.
| | - Céline Crespel
- Faculty of Medicine, Paris University, Paris, France.,Department of Medical Oncology, European Georges-Pompidou Hospital, APHP. Centre, Paris, France
| | | | - Hélène Blons Hélène
- Faculty of Medicine, Paris University, Paris, France.,Department of Biochemistry, European Georges-Pompidou Hospital, APHP. Centre, Paris, France.,Centre Universitaire des Saints-Pères, INSERM UMR-S 1147, Université de Paris, Paris, France
| | - Huyen-Thu Nguyen-Xuan
- Department of Gynaecologic and Breast Oncological Surgery, European Georges-Pompidou Hospital, APHP. Centre, 20, rue Leblanc, 75908, Paris Cedex 15, France.,Faculty of Medicine, Paris University, Paris, France
| | - Simon Garinet
- Faculty of Medicine, Paris University, Paris, France.,Department of Biochemistry, European Georges-Pompidou Hospital, APHP. Centre, Paris, France.,Centre Universitaire des Saints-Pères, INSERM UMR-S 1147, Université de Paris, Paris, France
| | - Géraldine Perkins
- Centre Universitaire des Saints-Pères, INSERM UMR-S 1147, Université de Paris, Paris, France.,Department of Biology, European Georges-Pompidou Hospital, APHP. Centre, Paris, France
| | - Vincent Balay
- Department of Gynaecologic and Breast Oncological Surgery, European Georges-Pompidou Hospital, APHP. Centre, 20, rue Leblanc, 75908, Paris Cedex 15, France.,Faculty of Medicine, Paris University, Paris, France
| | - Catherine Durdux
- Faculty of Medicine, Paris University, Paris, France.,Department of Radiotherapy, European Georges-Pompidou Hospital, APHP. Centre, Paris, France
| | - Marie Florin
- Faculty of Medicine, Paris University, Paris, France.,Department of Radiology, European Georges-Pompidou Hospital, APHP. Centre, Paris, France
| | - Hélène Péré
- Faculty of Medicine, Paris University, Paris, France.,Department of Virology, European Georges-Pompidou Hospital, APHP. Centre, Paris, France.,INSERM 970, Paris Centre de Recherche Cardiovasculaire (PARCC), European Georges-Pompidou Hospital, APHP. Centre, Paris, France
| | - Anne-Sophie Bats
- Department of Gynaecologic and Breast Oncological Surgery, European Georges-Pompidou Hospital, APHP. Centre, 20, rue Leblanc, 75908, Paris Cedex 15, France.,Faculty of Medicine, Paris University, Paris, France.,Centre Universitaire des Saints-Pères, INSERM UMR-S 1147, Université de Paris, Paris, France
| |
Collapse
|
20
|
Chelariu-Raicu A, Zibetti Dal Molin G, Coleman RL. The new world of poly-(ADP)-ribose polymerase inhibitors (PARPi) used in the treatment of gynecological cancers. Int J Gynecol Cancer 2020; 30:1608-1618. [PMID: 32928926 DOI: 10.1136/ijgc-2020-001789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 11/04/2022] Open
Abstract
The clinical development of poly-(ADP)-ribose polymerase inhibitors (PARPi) began with the treatment of ovarian cancer patients harboring BRCA1/2 mutations and continues to be expanded to other gynecological cancers. Furthermore, The Cancer Genome Atlas (TCGA) analysis of endometrial and cervical cancers offered rationale that PARPi may be an option for treatment based on the molecular profiles of these cancer types. This review summarizes the current indications of PARPi, such as its role in the treatment and maintenance of recurrent ovarian cancer and for first-line maintenance therapy in advanced ovarian cancer. We also outline new concepts for PARPi therapy in other gynecological cancers such as endometrial and cervical cancers based on recent clinical data. Finally, we present potential future directions to continue exploring the world of PARPi resistance and combining PARPi with other therapies.
Collapse
Affiliation(s)
- Anca Chelariu-Raicu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA .,The US Oncology Network, The Woodlands, Texas, USA
| |
Collapse
|
21
|
Wang Q, Peng H, Qi X, Wu M, Zhao X. Targeted therapies in gynecological cancers: a comprehensive review of clinical evidence. Signal Transduct Target Ther 2020; 5:137. [PMID: 32728057 PMCID: PMC7391668 DOI: 10.1038/s41392-020-0199-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Advanced and recurrent gynecological cancers are associated with poor prognosis and lack of effective treatment. The developments of the molecular mechanisms on cancer progression provide insight into novel targeted therapies, which are emerging as groundbreaking and promising cancer treatment strategies. In gynecologic malignancies, potential therapeutic targeted agents include antiangiogenic agents, poly (ADP-ribose) polymerase (PARP) inhibitors, tumor-intrinsic signaling pathway inhibitors, selective estrogen receptor downregulators, and immune checkpoint inhibitors. In this article, we provide a comprehensive review of the clinical evidence of targeted agents in gynecological cancers and discuss the future implication.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Hongling Peng
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
22
|
Min A, Im SA. PARP Inhibitors as Therapeutics: Beyond Modulation of PARylation. Cancers (Basel) 2020; 12:cancers12020394. [PMID: 32046300 PMCID: PMC7072193 DOI: 10.3390/cancers12020394] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 12/27/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) 1 is an essential molecule in DNA damage response by sensing DNA damage and docking DNA repair proteins on the damaged DNA site through a type of posttranslational modification, poly (ADP-Ribosyl)ation (PARylation). PARP inhibitors, which inhibit PARylation through competitively binding to NAD+ binding site of PARP1 and PARP2, have improved clinical benefits for BRCA mutated tumors, leading to their accelerated clinical application. However, the antitumor activities of PARP inhibitors in clinical development are different, due to PARP trapping activity beyond blocking PARylation reactions. In this review, we comprehensively address the current state of knowledge regarding the mechanisms of action of PARP inhibitors. We will also discuss the different effects of PARP inhibitors in combination with cytotoxic chemotherapeutic agents regarding the mechanism of regulating PARylation.
Collapse
Affiliation(s)
- Ahrum Min
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea;
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea;
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
- Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-2072-0850; Fax: +82-2-765-7081
| |
Collapse
|
23
|
Cohen AC, Roane BM, Leath CA. Novel Therapeutics for Recurrent Cervical Cancer: Moving Towards Personalized Therapy. Drugs 2020; 80:217-227. [PMID: 31939072 PMCID: PMC7033025 DOI: 10.1007/s40265-019-01249-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While screening programs and HPV vaccination have decreased the incidence of cervical cancer, still over 13,000 cases occur in the USA annually. Early-stage cervical cancer has an excellent long-term prognosis, with 5-year survival for localized disease being > 90%. Survival decreases markedly for both locally advanced and metastatic disease, and both are associated with a higher risk of recurrence. Few effective treatment options exist for persistent, recurrent, or metastatic cervical cancer. In 2014, the anti-VEGF antibody bevacizumab was approved in combination with chemotherapy based on the results of the Phase III GOG-240 study. As the majority of cervical cancers have a viral etiology, which impairs the immune system, immunotherapy using checkpoint inhibitors and other agents, appears to be a promising approach. In June 2018, the US FDA approved the anti-PD1 antibody pembrolizumab for recurrent or metastatic cervical cancer with PD-L1 expression that progressed after one or more lines of chemotherapy. Another anti-PD1 antibody, cemiplimab also shows potential in this setting, either as monotherapy or combined with radiotherapy, and it is currently being evaluated in a Phase III trial. Additional checkpoint inhibitors including nivolumab, durvalumab, atezolizumab, and camrelizumab are in different stages of clinical development for the disease. Finally, an additional targeted approach being pursued involves PARP inhibitors (rucaparib and olaparib are both in Phase II) based on earlier study results.
Collapse
Affiliation(s)
- Alexander C Cohen
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon M Roane
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1700 6th Avenue South, Room 10250, Birmingham, AL, 35249-7333, USA
| | - Charles A Leath
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1700 6th Avenue South, Room 10250, Birmingham, AL, 35249-7333, USA.
| |
Collapse
|
24
|
Tomao F, Santangelo G, Musacchio L, Di Donato V, Fischetti M, Giancotti A, Perniola G, Petrella MC, Monti M, Palaia I, Muzii L, Benedetti Panici P. Targeting cervical cancer: Is there a role for poly (ADP-ribose) polymerase inhibition? J Cell Physiol 2020; 235:5050-5058. [PMID: 31912897 DOI: 10.1002/jcp.29440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022]
Abstract
Patients with metastatic and recurrent cervical cancer (CC) have a poor prognosis with limited palliative treatment options. Increasing understanding of the cellular aberrations inherent to cancer cells has allowed the development of therapies to target biological pathways, an important step toward the individualization of cancer therapy. The poly (ADP-ribose) polymerase (PARP) family of enzymes is important in several DNA repair pathways. Drugs that inhibit these PARP enzymes have been investigated in many types of cancer and their application in the treatment of gynecologic malignancies has rapidly evolved. Although the majority of data for PARPi in gynecologic malignancies has been specifically regarding ovarian cancer, their role in the treatment of uterine and CC is currently being investigated. This review will examine PARP inhibitors in CC, summarizes the critical clinical trials of PARP inhibitors that have been completed, provides an overview of the on-going trials, presents the confirmed conclusions and notes the issues that need to be addressed in future studies.
Collapse
Affiliation(s)
- Federica Tomao
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico "Umberto I", Rome, Italy
| | - Giusi Santangelo
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico "Umberto I", Rome, Italy
| | - Lucia Musacchio
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico "Umberto I", Rome, Italy
| | - Violante Di Donato
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico "Umberto I", Rome, Italy
| | - Margherita Fischetti
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico "Umberto I", Rome, Italy
| | - Antonella Giancotti
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico "Umberto I", Rome, Italy
| | - Giorgia Perniola
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico "Umberto I", Rome, Italy
| | - Maria Cristina Petrella
- AOUC Azienda Ospedaliero-Universitaria Careggi, Reparto di Oncologia Medica, Florence, Italy
| | - Marco Monti
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico "Umberto I", Rome, Italy
| | - Innocenza Palaia
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico "Umberto I", Rome, Italy
| | - Ludovico Muzii
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico "Umberto I", Rome, Italy
| | - Pierluigi Benedetti Panici
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico "Umberto I", Rome, Italy
| |
Collapse
|
25
|
Wallace NA. Catching HPV in the Homologous Recombination Cookie Jar. Trends Microbiol 2019; 28:191-201. [PMID: 31744663 DOI: 10.1016/j.tim.2019.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/27/2022]
Abstract
To replicate, the human papillomaviruses (HPVs) that cause anogenital and oropharyngeal malignancies must simultaneously activate DNA repair pathways and avoid the cell cycle arrest that normally accompanies DNA repair. For years it seemed that HPV oncogenes activated the homologous recombination pathway to facilitate the HPV lifecycle. However, recent developments show that, although homologous recombination gene expression and markers of pathway activation are increased, homologous recombination itself is attenuated. This review provides an overview of the diverse ways that HPV oncogenes manipulate homologous recombination and ideas on how the resulting dysregulation and inhibition offer opportunities for improved therapies and biomarkers.
Collapse
|
26
|
Veliparib in ovarian cancer: a new synthetically lethal therapeutic approach. Invest New Drugs 2019; 38:181-193. [PMID: 31650446 DOI: 10.1007/s10637-019-00867-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022]
Abstract
Epithelial ovarian cancer (EOC) accounts for nearly 90% of all ovarian malignancies. The standard therapeutic strategy includes cytoreductive surgery and neo (adjuvant) platinum-based chemotherapy. Relapse of advanced high grade serous ovarian cancer (HGSOC) is related to the development of drug resistance. A defective DNA damage response is a defining hallmark of HGSOC. Poly (ADP-ribose) polymerase (PARP) inhibitors exploit this deficiency through synthetic lethality and have emerged as promising anticancer therapies, especially in breast cancer gene (BRCA1 or BRCA2) mutation carriers. Apart from inducing synthetic lethality, PARP inhibitors have also been shown to trap PARP1 and PARP2 on DNA, leading to PARP-DNA complexes. This "PARP trapping" potentiates synergism between PARP inhibition and both alkylating agents and platinum-based chemotherapy. However, there are remarkable differences in the ability of PARP inhibitors to trap PARP, based on the size and structure of each separate molecule. Since monotherapy with PARP inhibitors is unlikely to induce cancer cell death in BRCA-proficient tumors, the efficacy of PARP inhibitors could be potentially optimized when combined with DNA-damaging agents, or with molecular targeted agents that also impair mechanisms of DNA repair. Olaparib, rucaparib, and niraparib have all obtained US Food and Drug Administration (FDA) and/or European Medicines Agency (EMA) approval in ovarian cancer in different settings. Veliparib does not yet have an approved label; nevertheless, there are currently promising results available in preclinical and early clinical settings. This comprehensive review summarizes the mechanism of action of veliparib and provides an overview of its early and ongoing clinical investigations.
Collapse
|
27
|
Choosing wisely: Selecting PARP inhibitor combinations to promote anti-tumor immune responses beyond BRCA mutations. Gynecol Oncol 2019; 156:488-497. [PMID: 31630846 DOI: 10.1016/j.ygyno.2019.09.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/29/2022]
Abstract
PARP inhibitors have transformed the management of advanced high-grade serous ovarian cancer. Despite the overwhelming success of PARP inhibition, particularly in BRCA-mutated ovarian cancer, several limitations and unanswered questions remain. With PARP inhibitors now being used in earlier treatment settings, the issue of both de novo and acquired resistance mechanisms and appropriate post-PARP management are pressing concerns. In addition, the population appropriate to target with PARP inhibitors and their use in patients without BRCA mutations is controversial and evolving. In this review we will discuss exciting PARP combinations and biologic rationale for the development and selection of PARP inhibitor combinations.
Collapse
|
28
|
Li L, Ma S, Wu M, Tan X, Zhong S, Lang J. The prophylactic effects of long-acting granulocyte colony-stimulating factor for febrile neutropenia in newly diagnosed patients with epithelial ovarian cancer: a randomised controlled study. BMJ Support Palliat Care 2019; 9:373-380. [PMID: 31467066 PMCID: PMC6923945 DOI: 10.1136/bmjspcare-2019-001862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/18/2019] [Accepted: 08/21/2019] [Indexed: 02/05/2023]
Abstract
Objective This study explored the prophylactic effects of long-acting granulocyte colony-stimulating factor (G-CSF) for febrile neutropenia (FN) in newly diagnosed patients with epithelial ovarian cancer (EOC). Methods Patients were randomised into a study group (long-acting G-CSF for all chemotherapy cycles) and a control group (short-acting G-CSF for first cycle and treatment per physician discretion for subsequent cycles) at a ratio of 1:2. The incidences of FN and myelosuppression and the number of clinical visits, medication doses, complete blood count (CBC) tests and adverse events were compared between the two groups. A regression model was used to determine the risk factors for FN. Results From 30 November 2018 to 1 April 2019, 84 cases were included in the final analysis; there were 24 (28.6%) and 60 (71.4%) patients in the study and control groups, respectively, and 605 chemotherapy cycles. The study group or chemotherapy cycles utilising long-acting G-CSF had significantly fewer utilisations and doses of short-acting G-CSF; clinical visits; CBC tests; and incidences of FN and myelosuppression; and less G-CSF-associated pain. The utilisation of G-CSF was the only independent factor for FN in a binary regression model. Conclusion Long-acting G-CSF could effectively reduce the incidences of FN and myelosuppression and had mild adverse effects in newly diagnosed patients with EOC receiving chemotherapy. Trial registration number NCT03740464.
Collapse
Affiliation(s)
- Lei Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
| | - Shuiqing Ma
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
| | - Ming Wu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
| | - Xianjie Tan
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
| | - Sen Zhong
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
29
|
Wang W, Tse-Dinh YC. Recent Advances in Use of Topoisomerase Inhibitors in Combination Cancer Therapy. Curr Top Med Chem 2019; 19:730-740. [PMID: 30931861 DOI: 10.2174/1568026619666190401113350] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/31/2019] [Accepted: 02/28/2019] [Indexed: 01/01/2023]
Abstract
Inhibitors targeting human topoisomerase I and topoisomerase II alpha have provided a useful chemotherapy option for the treatment of many patients suffering from a variety of cancers. While the treatment can be effective in many patient cases, use of these human topoisomerase inhibitors is limited by side-effects that can be severe. A strategy of employing the topoisomerase inhibitors in combination with other treatments can potentially sensitize the cancer to increase the therapeutic efficacy and reduce resistance or adverse side effects. The combination strategies reviewed here include inhibitors of DNA repair, epigenetic modifications, signaling modulators and immunotherapy. The ongoing investigations on cellular response to topoisomerase inhibitors and newly initiated clinical trials may lead to adoption of novel cancer therapy regimens that can effectively stop the proliferation of cancer cells while limiting the development of resistance.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| |
Collapse
|
30
|
Patel PR, Senyuk V, Rodriguez NS, Oh AL, Bonetti E, Mahmud D, Barosi G, Mahmud N, Rondelli D. Synergistic Cytotoxic Effect of Busulfan and the PARP Inhibitor Veliparib in Myeloproliferative Neoplasms. Biol Blood Marrow Transplant 2019; 25:855-860. [PMID: 30615982 DOI: 10.1016/j.bbmt.2018.12.841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/27/2018] [Indexed: 10/27/2022]
Abstract
Patients with high-risk myeloproliferative neoplasms (MPNs), and in particular myelofibrosis (MF), can be cured only with allogeneic hematopoietic stem cell transplantation (HSCT). Because MPNs and JAK2V617F-mutated cells show genomic instability, stalled replication forks, and baseline DNA double-strand breaks, DNA repair inhibition with poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors represents a potential novel therapy. Because the alkylating agent busulfan is integral in conditioning regimens for HSCT and leads to stalled replication forks through DNA strand cross-linking, we hypothesized that PARP inhibition with veliparib in combination with busulfan may lead to synergistic cytotoxicity in MPN cells. We first treated 2 MPN cell lines harboring the JAK2V617F mutation (SET2 and HEL) with veliparib at increasing concentrations and measured cell proliferation. SET2 and HEL cells were relatively sensitive to veliparib (IC50 of 11.3 μM and 74.2 μM, respectively). We next treated cells with increasing doses of busulfan in combination with 4 μM veliparib and found that the busulfan IC50 decreased from 27 μM to 4 μM in SET2 cells and from 45.1 μM to 28.1 μM in HEL cells. The mean combination index was .55 for SET2 cells and .40 for HEL cells. Combination treatment of SET2 cells caused G2M arrest in 53% of cells, compared with 30% with veliparib alone and 35% with busulfan alone. G2M arrest was associated with activation of the ATR-Chk1 pathway, as shown by an immunofluorescence assay for phosphorylated Chk1 (p-Chk1). We then tested in vivo the effect of combined low doses of busulfan and veliparib in a JAK2V617F MPN-AML xenotransplant model. Vehicle- and veliparib-treated mice had similar median survival of 39 and 40 days, respectively. Combination treatment increased median survival from 47 days (busulfan alone) to 50 days (P = .02). Finally, we tested the combined effect of busulfan and veliparib on CD34+ cells obtained from the bone marrow or peripheral blood of 5 patients with JAK2V617F-mutated and 2 patients with CALR-mutated MF. MF cells treated with the combination of veliparib and busulfan showed reduced colony formation compared with busulfan alone (87% versus 68%; P = .001). In contrast, treatment of normal CD34+ cells with veliparib did not affect colony growth. Here we show that in vivo confirmation that treatment with the PARP-1 inhibitor veliparib and busulfan results in synergistic cytotoxicity in MPN cells. Our data provide the rationale for testing novel pretransplantation conditioning regimens with combinations of PARP-1 inhibition and reduced doses of alkylators, such as busulfan and melphalan, for high-risk MPNs or MPN-derived acute myelogenous leukemia.
Collapse
Affiliation(s)
- Pritesh R Patel
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, Illinois; University of Illinois Cancer Center, Chicago, Illinois.
| | - Vitalyi Senyuk
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, Illinois
| | | | - Annie L Oh
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, Illinois
| | - Elisa Bonetti
- IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Dolores Mahmud
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, Illinois
| | - Gianni Barosi
- IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Nadim Mahmud
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, Illinois; University of Illinois Cancer Center, Chicago, Illinois
| | - Damiano Rondelli
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, Illinois; University of Illinois Cancer Center, Chicago, Illinois
| |
Collapse
|
31
|
Pottier C, Kriegsmann M, Alberts D, Smargiasso N, Baiwir D, Mazzucchelli G, Herfs M, Fresnais M, Casadonte R, Delvenne P, Pauw E, Longuespée R. Microproteomic Profiling of High‐Grade Squamous Intraepithelial Lesion of the Cervix: Insight into Biological Mechanisms of Dysplasia and New Potential Diagnostic Markers. Proteomics Clin Appl 2018; 13:e1800052. [DOI: 10.1002/prca.201800052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/06/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Charles Pottier
- Mass Spectrometry LaboratoryGIGA‐ResearchDepartment of ChemistryUniversity of Liège Liège Belgium
- Department of Medical OncologyUniversity of Liège Liège Belgium
| | - Mark Kriegsmann
- Institute of pathologyUniversity of Heidelberg Heidelberg Germany
| | - Deborah Alberts
- Mass Spectrometry LaboratoryGIGA‐ResearchDepartment of ChemistryUniversity of Liège Liège Belgium
| | - Nicolas Smargiasso
- Mass Spectrometry LaboratoryGIGA‐ResearchDepartment of ChemistryUniversity of Liège Liège Belgium
| | | | - Gabriel Mazzucchelli
- Mass Spectrometry LaboratoryGIGA‐ResearchDepartment of ChemistryUniversity of Liège Liège Belgium
| | - Michael Herfs
- Laboratory of Experimental PathologyGIGA‐CancerDepartment of PathologyUniversity of Liège Liège Belgium
| | - Margaux Fresnais
- Department of Clinical Pharmacology and PharmacoepidemiologyUniversity of Heidelberg Heidelberg Germany
- German Cancer Consortium (DKTK)‐German Cancer Research Center (DKFZ) Heidelberg Germany
| | | | - Philippe Delvenne
- Laboratory of Experimental PathologyGIGA‐CancerDepartment of PathologyUniversity of Liège Liège Belgium
| | - Edwin Pauw
- Mass Spectrometry LaboratoryGIGA‐ResearchDepartment of ChemistryUniversity of Liège Liège Belgium
| | - Rémi Longuespée
- Mass Spectrometry LaboratoryGIGA‐ResearchDepartment of ChemistryUniversity of Liège Liège Belgium
- Institute of pathologyUniversity of Heidelberg Heidelberg Germany
- Proteopath GmbH Trier Germany
| |
Collapse
|
32
|
Marquina G, Manzano A, Casado A. Targeted Agents in Cervical Cancer: Beyond Bevacizumab. Curr Oncol Rep 2018; 20:40. [DOI: 10.1007/s11912-018-0680-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Abstract
Background Veliparib is a potent poly(ADP-ribose) polymerase inhibitor. This phase 1 study aimed to establish the maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D) of veliparib combined with various FOLFIRI regimens in patients with solid tumours. Methods Patients received veliparib (10–270 mg BID, days 1–5, 15–19) and FOLFIRI (days 1–3, 15–17) in three regimens containing 5-fluorouracil 2,400 mg/m2: irinotecan 150 mg/m2 and folinic acid 400 mg/m2 (part 1); irinotecan 180 mg/m2, folinic acid 400 mg/m2, and 5-fluorouracil 400 mg/m2 bolus (part 2), or irinotecan 180 mg/m2 (part 3). The RP2D was further evaluated in safety expansion cohorts. Preliminary antitumour activity was also assessed. Results Ninety-two patients received ≥1 veliparib dose. MTD was not reached; RP2D was set at 200 mg BID veliparib plus FOLFIRI (without 5-fluorouracil bolus). Most common treatment-emergent adverse events were neutropenia (66.3%), diarrhoea, and nausea (60.9% each). Dose-limiting toxicities (n = 4) were grade 3 gastritis and grade 4 neutropenia and febrile neutropenia. Veliparib exposure was dose-proportional, with no effects on the pharmacokinetics of FOLFIRI components. Fifteen patients had a partial response (objective response rate, 17.6%). Conclusions The acceptable safety profile and preliminary antitumour activity of veliparib plus FOLFIRI support further evaluation of this combination.
Collapse
|
34
|
Wolford JE, Tewari KS. Rational design for cervical cancer therapeutics: cellular and non-cellular based strategies on the horizon for recurrent, metastatic or refractory cervical cancer. Expert Opin Drug Discov 2018; 13:445-457. [PMID: 29463131 DOI: 10.1080/17460441.2018.1443074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Though cervical cytology, HPV DNA testing, and pre-invasive disease management has significantly reduced the number of new diagnoses of cervical cancer, women with persistent oncogenic HPV infection are at significant risk for developing invasive cervical cancer. Early stage and locally advanced disease can be cured, but women with advanced or recurrent disease have a very poor prognosis. This underscores the need for different treatment strategies for advanced cervical cancer, the most promising of which are novel therapeutics that target the ability of HPV to overcome host immune tolerance. Areas covered: This review includes new therapies being investigated for the treatment of recurrent, metastatic or refractory cervical cancer, separated into broad categories of cellular and non-cellular based strategies. Expert opinion: Advanced and recurrent cervical cancer has a poor prognosis, prompting investigations into the development of strategies that will eradicate tumor and/or overcome host immunologic tolerance of disease. It is unknown whether it will be these strategies alone or a combination of treatment modalities that will ultimately provide the best outcomes; nevertheless, the new data are promising.
Collapse
Affiliation(s)
- Juliet E Wolford
- a Division of Gynecologic Oncology , University of California, Irvine Medical Center , Orange , CA , USA
| | - Krishnansu S Tewari
- a Division of Gynecologic Oncology , University of California, Irvine Medical Center , Orange , CA , USA
| |
Collapse
|
35
|
Matulonis UA, Monk BJ. PARP inhibitor and chemotherapy combination trials for the treatment of advanced malignancies: does a development pathway forward exist? Ann Oncol 2018; 28:443-447. [PMID: 28057663 DOI: 10.1093/annonc/mdw697] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- U A Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - B J Monk
- Arizona Oncology (US Oncology Network), University of Arizona and Creighton University Phoenix, Phoenix, AZ, USA
| |
Collapse
|
36
|
Ferrara R, Simionato F, Ciccarese C, Grego E, Cingarlini S, Iacovelli R, Bria E, Tortora G, Melisi D. The development of PARP as a successful target for cancer therapy. Expert Rev Anticancer Ther 2017; 18:161-175. [DOI: 10.1080/14737140.2018.1419870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Roberto Ferrara
- Section of Oncology, Department of Medicine, Università degli Studi di Verona, Verona, Italy
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
- Medical Oncology Department, Gustave Roussy, Villejuif, France
| | - Francesca Simionato
- Section of Oncology, Department of Medicine, Università degli Studi di Verona, Verona, Italy
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Chiara Ciccarese
- Section of Oncology, Department of Medicine, Università degli Studi di Verona, Verona, Italy
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Elisabetta Grego
- Section of Oncology, Department of Medicine, Università degli Studi di Verona, Verona, Italy
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Sara Cingarlini
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Roberto Iacovelli
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Emilio Bria
- Section of Oncology, Department of Medicine, Università degli Studi di Verona, Verona, Italy
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Giampaolo Tortora
- Section of Oncology, Department of Medicine, Università degli Studi di Verona, Verona, Italy
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Davide Melisi
- Section of Oncology, Department of Medicine, Università degli Studi di Verona, Verona, Italy
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
37
|
Thaker PH, Salani R, Brady WE, Lankes HA, Cohn DE, Mutch DG, Mannel RS, Bell-McGuinn KM, Di Silvestro PA, Jelovac D, Carter JS, Duan W, Resnick KE, Dizon DS, Aghajanian C, Fracasso PM. A phase I trial of paclitaxel, cisplatin, and veliparib in the treatment of persistent or recurrent carcinoma of the cervix: an NRG Oncology Study (NCT#01281852). Ann Oncol 2017; 28:505-511. [PMID: 27998970 DOI: 10.1093/annonc/mdw635] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background Preclinical studies demonstrate poly(ADP-ribose) polymerase (PARP) inhibition augments apoptotic response and sensitizes cervical cancer cells to the effects of cisplatin. Given the use of cisplatin and paclitaxel as first-line treatment for persistent or recurrent cervical cancer, we aimed to estimate the maximum tolerated dose (MTD) of the PARP inhibitor veliparib when added to chemotherapy. Patients and methods Women with persistent or recurrent cervical carcinoma not amenable to curative therapy were enrolled. Patients had to have received concurrent chemotherapy and radiation as well as possible consolidation chemotherapy; have adequate organ function. The trial utilized a standard 3 + 3 phase I dose escalation with patients receiving paclitaxel 175 mg/m2 on day 1, cisplatin 50 mg/m2 on day 2, and escalating doses of veliparib ranging from 50 to 400 mg orally two times daily on days 1-7. Cycles occurred every 21 days until progression. Dose-limiting toxicities (DLTs) were assessed at first cycle. Fanconi anemia complementation group D2 (FANCD2) foci was evaluated in tissue specimens as a biomarker of response. Results Thirty-four patients received treatment. DLTs (n = 1) were a grade 4 dyspnea, a grade 3 neutropenia lasting ≥3 weeks, and febrile neutropenia. At 400 mg dose level (DL), one of the six patients had a DLT, so the MTD was not reached. Across DLs, the objective response rate (RR) for 29 patients with measurable disease was 34% [95% confidence interval (CI), 20%-53%]; at 400 mg DL, the RR was 60% (n = 3/5; 95% CI, 23%-88%). Median progression-free survival was 6.2 months (95% CI, 2.9-10.1), and overall survival was 14.5 months (95% CI, 8.2-19.4). FANCD2 foci was negative or heterogeneous in 31% of patients and present in 69%. Objective RR were not associated with FANCD2 foci (P = 0.53). Conclusions Combining veliparib with paclitaxel and cisplatin as first-line treatment for persistent or recurrent cervical cancer patients is safe and feasible. Clinical trial information NCT01281852.
Collapse
Affiliation(s)
- P H Thaker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Siteman Cancer Center, Washington University School of Medicine, St. Louis
| | - R Salani
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University School of Medicine, Columbus, USA
| | - W E Brady
- NRG/Gynecologic Oncology Group Statistical and Data Center, Roswell Park Cancer Institute, Buffalo, USA
| | - H A Lankes
- NRG/Gynecologic Oncology Group Statistical and Data Center, Roswell Park Cancer Institute, Buffalo, USA
| | - D E Cohn
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University School of Medicine, Columbus, USA
| | - D G Mutch
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Siteman Cancer Center, Washington University School of Medicine, St. Louis
| | - R S Mannel
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Oklahoma, Oklahoma City, USA
| | - K M Bell-McGuinn
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, USA
| | - P A Di Silvestro
- Department of Obstetrics and Gynecology, Women & Infants Hospital, Providence, USA
| | - D Jelovac
- Division of Medical Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, USA
| | - J S Carter
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, USA
| | - W Duan
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, USA
| | - K E Resnick
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Case Western Reserve University School of Medicine, Cleveland, USA
| | - D S Dizon
- Division of Medical Gynecologic Oncology, Massachusetts General Hospital Cancer Center, Boston, USA
| | - C Aghajanian
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, USA
| | - P M Fracasso
- Division of Hematology/Oncology, Department of Medicine, University of Virginia, Charlottesville, USA
| |
Collapse
|
38
|
Annunziata CM, Kohn EC. Clinical trials in gynecologic oncology: Past, present, and future. Gynecol Oncol 2017; 148:393-402. [PMID: 29212614 DOI: 10.1016/j.ygyno.2017.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/18/2022]
Abstract
The Gynecologic Oncology Group has historically performed ground-breaking, practice-changing clinical trials in women's cancers. The current standard of care for initial treatment of ovarian, endometrial, cervical, and trophoblastic cancers was determined by clinical trials completed within this cooperative group structure. For example, trial GOG-0111 set the standard for combining platinum and taxane chemotherapy in ovarian cancer, and more recently GOG-0240 provided evidence for adding bevacizumab to chemotherapy for women with advanced cervical cancer. The landscape of clinical trial design has markedly changed in recent decades, with a clear emphasis on streamlining drug development towards specific patient populations and indications for investigational agents. Translational science in gynecologic cancers can set the stage for rapid and efficient introduction of new therapies for our patients. The gynecologic oncology community of researchers and clinicians is well positioned to enter into the new era of drug development, with breakthrough discoveries increasing each year. It is clear that we must incorporate smarter clinical trial design to get the right drugs to the right patients expeditiously, so we can continue to improve outcome for women with gynecologic cancers.
Collapse
Affiliation(s)
- Christina M Annunziata
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States.
| | - Elise C Kohn
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
39
|
Anomalies de la réparation de l’ADN et cancers gynécologiques. Bull Cancer 2017; 104:971-980. [DOI: 10.1016/j.bulcan.2017.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/21/2017] [Indexed: 11/17/2022]
|
40
|
Hjortkjær M, Kanstrup H, Jakobsen A, Steffensen KD. Veliparib and topotecan for patients with platinum-resistant or partially platinum-sensitive relapse of epithelial ovarian cancer with BRCA negative or unknown BRCA status. Cancer Treat Res Commun 2017; 14:7-12. [PMID: 30104007 DOI: 10.1016/j.ctarc.2017.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/28/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Mette Hjortkjær
- Department of Oncology, Vejle Hospital, Kabbeltoft 25, DK-7100 Vejle, Denmark; Department of Gynaecology and Obstetrics, Aalborg University Hospital, Reberbansgade, DK-9000 Aalborg, Denmark; Institute of Regional Health Research, University of Southern Denmark, Winsløwparken 19-3, DK-5000 Odense, Denmark; Department of Gynaecology and Obstetrics, Viborg Hospital, Heibergs Allé 4, 8800 Viborg, Denmark.
| | - Hanne Kanstrup
- Department of Oncology, Vejle Hospital, Kabbeltoft 25, DK-7100 Vejle, Denmark
| | - Anders Jakobsen
- Department of Oncology, Vejle Hospital, Kabbeltoft 25, DK-7100 Vejle, Denmark; Institute of Regional Health Research, University of Southern Denmark, Winsløwparken 19-3, DK-5000 Odense, Denmark
| | - Karina Dahl Steffensen
- Department of Oncology, Vejle Hospital, Kabbeltoft 25, DK-7100 Vejle, Denmark; Institute of Regional Health Research, University of Southern Denmark, Winsløwparken 19-3, DK-5000 Odense, Denmark
| |
Collapse
|
41
|
Nickoloff JA, Jones D, Lee SH, Williamson EA, Hromas R. Drugging the Cancers Addicted to DNA Repair. J Natl Cancer Inst 2017; 109:3832892. [PMID: 28521333 PMCID: PMC5436301 DOI: 10.1093/jnci/djx059] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/10/2017] [Indexed: 12/29/2022] Open
Abstract
Defects in DNA repair can result in oncogenic genomic instability. Cancers occurring from DNA repair defects were once thought to be limited to rare inherited mutations (such as BRCA1 or 2). It now appears that a clinically significant fraction of cancers have acquired DNA repair defects. DNA repair pathways operate in related networks, and cancers arising from loss of one DNA repair component typically become addicted to other repair pathways to survive and proliferate. Drug inhibition of the rescue repair pathway prevents the repair-deficient cancer cell from replicating, causing apoptosis (termed synthetic lethality). However, the selective pressure of inhibiting the rescue repair pathway can generate further mutations that confer resistance to the synthetic lethal drugs. Many such drugs currently in clinical use inhibit PARP1, a repair component to which cancers arising from inherited BRCA1 or 2 mutations become addicted. It is now clear that drugs inducing synthetic lethality may also be therapeutic in cancers with acquired DNA repair defects, which would markedly broaden their applicability beyond treatment of cancers with inherited DNA repair defects. Here we review how each DNA repair pathway can be attacked therapeutically and evaluate DNA repair components as potential drug targets to induce synthetic lethality. Clinical use of drugs targeting DNA repair will markedly increase when functional and genetic loss of repair components are consistently identified. In addition, future therapies will exploit artificial synthetic lethality, where complementary DNA repair pathways are targeted simultaneously in cancers without DNA repair defects.
Collapse
Affiliation(s)
- Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Dennie Jones
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, FL, USA
| | - Suk-Hee Lee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elizabeth A Williamson
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, FL, USA
| | - Robert Hromas
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, FL, USA
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW The proven activity of poly ADP ribose polymerase (PARP) inhibitors in BRCA-mutated homologous recombination deficient (HRD) ovarian cancer has led to the availability to patients with ovarian cancer of the first targeted therapy with an associated predictive biomarker. Our focus has recently turned towards expanding the clinical utility of PARP inhibitors beyond BRCA mutated ovarian cancer, and to a search for novel targets within DNA damage response (DDR). RECENT FINDINGS Early trials in unselected patients with ovarian cancer showed responses to PARP inhibition in BRCA-wildtype ovarian cancer, and recent genomic studies have demonstrated that germline or somatic aberrations in other homologous recombination genes are present in a significant proportion of ovarian cancers. In addition, PARP inhibition may be of value in molecularly defined subsets of endometrial or cervical cancers. Novel DDR inhibitors such as ATR, ATM, WEE1 or DNA-PK inhibitors are also being tested in patients. Finally, combinatorial strategies of DDR inhibitors with antiangiogenic agents, phosphoinositide 3-kinase inhibitors or immunotherapies may further increase therapeutic efficacy. SUMMARY In the future, patients with gynaecological malignancies may be rationally selected for PARP inhibition on the basis of comprehensive evaluation of homologous recombination genomic alterations, or HRD assays. Furthermore, novel DDR inhibitors have the potential to expand the repertoire of therapeutic options available to these patients.
Collapse
|
43
|
Du Y, Yamaguchi H, Hsu JL, Hung MC. PARP inhibitors as precision medicine for cancer treatment. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nwx027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AbstractPersonalized or precision medicine is an emerging treatment approach tailored to individuals or certain groups of patients based on their unique characteristics. These types of therapies guided by biomarkers tend to be more effective than traditional approaches, especially in cancer. The inhibitor against poly (ADP-ribose) polymerase (PARP), olaparib (Lynparza, AstraZeneca), which was approved by the US Food and Drug Administration (FDA) in 2014, demonstrated efficacy specifically for ovarian cancer patients harboring mutations in BRCA genes, which encode proteins in DNA double-strand break repairs. However, the response to PARP inhibitors has been less encouraging in other cancer types that also carry defects in the BRCA genes. Thus, furthering our understanding of the underlying mechanism of PARP inhibitors and resistance is critical to improve their efficacy. In this review, we summarize the results of preclinical studies and the clinical application of PARP inhibitors, and discuss the future direction of PARP inhibitors as a potential marker-guided personalized medicine for cancer treatment.
Collapse
Affiliation(s)
- Yi Du
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston 77030
| | - Hirohito Yamaguchi
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston 77030
| | - Jennifer L. Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston 77030
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 40402
- Department of Biotechnology, Asia University, Taichung 41354
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston 77030
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 40402
- Department of Biotechnology, Asia University, Taichung 41354
| |
Collapse
|
44
|
Cossar LH, Schache AG, Risk JM, Sacco JJ, Jones NJ, Lord R. Modulating the DNA Damage Response to Improve Treatment Response in Cervical Cancer. Clin Oncol (R Coll Radiol) 2017; 29:626-634. [PMID: 28336131 DOI: 10.1016/j.clon.2017.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/14/2017] [Accepted: 02/21/2017] [Indexed: 01/06/2023]
Abstract
Cervical cancer is the fourth most common cause of cancer-related death in women worldwide and new therapeutic approaches are needed to improve clinical outcomes for this group of patients. Current treatment protocols for locally advanced and metastatic disease consist of ionising radiation and chemotherapy. Chemoradiation induces cytotoxic levels of DNA double-strand breaks, which activates programmed cell death via the DNA damage response (DDR). Cervical cancers are unique given an almost exclusive association with human papillomavirus (HPV) infection; a potent manipulator of the DDR, with the potential to alter tumour sensitivity to DNA-damaging agents and influence treatment response. This review highlights the wide range of therapeutic strategies in development that have the potential to modulate DDR and sensitise cervical tumours to DNA-damaging agents in the context of HPV oncogenesis.
Collapse
Affiliation(s)
- L H Cossar
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Clatterbridge Cancer Centre, Wirral, UK.
| | - A G Schache
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - J M Risk
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - J J Sacco
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Clatterbridge Cancer Centre, Wirral, UK
| | - N J Jones
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - R Lord
- Clatterbridge Cancer Centre, Wirral, UK
| |
Collapse
|
45
|
Barra F, Lorusso D, Leone Roberti Maggiore U, Ditto A, Bogani G, Raspagliesi F, Ferrero S. Investigational drugs for the treatment of cervical cancer. Expert Opin Investig Drugs 2017; 26:389-402. [DOI: 10.1080/13543784.2017.1302427] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Fabio Barra
- Academic Unit of Obstetrics and Gynecology, IRCCS AOU San Martino – IST, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Domenica Lorusso
- Department of Gynecologic Oncology, IRCCS National Cancer Institute, Milan, Italy
| | - Umberto Leone Roberti Maggiore
- Academic Unit of Obstetrics and Gynecology, IRCCS AOU San Martino – IST, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Antonino Ditto
- Department of Gynecologic Oncology, IRCCS National Cancer Institute, Milan, Italy
| | - Giorgio Bogani
- Department of Gynecologic Oncology, IRCCS National Cancer Institute, Milan, Italy
| | | | - Simone Ferrero
- Academic Unit of Obstetrics and Gynecology, IRCCS AOU San Martino – IST, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
46
|
Crafton SM, Salani R. Beyond Chemotherapy: An Overview and Review of Targeted Therapy in Cervical Cancer. Clin Ther 2016; 38:449-58. [PMID: 26926322 DOI: 10.1016/j.clinthera.2016.02.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/27/2016] [Accepted: 02/06/2016] [Indexed: 11/25/2022]
Abstract
PURPOSE The purpose of this study was to provide an overview of current and up and coming targeted therapies in cervical cancer with or without chemotherapy. METHODS We reviewed the literature using search terms cervical cancer AND immunotherapy, immune therapy, vaccines, bevacizumab, anti-angiogenic therapy, and PARP inhibitors on PubMed. We included all review articles and prospective trials. We also reviewed ClinicalTrials.gov for trials in progress. FINDINGS The addition of bevacizumab has improved the overall survival of women with advanced or recurrent cervical cancer when compared with cytotoxic therapy alone. This advancement has sparked an interest in other anti-angiogenic agents. Additionally, targeted therapies, including tyrosine kinase inhibitors, immunotherapy, and vaccine therapy, are also being evaluated. Another exciting area of study is the role of poly (ADP-ribose) polymerase inhibition in cervical cancer. IMPLICATIONS Though the results are promising, the data are preliminary and additional studies evaluating the proper combination of therapy, dosing, and schedules will help inform the ideal regimen.
Collapse
Affiliation(s)
- Sarah M Crafton
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, Ohio
| | - Ritu Salani
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, Ohio.
| |
Collapse
|
47
|
Abstract
Inhibition of poly(ADP-ribose) polymerase (PARP) is an attractive therapeutic strategy because of the importance of this pathway in restoring DNA damage. Small-molecule inhibitors of PARP appear most effective when used to treat tumors with underlying defects in DNA repair, or when combined with DNA-damaging agents. Veliparib is one of several recently developed oral inhibitors of PARP currently in clinical trials. This review summarizes the pharmacology, mechanisms of action, toxicity, and activity of veliparib seen in clinical trials to date. Also discussed are proposed mechanisms of resistance, potential biomarkers of activity, and issues regarding patient selection and combination therapies that may optimize use of this exciting new agent.
Collapse
Affiliation(s)
- Lars M Wagner
- Division of Pediatric Hematology/Oncology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
48
|
Sistigu A, Manic G, Obrist F, Vitale I. Trial watch - inhibiting PARP enzymes for anticancer therapy. Mol Cell Oncol 2015; 3:e1053594. [PMID: 27308587 DOI: 10.1080/23723556.2015.1053594] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/16/2015] [Accepted: 05/18/2015] [Indexed: 12/25/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are a members of family of enzymes that catalyze poly(ADP-ribosyl)ation (PARylation) and/or mono(ADP-ribosyl)ation (MARylation), two post-translational protein modifications involved in crucial cellular processes including (but not limited to) the DNA damage response (DDR). PARP1, the most abundant family member, is a nuclear protein that is activated upon sensing distinct types of DNA damage and contributes to their resolution by PARylating multiple DDR players. Recent evidence suggests that, along with DDR, activated PARP1 mediates a series of prosurvival and proapoptotic processes aimed at preserving genomic stability. Despite this potential oncosuppressive role, upregulation and/or overactivation of PARP1 or other PARP enzymes has been reported in a variety of human neoplasms. Over the last few decades, several pharmacologic inhibitors of PARP1 and PARP2 have been assessed in preclinical and clinical studies showing potent antineoplastic activity, particularly against homologous recombination (HR)-deficient ovarian and breast cancers. In this Trial Watch, we describe the impact of PARP enzymes and PARylation in cancer, discuss the mechanism of cancer cell killing by PARP1 inactivation, and summarize the results of recent clinical studies aimed at evaluating the safety and therapeutic profile of PARP inhibitors in cancer patients.
Collapse
Affiliation(s)
| | - Gwenola Manic
- Regina Elena National Cancer Institute , Rome, Italy
| | - Florine Obrist
- Université Paris-Sud/Paris XI, Le Kremlin-Bicêtre, France; INSERM, UMRS1138, Paris, France; Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "TorVergata", Rome, Italy
| |
Collapse
|