1
|
Gupta A, Mishra SK, Lascelles BDX. Emerging evidence of artemin/GFRα3 signaling in musculoskeletal pain. Osteoarthritis Cartilage 2024:S1063-4584(24)01404-3. [PMID: 39374825 DOI: 10.1016/j.joca.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Chronic musculoskeletal pain is highly prevalent and poses a significant personal, societal, and economic burden. Management of chronic musculoskeletal pain remains a challenge. Long-term use of common analgesic medications such as nonsteroidal anti-inflammatory drugs and opioids is associated with adverse events, and in the case of opioids, drug addiction. Additionally, many individuals do not experience sufficient pain relief with these therapeutic approaches. Thus, there is an urgent need to develop clinically efficacious and safe therapeutics for musculoskeletal pain. Recent advances in our understanding of musculoskeletal pain neurobiology have helped identify the role of neurotrophic factors, specifically, the glial cell line-derived neurotrophic factor (GDNF) family of ligands (GFL) and their associated signaling pathways. This review outlines our current understanding of the GFL signaling systems, discusses their role in inflammatory and chronic musculoskeletal pain and sensitivity, and comments on the analgesic therapeutic potential of targeting the GFL signaling system.
Collapse
Affiliation(s)
- Ankita Gupta
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Santosh K Mishra
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | - B Duncan X Lascelles
- Comparative Pain Research and Education Center, North Carolina State University, Raleigh, NC, USA; Thurston Arthritis Center, UNC School of Medicine, Chapel Hill, NC, USA; Center for Translational Pain Research, Department of Anesthesiology, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Sangalli L, Prakapenka AV, Chaurasia A, Miller CS. A review of animal models for burning mouth syndrome: Mechanistic insights and knowledge gaps. Oral Dis 2024; 30:3761-3770. [PMID: 38438317 DOI: 10.1111/odi.14914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 03/06/2024]
Abstract
OBJECTIVES The underlying mechanisms of burning mouth syndrome (BMS) remain unclear leading to challenges and unsatisfactory management. Current treatments focus primarily on symptom relief, with few consistently achieving a 50% reduction in pain. This review aims to explore animal models of BMS to gain a better understanding of the underlying mechanisms and to discuss potential and existing knowledge gaps. METHODS A comprehensive review of PubMed®, Google Scholar, and Scopus was performed to assess advances and significant gaps of existing rodent models that mimic BMS-related symptoms. RESULTS Rodent models of BMS involve reproduction of dry-tongue, chorda tympani transection, or overexpression of artemin protein. Existing preclinical models tend to highlight one specific etiopathogenesis and often overlook sex- and hormone-specific factors. CONCLUSION Combining aspects from various BMS models could prove beneficial in developing comprehensive experimental designs and outcomes encompassing the multifaceted nature of BMS.
Collapse
Affiliation(s)
- Linda Sangalli
- College of Dental Medicine-Illinois, Midwestern University, Downers Grove, Illinois, USA
| | | | - Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, King George's Medical University, Lucknow, India
| | - Craig S Miller
- Division of Oral Diagnosis, Oral Medicine, and Oral Radiology, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Liu AR, Lin ZJ, Wei M, Tang Y, Zhang H, Peng XG, Li Y, Zheng YF, Tan Z, Zhou LJ, Feng X. The potent analgesia of intrathecal 2R, 6R-HNK via TRPA1 inhibition in LF-PENS-induced chronic primary pain model. J Headache Pain 2023; 24:141. [PMID: 37858040 PMCID: PMC10585932 DOI: 10.1186/s10194-023-01667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Chronic primary pain (CPP) is an intractable pain of unknown cause with significant emotional distress and/or dysfunction that is a leading factor of disability globally. The lack of a suitable animal model that mimic CPP in humans has frustrated efforts to curb disease progression. 2R, 6R-hydroxynorketamine (2R, 6R-HNK) is the major antidepressant metabolite of ketamine and also exerts antinociceptive action. However, the analgesic mechanism and whether it is effective for CPP are still unknown. METHODS Based on nociplastic pain is evoked by long-term potentiation (LTP)-inducible high- or low-frequency electrical stimulation (HFS/LFS), we wanted to develop a novel CPP mouse model with mood and cognitive comorbidities by noninvasive low-frequency percutaneous electrical nerve stimulation (LF-PENS). Single/repeated 2R, 6R-HNK or other drug was intraperitoneally (i.p.) or intrathecally (i.t.) injected into naïve or CPP mice to investigate their analgesic effect in CPP model. A variety of behavioral tests were used to detect the changes in pain, mood and memory. Immunofluorescent staining, western blot, reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and calcium imaging of in cultured dorsal root ganglia (DRG) neurons by Fluo-8-AM were used to elucidate the role and mechanisms of 2R, 6R-HNK in vivo or in vitro. RESULTS Intrathecal 2R, 6R-HNK, rather than intraperitoneal 2R, 6R-HNK or intrathecal S-Ketamine, successfully mitigated HFS-induced pain. Importantly, intrathecal 2R, 6R-HNK displayed effective relief of bilateral pain hypersensitivity and depressive and cognitive comorbidities in a dose-dependent manner in LF-PENS-induced CPP model. Mechanically, 2R, 6R-HNK markedly attenuated neuronal hyperexcitability and the upregulation of calcitonin gene-related peptide (CGRP), transient receptor potential ankyrin 1 (TRPA1) or vanilloid-1 (TRPV1), and vesicular glutamate transporter-2 (VGLUT2) in peripheral nociceptive pathway. In addition, 2R, 6R-HNK suppressed calcium responses and CGRP overexpression in cultured DRG neurons elicited by the agonists of TRPA1 or/and TRPV1. Strikingly, the inhibitory effects of 2R, 6R-HNK on these pain-related molecules and mechanical allodynia were substantially occluded by TRPA1 antagonist menthol. CONCLUSIONS In the newly designed CPP model, our findings highlighted the potential utility of intrathecal 2R, 6R-HNK for preventing and therapeutic modality of CPP. TRPA1-mediated uprgulation of CGRP and neuronal hyperexcitability in nociceptive pathways may undertake both unique characteristics and solving process of CPP.
Collapse
Affiliation(s)
- An-Ran Liu
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, No.58, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Zhen-Jia Lin
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Ming Wei
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, No.58, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Yuan Tang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Hui Zhang
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, No.466, Mid Xingang Road, Haizhu District, Guangzhou, 510317, China
| | - Xiang-Ge Peng
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Ying Li
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Yu-Fan Zheng
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Zhi Tan
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China.
| | - Li-Jun Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China.
| | - Xia Feng
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, No.58, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Morgan M, Nazemian V, Ooi LS, Burger S, Thai J, Ivanusic J. Artemin sensitizes nociceptors that innervate the osteoarthritic joint to produce pain. Osteoarthritis Cartilage 2023; 31:1342-1352. [PMID: 37353141 DOI: 10.1016/j.joca.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/14/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
OBJECTIVE There have been significant developments in understanding artemin/GFRα3 signaling in recent years, and there is now accumulating evidence that artemin has important roles to play in pain signaling, including that derived from joint and bone, and that associated with osteorthritis (OA). METHODS A total of 163 Sprague-Dawley rats were used in this study. We used an animal model of mono-iodoacetate (MIA)-induced OA, in combination with electrophysiology, behavioral testing, Western blot analysis, and retrograde tracing and immunohistochemistry, to identify roles for artemin/GFRα3 signaling in the pathogenesis of OA pain. RESULTS We have found that: 1) GFRα3 is expressed in a substantial proportion of knee joint afferent neurons; 2) exogenous artemin sensitizes knee joint afferent neurons in naïve rats; 3) artemin is expressed in articular tissues of the joint, but not surrounding bone, early in MIA-induced OA; 4) artemin expression increases in bone later in MIA-induced OA when pathology involves subchondral bone; and 5) sequestration of artemin reverses MIA-induced sensitization of both knee joint and bone afferent neurons late in disease when there is inflammation of knee joint tissues and damage to the subchondral bone. CONCLUSIONS Our findings show that artemin/GFRα3 signaling has a role to play in the pathogenesis of OA pain, through effects on both knee joint and bone afferent neurons, and suggest that targeted manipulation of artemin/GFRα3 signaling may provide therapeutic benefit for the management of OA pain. DATA AVAILABILITY Data are available on request of the corresponding author.
Collapse
Affiliation(s)
- Michael Morgan
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia.
| | - Vida Nazemian
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia.
| | - Li Sha Ooi
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia.
| | - Sarah Burger
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia.
| | - Jenny Thai
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia.
| | - Jason Ivanusic
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia.
| |
Collapse
|
5
|
Somersan-Karakaya S, Turner KC, Cortes-Burgos L, Miller J, LaCroix-Fralish M, Logovinsky V, Patel Y, Torres R, Ganguly S, Breazna A, DeVeaux M, Bhore R, Gao M, Delfino FJ, Rafique A, Fairhurst JL, Hunt C, Babb R, Badithe A, Poueymirou WT, Surowitz R, Rottey S, Murphy AJ, Harari O, Macdonald LE, Croll SD. Monoclonal antibodies against GFRα3 are efficacious against evoked hyperalgesic and allodynic responses in mouse join pain models but, one of these, REGN5069, was not effective against pain in a randomized, placebo-controlled clinical trial in patients with osteoarthritis pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100136. [PMID: 38099276 PMCID: PMC10719528 DOI: 10.1016/j.ynpai.2023.100136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 12/17/2023]
Abstract
The artemin-GFRα3 signaling pathway has been implicated in various painful conditions including migraine, cold allodynia, hyperalgesia, inflammatory bone pain, and mouse knees contain GFRα3-immunoreactive nerve endings. We developed high affinity mouse (REGN1967) and human (REGN5069) GFRα3-blocking monoclonal antibodies and, following in vivo evaluations in mouse models of chronic joint pain (osteoarthritic-like and inflammatory), conducted a first-in-human phase 1 pharmacokinetics (PK) and safety trial of REGN5069 (NCT03645746) in healthy volunteers, and a phase 2 randomized placebo-controlled efficacy and safety trial of REGN5069 (NCT03956550) in patients with knee osteoarthritis (OA) pain. In three commonly used mouse models of chronic joint pain (destabilization of the medial meniscus, intra-articular monoiodoacetate, or Complete Freund's Adjuvant), REGN1967 and REGN5069 attenuated evoked behaviors including tactile allodynia and thermal hyperalgesia without discernably impacting joint pathology or inflammation, prompting us to further evaluate REGN5069 in humans. In the phase 1 study in healthy subjects, the safety profiles of single doses of REGN5069 up to 3000 mg (intravenous) or 600 mg (subcutaneous) were comparable to placebo; PK were consistent with a monoclonal antibody exhibiting target-mediated disposition. In the phase 2 study in patients with OA knee pain, two doses of REGN5069 (100 mg or 1000 mg intravenous every 4 weeks) for 8 weeks failed to achieve the 12-week primary and secondary efficacy endpoints relative to placebo. In addition to possible differences in GFRα3 biology between mice and humans, we highlight here differences in experimental parameters that could have contributed to a different profile of efficacy in mouse models versus human OA pain. Additional research is required to more fully evaluate any potential role of GFRα3 in human pain.
Collapse
Affiliation(s)
| | | | | | - Jutta Miller
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, United States
| | | | | | - Yamini Patel
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, United States
| | - Richard Torres
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, United States
| | - Samit Ganguly
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, United States
| | - Aurora Breazna
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, United States
| | | | - Rafia Bhore
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, United States
| | - Min Gao
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, United States
| | | | - Ashique Rafique
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, United States
| | | | - Charleen Hunt
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, United States
| | - Robert Babb
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, United States
| | - Ashok Badithe
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, United States
| | | | | | | | | | - Olivier Harari
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, United States
| | | | - Susan D. Croll
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, United States
| |
Collapse
|
6
|
Sadighparvar S, Al-Hamed FS, Sharif-Naeini R, Meloto CB. Preclinical orofacial pain assays and measures and chronic primary orofacial pain research: where we are and where we need to go. FRONTIERS IN PAIN RESEARCH 2023; 4:1150749. [PMID: 37293433 PMCID: PMC10244561 DOI: 10.3389/fpain.2023.1150749] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/11/2023] [Indexed: 06/10/2023] Open
Abstract
Chronic primary orofacial pain (OFP) conditions such as painful temporomandibular disorders (pTMDs; i.e., myofascial pain and arthralgia), idiopathic trigeminal neuralgia (TN), and burning mouth syndrome (BMS) are seemingly idiopathic, but evidence support complex and multifactorial etiology and pathophysiology. Important fragments of this complex array of factors have been identified over the years largely with the help of preclinical studies. However, findings have yet to translate into better pain care for chronic OFP patients. The need to develop preclinical assays that better simulate the etiology, pathophysiology, and clinical symptoms of OFP patients and to assess OFP measures consistent with their clinical symptoms is a challenge that needs to be overcome to support this translation process. In this review, we describe rodent assays and OFP pain measures that can be used in support of chronic primary OFP research, in specific pTMDs, TN, and BMS. We discuss their suitability and limitations considering the current knowledge of the etiology and pathophysiology of these conditions and suggest possible future directions. Our goal is to foster the development of innovative animal models with greater translatability and potential to lead to better care for patients living with chronic primary OFP.
Collapse
Affiliation(s)
- Shirin Sadighparvar
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | | | - Reza Sharif-Naeini
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Physiology and Cell Information Systems, McGill University, Montreal, QC, Canada
| | - Carolina Beraldo Meloto
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Abstract
Burning mouth syndrome (BMS) is a rare chronic neuropathic pain condition characterized by recurring burning pain or dysesthesia in the absence of any local or systemic causes of symptoms. The exact pathophysiology of BMS is unknown, but recent research suggests a medley of neuropathic, endocrinological, and psychosocial elements. This article presents a case history and reviews the epidemiology, diagnostic criteria, clinical features, diagnostic investigations, pathophysiology, and management of BMS.
Collapse
Affiliation(s)
- Shehryar Nasir Khawaja
- Orofacial Pain Medicine, Shaukat Khanum Memorial Cancer Hospitals and Research Centres, Lahore and Peshawar, Pakistan; Tufts University, School of Dental Medicine, Boston, MA, USA.
| | - Omar F Alaswaiti
- Orofacial Pain Program, Tufts University, School of Dental Medicine, 1 Kneeland St, Boston, MA 02111, USA
| | | |
Collapse
|
8
|
A Review on Autophagy in Orofacial Neuropathic Pain. Cells 2022; 11:cells11233842. [PMID: 36497100 PMCID: PMC9735968 DOI: 10.3390/cells11233842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Orofacial neuropathic pain indicates pain caused by a lesion or diseases of the somatosensory nervous system. It is challenging for the clinician to diagnose and manage orofacial neuropathic pain conditions due to the considerable variability between individual clinical presentations and a lack of understanding of the mechanisms underlying the etiology and pathogenesis. In the last few decades, researchers have developed diagnostic criteria, questionnaires, and clinical assessment methods for the diagnosis of orofacial neuropathic pain. Recently, researchers have observed the role of autophagy in neuronal dysfunction as well as in the modulation of neuropathic pain. On this basis, in the present review, we highlight the characteristics, classification, and clinical assessment of orofacial neuropathic pain. Additionally, we introduce autophagy and its potential role in the modulation of orofacial neuropathic pain, along with a brief overview of the pathogenesis, which in future may reveal new possible targets for treating this condition.
Collapse
|
9
|
Shinoda M, Hitomi S, Iwata K, Hayashi Y. Plastic changes in nociceptive pathways contributing to persistent orofacial pain. J Oral Biosci 2022; 64:263-270. [PMID: 35840073 DOI: 10.1016/j.job.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Pain is a warning signal for the body defense mechanisms and is a critical sensation for supporting life. However, orofacial pain is not a vital sensation, but a disease. However, there are still many unclear points about the pathophysiological mechanism of orofacial pain. This situation makes it difficult for many clinicians to treat orofacial pain hypersensitivity. HIGHLIGHT Noxious information on the orofacial region received by trigeminal ganglion neurons is recognized as "orofacial pain" by being transmitted to the somatosensory cortex and limbic system via the spinal trigeminal nucleus and the thalamic sensory nuclei. Orofacial inflammation or trigeminal nerve injury causes neuropathic changes in various nociceptive signaling pathways, resulting in persistent orofacial pain. It is considered that persistent oral facial pain is triggered by plastic changes in nociceptive signaling pathways involving various cells such as satellite glial cells, astrocytes, microglia, and macrophages, as well as nociceptive neurons. CONCLUSION Recent studies have shown that hyperexcitability of nociceptive neurons in the nociceptive signaling pathways of the orofacial region caused by a variety of factors causes persistent orofacial pain. This review outlines the pathophysiology of orofacial pain along with the results of our study.
Collapse
Affiliation(s)
- Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
10
|
Minnema L, Gupta A, Mishra SK, Lascelles BDX. Investigating the Role of Artemin and Its Cognate Receptor, GFRα3, in Osteoarthritis Pain. Front Neurosci 2022; 16:738976. [PMID: 35153665 PMCID: PMC8829392 DOI: 10.3389/fnins.2022.738976] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) associated pain (OA-pain) is a significant global problem. OA-pain limits limb use and mobility and is associated with widespread sensitivity. Therapeutic options are limited, and the available options are often associated with adverse effects. The lack of therapeutic options is partly due to a lack of understanding of clinically relevant underlying neural mechanisms of OA-pain. In previous work in naturally occurring OA-pain in dogs, we identified potential signaling molecules (artemin/GFRα3) that were upregulated. Here, we use multiple approaches, including cellular, mouse genetic, immunological suppression in a mouse model of OA, and clinically relevant measures of sensitivity and limb use to explore the functional role of artemin/GFRα3 signaling in OA-pain. We found the monoiodoacetate (MIA)-induced OA-pain in mice is associated with decreased limb use and hypersensitivity. Exogenous artemin induces mechanical, heat, and cold hypersensitivity, and systemic intraperitoneal anti-artemin monoclonal antibody administration reverses this hypersensitivity and restores limb use in mice with MIA-induced OA-pain. An artemin receptor GFRα3 expression is increased in sensory neurons in the MIA model. Our results provide a molecular basis of arthritis pain linked with artemin/GFRα3 signaling and indicate that further work is warranted to investigate the neuronal plasticity and the pathways that drive pain in OA.
Collapse
Affiliation(s)
- Laura Minnema
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Ankita Gupta
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Santosh K. Mishra
- Department of Molecular and Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Pain Research and Education Center, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Santosh K. Mishra,
| | - B. Duncan X. Lascelles
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Pain Research and Education Center, North Carolina State University, Raleigh, NC, United States
- Thurston Arthritis Center, UNC School of Medicine, Chapel Hill, NC, United States
- B. Duncan X. Lascelles,
| |
Collapse
|
11
|
Orliaguet M, Misery L. Neuropathic and Psychogenic Components of Burning Mouth Syndrome: A Systematic Review. Biomolecules 2021; 11:biom11081237. [PMID: 34439903 PMCID: PMC8393188 DOI: 10.3390/biom11081237] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022] Open
Abstract
The pathophysiology of primary burning mouth syndrome (BMS) has been extensively debated but is poorly understood despite a large number of hypotheses attempting to explain its etiopathogenic mechanisms. The aim of the present work was to systematically review papers that could provide arguments in favour of the neuropathic and psychogenic components of primary BMS for a better understanding of the disease. This systematic review (SR) was registered in PROSPERO (CRD42021224160). The search was limited to articles in English or French from 1990 to 01 December 2020. A total of 113 articles were considered for data extraction. We divided them into four subgroups: pharmacological and nonpharmacological management studies (n = 23); neurophysiological studies (n = 35); biohistopathological studies (n = 25); and questionnaire-based studies (n = 30). Several of these studies have shown neuropathic involvement at various levels of the neuraxis in BMS with the contribution of quantitative sensory testing (QST), functional brain imaging, and biohistopathological or pharmacologic studies. On the other hand, the role of psychological factors in BMS has also been the focus of several studies and has shown a link with psychiatric disorders such as anxiety and/or depression symptoms. Depending on the patient, the neuropathic and psychogenic components may exist simultaneously, with a preponderance of one or the other, or exist individually. These two components cannot be dissociated to define BMS. Consequently, BMS may be considered nociplastic pain.
Collapse
Affiliation(s)
- Marie Orliaguet
- LIEN, Department of Oral Surgery, University of Western Brittany, F-29200 Brest, France;
| | - Laurent Misery
- LIEN, Department of Dermatology, University of Western Brittany, F-29200 Brest, France
- Correspondence: ; Tel.: +33-2-9888-3527
| |
Collapse
|
12
|
Shinoda M, Imamura Y, Hayashi Y, Noma N, Okada-Ogawa A, Hitomi S, Iwata K. Orofacial Neuropathic Pain-Basic Research and Their Clinical Relevancies. Front Mol Neurosci 2021; 14:691396. [PMID: 34295221 PMCID: PMC8291146 DOI: 10.3389/fnmol.2021.691396] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/21/2021] [Indexed: 01/01/2023] Open
Abstract
Trigeminal nerve injury is known to cause severe persistent pain in the orofacial region. This pain is difficult to diagnose and treat. Recently, many animal studies have reported that rewiring of the peripheral and central nervous systems, non-neuronal cell activation, and up- and down-regulation of various molecules in non-neuronal cells are involved in the development of this pain following trigeminal nerve injury. However, there are many unknown mechanisms underlying the persistent orofacial pain associated with trigeminal nerve injury. In this review, we address recent animal data regarding the involvement of various molecules in the communication of neuronal and non-neuronal cells and examine the possible involvement of ascending pathways in processing pathological orofacial pain. We also address the clinical observations of persistent orofacial pain associated with trigeminal nerve injury and clinical approaches to their diagnosis and treatment.
Collapse
Affiliation(s)
- Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshiki Imamura
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Noboru Noma
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Akiko Okada-Ogawa
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
13
|
Acute and Chronic Pain from Facial Skin and Oral Mucosa: Unique Neurobiology and Challenging Treatment. Int J Mol Sci 2021; 22:ijms22115810. [PMID: 34071720 PMCID: PMC8198570 DOI: 10.3390/ijms22115810] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
The oral cavity is a portal into the digestive system, which exhibits unique sensory properties. Like facial skin, the oral mucosa needs to be exquisitely sensitive and selective, in order to detect harmful toxins versus edible food. Chemosensation and somatosensation by multiple receptors, including transient receptor potential channels, are well-developed to meet these needs. In contrast to facial skin, however, the oral mucosa rarely exhibits itch responses. Like the gut, the oral cavity performs mechanical and chemical digestion. Therefore, the oral mucosa needs to be insensitive, to some degree, in order to endure noxious irritation. Persistent pain from the oral mucosa is often due to ulcers, involving both tissue injury and infection. Trigeminal nerve injury and trigeminal neuralgia produce intractable pain in the orofacial skin and the oral mucosa, through mechanisms distinct from those seen in the spinal area, which is particularly difficult to predict or treat. The diagnosis and treatment of idiopathic chronic pain, such as atypical odontalgia (idiopathic painful trigeminal neuropathy or post-traumatic trigeminal neuropathy) and burning mouth syndrome, remain especially challenging. The central integration of gustatory inputs might modulate chronic oral and facial pain. A lack of pain in chronic inflammation inside the oral cavity, such as chronic periodontitis, involves the specialized functioning of oral bacteria. A more detailed understanding of the unique neurobiology of pain from the orofacial skin and the oral mucosa should help us develop novel methods for better treating persistent orofacial pain.
Collapse
|
14
|
Imamura Y, Okada-Ogawa A, Noma N, Shinozaki T, Watanabe K, Kohashi R, Shinoda M, Wada A, Abe O, Iwata K. A perspective from experimental studies of burning mouth syndrome. J Oral Sci 2020; 62:165-169. [PMID: 32161235 DOI: 10.2334/josnusd.19-0459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Burning mouth syndrome (BMS) is one of the most frequently seen idiopathic pain conditions in a dental setting. Peri- and postmenopausal women are most frequently affected, and patients who experience BMS complain of persistent burning pain mainly at the tip and the bilateral border of the tongue. Recent studies have assessed whether BMS is a neuropathic pain condition, based on morphologic changes in biopsied tongue specimens, and whether there are abnormal pain responses in patients with this disease. Somatosensory studies have reported some abnormal findings in sensory and pain detection thresholds with inconsistency; however, the most distinct finding was exaggerated responses to painful stimuli. Imaging and electrophysiologic studies have suggested the possibility of dysregulation of the pain-modulating system in the central nervous system, which may explain the enhanced pain responses despite the lack of typical responses toward quantitative sensory tests. Basic studies have suggested the possible involvement of neuroprotective steroids, although the underlying mechanisms of this condition have not been elucidated. Experimental studies are looking for preferable supportive therapies for BMS patients despite the obscure pathogenesis.
Collapse
Affiliation(s)
- Yoshiki Imamura
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry.,Division of Clinical Research, Dental Research Institute, Nihon University School of Dentistry
| | - Akiko Okada-Ogawa
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry.,Division of Clinical Research, Dental Research Institute, Nihon University School of Dentistry
| | - Noboru Noma
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry.,Division of Clinical Research, Dental Research Institute, Nihon University School of Dentistry
| | - Takahiro Shinozaki
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry.,Division of Clinical Research, Dental Research Institute, Nihon University School of Dentistry
| | - Kosuke Watanabe
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry
| | - Ryutaro Kohashi
- Department of Dental Radiology, Nihon University School of Dentistry
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry.,Division of Functional Morphology, Dental Research Institute, Nihon University School of Dentistry
| | - Akihiko Wada
- Department of Radiology, Juntendo University Faculty of Medicine
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry.,Division of Functional Morphology, Dental Research Institute, Nihon University School of Dentistry
| |
Collapse
|
15
|
Abstract
Burning mouth syndrome/glossodynia and trigeminal neuropathic conditions can have serious negative impact on a patient's overall quality of life. These conditions are often hard to diagnose and even harder to fully treat and manage, but it is important for dentists/oral and maxillofacial surgeons to be aware of these conditions and modalities of their treatment. Often the only method for arriving at the proper diagnosis is for patients to undergo traditional approaches for treatment of presenting signs and symptoms, and it is the unexpected failure of interventional therapies that leads ultimately to a proper diagnosis.
Collapse
|
16
|
Pereira SR, Tello Velasquez J, Duggan S, Ivanisevic B, McKenna JP, McCreary C, Downer EJ. Recent advances in the understanding of the aetiology and therapeutic strategies in burning mouth syndrome: Focus on the actions of cannabinoids. Eur J Neurosci 2020; 55:1032-1050. [DOI: 10.1111/ejn.14712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/06/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Sónia R. Pereira
- Discipline of Physiology School of Medicine Trinity Biomedical Sciences Institute Trinity College Dublin Dublin 2 Ireland
| | - Johana Tello Velasquez
- Discipline of Physiology School of Medicine Trinity Biomedical Sciences Institute Trinity College Dublin Dublin 2 Ireland
| | - Sarah Duggan
- Discipline of Physiology School of Medicine Trinity Biomedical Sciences Institute Trinity College Dublin Dublin 2 Ireland
| | - Bojana Ivanisevic
- Cork University Dental School and Hospital University College Cork Cork Ireland
| | - Joseph P. McKenna
- Cork University Dental School and Hospital University College Cork Cork Ireland
| | - Christine McCreary
- Cork University Dental School and Hospital University College Cork Cork Ireland
| | - Eric J. Downer
- Discipline of Physiology School of Medicine Trinity Biomedical Sciences Institute Trinity College Dublin Dublin 2 Ireland
| |
Collapse
|
17
|
Shinoda M, Hayashi Y, Kubo A, Iwata K. Pathophysiological mechanisms of persistent orofacial pain. J Oral Sci 2020; 62:131-135. [PMID: 32132329 DOI: 10.2334/josnusd.19-0373] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Nociceptive stimuli to the orofacial region are typically received by the peripheral terminal of trigeminal ganglion (TG) neurons, and noxious orofacial information is subsequently conveyed to the trigeminal spinal subnucleus caudalis and the upper cervical spinal cord (C1-C2). This information is further transmitted to the cortical somatosensory regions and limbic system via the thalamus, which then leads to the perception of pain. It is a well-established fact that the presence of abnormal pain in the orofacial region is etiologically associated with neuroplastic changes that may occur at any point in the pain transmission pathway from the peripheral to the central nervous system (CNS). Recently, several studies have reported that functional plastic changes in a large number of cells, including TG neurons, glial cells (satellite cells, microglia, and astrocytes), and immune cells (macrophages and neutrophils), contribute to the sensitization and disinhibition of neurons in the peripheral and CNS, which results in orofacial pain hypersensitivity.
Collapse
Affiliation(s)
| | | | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
| |
Collapse
|
18
|
Minnema L, Wheeler J, Enomoto M, Pitake S, Mishra SK, Lascelles BDX. Correlation of Artemin and GFRα3 With Osteoarthritis Pain: Early Evidence From Naturally Occurring Osteoarthritis-Associated Chronic Pain in Dogs. Front Neurosci 2020; 14:77. [PMID: 32116521 PMCID: PMC7031206 DOI: 10.3389/fnins.2020.00077] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Arthritis, including osteoarthritis (OA) and other musculoskeletal-associated pain, is a worldwide problem, however, effective drug options are limited. Several receptors, neurotransmitters, and endogenous mediators have been identified in rodent models, but the relevance of these molecules in disease-associated pain is not always clear. Artemin, a neurotrophic factor, and its receptor, glial-derived neurotrophic factor (GDNF) family receptor alpha-3 (GFRα3), have been identified as involved in pain in rodents. Their role in OA-associated pain is unknown. To explore a possible association, we analyzed tissue from naturally occurring OA in dogs to characterize the correlation with chronic pain. We used behavioral assessment, objective measures of limb use, and molecular tools to identify whether artemin and GFRα3 might be associated with OA pain. Our results using banked tissue from well-phenotyped dogs indicates that artemin/GFRα3 may play an important, and hitherto unrecognized, role in chronic OA-associated pain. Elevated serum levels of artemin from osteoarthritic humans compared to healthy individuals suggest translational relevance. Our data provide compelling evidence that the artemin/GFRα3 signaling pathway may be important in OA pain in both non-humans and humans and may ultimately lead to novel therapeutics.
Collapse
Affiliation(s)
- Laura Minnema
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Joshua Wheeler
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Pain Research and Education Center, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Masataka Enomoto
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Pain Research and Education Center, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Saumitra Pitake
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Santosh K Mishra
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Pain Research and Education Center, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - B Duncan X Lascelles
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Pain Research and Education Center, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Thurston Arthritis Research Center, UNC School of Medicine, Chapel Hill, NC, United States.,Center for Translational Pain Research, Department of Anesthesiology, Duke University, Durham, NC, United States
| |
Collapse
|
19
|
Peripheral nociceptive mechanisms in an experimental rat model of fibromyalgia induced by repeated cold stress. Neurosci Res 2019; 162:22-30. [PMID: 31891739 DOI: 10.1016/j.neures.2019.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/06/2019] [Accepted: 12/19/2019] [Indexed: 01/15/2023]
Abstract
Fibromyalgia (FM) is a debilitating disease characterized by generalized and persistent musculoskeletal pain. Although central mechanisms are strongly implicated in the pathogenesis of FM, the involvement of peripheral mechanisms is poorly understood. To understand the peripheral nociceptive mechanisms, we examined muscular nociceptors in an FM model, which was made by exposing rats to repeated cold stress (RCS). A single muscle C-fiber nociceptors were identified through the teased fiber technique using ex vivo muscle-nerve preparations. Response properties of C-fibers to noxious stimuli were systematically analyzed. Messenger RNA expression of neurotrophic factors and inflammatory mediators were also studied in the muscle. In the RCS group, the mechanical response threshold of C-fibers, measured using a ramp mechanical stimulus, was significantly decreased, and the response magnitude was significantly increased in the RCS group when compared with the SHAM group, where the environmental temperature was not altered. The general characteristics of C-fibers and the responsiveness to noxious cold and heat stimuli were similar between the two groups. Messenger RNAs of neurotrophic factors and inflammatory mediators were not changed in the muscle during and after RCS. These results suggest that augmentation of the mechanical response of muscle C-fiber nociceptors contributes to hyperalgesia in the RCS model.
Collapse
|
20
|
Endothelin Signaling Contributes to Modulation of Nociception in Early-stage Tongue Cancer in Rats. Anesthesiology 2019; 128:1207-1219. [PMID: 29461271 DOI: 10.1097/aln.0000000000002139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Patients with early stage tongue cancer do not frequently complain of tongue pain. Endothelin-1 signaling is upregulated in the cancerous tongue at the early stage. We tested the hypothesis that endothelin-1 signaling contributes to the modulation of tongue nociception. METHODS Squamous cell carcinoma cells were inoculated into the tongue under general anesthesia. Lingual mechanical sensitivity under light anesthesia using forceps from days 1 to 21 (n = 8) and the amounts of endothelin-1 and β-endorphin in the tongue on days 6, 14, and 21 (n = 5 to 7) were examined after the inoculation. The effect of endothelin-A or µ-opioid receptor antagonism on the mechanical sensitivity was examined (n = 5 to 7). RESULTS Lingual mechanical sensitivity did not change at the early stage (days 5 to 6) but increased at the late stage (days 13 to 14). The amount of endothelin-1 increased (25.4 ± 4.8 pg/ml vs. 15.0 ± 5.2 pg/ml; P = 0.008), and endothelin-A receptor antagonism in the tongue induced mechanical hypersensitivity at the early stage (51 ± 9 g vs. 81 ± 6 g; P = 0.0001). The µ-opioid receptor antagonism enhanced mechanical hypersensitivity (39 ± 7 g vs. 81 ± 6 g; P < 0.0001), and the amount of β-endorphin increased at the early stage. CONCLUSIONS β-Endorphin released from the cancer cells via endothelin-1 signaling is involved in analgesic action in mechanical hypersensitivity at the early stage.
Collapse
|
21
|
Imamura Y, Shinozaki T, Okada-Ogawa A, Noma N, Shinoda M, Iwata K, Wada A, Abe O, Wang K, Svensson P. An updated review on pathophysiology and management of burning mouth syndrome with endocrinological, psychological and neuropathic perspectives. J Oral Rehabil 2019; 46:574-587. [PMID: 30892737 DOI: 10.1111/joor.12795] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/19/2019] [Accepted: 03/12/2019] [Indexed: 12/17/2022]
Abstract
Burning mouth syndrome (BMS) is a chronic oro-facial pain disorder of unknown cause. It is more common in peri- and post-menopausal women, and sex hormone dysregulation is believed to be an important causative factor. Psychosocial events often trigger or exacerbate symptoms, and persons with BMS appear to be predisposed towards anxiety and depression. Atrophy of small nerve fibres in the tongue epithelium has been reported, and potential neuropathic mechanisms for BMS are now widely investigated. Historically, BMS was thought to comprise endocrinological, psychosocial and neuropathic components. Neuroprotective steroids and glial cell line-derived neurotrophic factor family ligands may have pivotal roles in the peripheral mechanisms associated with atrophy of small nerve fibres. Denervation of chorda tympani nerve fibres that innervate fungiform buds leads to alternative trigeminal innervation, which results in dysgeusia and burning pain when eating hot foods. With regard to the central mechanism of BMS, depletion of neuroprotective steroids alters the brain network-related mood and pain modulation. Peripheral mechanistic studies support the use of topical clonazepam and capsaicin for the management of BMS, and some evidence supports the use of cognitive behavioural therapy. Hormone replacement therapy may address the causes of BMS, although adverse effects prevent its use as a first-line treatment. Selective serotonin reuptake inhibitors (SSRIs) and serotonin and noradrenaline reuptake inhibitors (SNRIs) may have important benefits, and well-designed controlled studies are expected. Other treatment options to be investigated include brain stimulation and TSPO (translocator protein 18 kDa) ligands.
Collapse
Affiliation(s)
- Yoshiki Imamura
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,Nihon University School of Dentistry Dental Research Center, Chiyoda-ku, Tokyo, Japan
| | - Takahiro Shinozaki
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,Nihon University School of Dentistry Dental Research Center, Chiyoda-ku, Tokyo, Japan
| | - Akiko Okada-Ogawa
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,Nihon University School of Dentistry Dental Research Center, Chiyoda-ku, Tokyo, Japan
| | - Noboru Noma
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,Nihon University School of Dentistry Dental Research Center, Chiyoda-ku, Tokyo, Japan
| | - Masahiro Shinoda
- Nihon University School of Dentistry Dental Research Center, Chiyoda-ku, Tokyo, Japan.,Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Koichi Iwata
- Nihon University School of Dentistry Dental Research Center, Chiyoda-ku, Tokyo, Japan.,Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Akihiko Wada
- Department of Radiology, Faculty of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kelun Wang
- Department of Health Science and Technology, Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark
| | - Peter Svensson
- Department of Dentistry and Oral Health, Section for Orofacial Pain and Jaw Function, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Thoppay J, Desai B. Oral burning: local and systemic connection for a patient-centric approach. EPMA J 2019; 10:1-11. [PMID: 30984309 DOI: 10.1007/s13167-018-0157-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/20/2018] [Indexed: 12/24/2022]
Abstract
Burning symptoms in the oral cavity are caused by a range of systemic and local factors, in addition to the neuropathic pain disorder burning mouth syndrome (BMS). Patients may state oral burning as a standalone symptom or may report as a secondary symptom in association with other factors, most commonly with oral dryness, oral mucosal lesions, or certain systemic conditions. There is a level of uncertainty in the presentation of this condition which creates a diagnostic challenge from both the patient's perspective and the practitioner evaluating these individuals. The diagnoses are complicated due to the lack of a clear definition of BMS and clinical guidelines to distinguish BMS from other conditions that are responsible for oral burning symptoms. A clinician should be able to differentiate oral burning from burning mouth syndrome. This integrative review discusses on local and systemic etiologies of oral burning based on current evidence that needs to be excluded for a diagnosis of BMS. It also provides an algorithm for diagnostic workup and therapeutic management to medical providers for patients experiencing oral burning symptoms. This comprehensive system provides a systematic stepwise workup in diagnosing and managing patients presenting with a complaint of oral burning that optimally meets a predictive, preventive, and personalized medicine (PPPM) approach.
Collapse
Affiliation(s)
- Jaisri Thoppay
- 1Oral Medicine, Orofacial Pain and Geriatric Programs, Virginia Commonwealth University, Richmond, VA USA
| | - Bhavik Desai
- 2Oral Health and Diagnostic Sciences, Oral Medicine Section, Dental College of Georgia at Augusta University, Augusta, GA USA
| |
Collapse
|
23
|
Abstract
The trigeminal sensory nerve fiber branches supply afferent information from the skin and mucous membranes of the face and head and the oral cavity regarding information on temperature, touch, and pain. Under normal conditions, the trigeminal nerve serves to provide important information from nerve fibers and tissues using specialized receptors sensitive for irritant and painful stimuli. The current scientific consensus indicates that nerve endings responsible for chemical and thermal sensitivity of the skin and mucous membranes are the same nerves responsible for nociception. This "chemesthetic sense" allows many vertebrates to detect chemical agonists that induce sensations such as touch, burning, stinging, tingling, or changes in temperature. Research has been under way for many years to determine how exposure of the oral and/or nasal cavity to compounds that elicit pungent or irritant sensations can produce these sensations. In addition, these chemicals can alter other sensory information such as taste and smell to affect the flavor of foods and beverages. We now know that these 'chemesthetic molecules' are agonists of molecular receptors, which exist on primary afferent nerve fibers that innervate the orofacial area. However, under pathophysiologic conditions, over- or underexpression or activity of these receptors may lead to painful orotrigeminal syndromes. Some of these individual receptors are discussed in detail, including transient receptor potential channels and acid sensing ion channels, among others.
Collapse
Affiliation(s)
- Amanda H Klein
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States. //
| |
Collapse
|
24
|
Nencini S, Thai J, Ivanusic JJ. Sequestration of artemin reduces inflammation-induced activation and sensitization of bone marrow nociceptors in a rodent model of carrageenan-induced inflammatory bone pain. Eur J Pain 2018; 23:397-409. [PMID: 30218545 DOI: 10.1002/ejp.1315] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/15/2018] [Accepted: 09/04/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND Pathologies that affect the bone marrow have a significant inflammatory component; however, it is not clear how inflammatory mediators affect nociceptive nerve terminals within the marrow cavity. METHODS In this study, an in vivo bone-nerve preparation was used to directly record the physiological response properties of bone marrow nociceptors innervating the tibial marrow cavity of rats, before and after application of the inflammatory agent carrageenan. In addition, endogenous artemin was sequestered by application of an artemin neutralizing antibody to determine if this could prevent the inflammation-induced physiological changes observed. RESULTS A single injection of carrageenan administered into the tibial marrow cavity produced rapid changes in weight bearing (pain-like behaviour) in conscious animals. Carrageenan, but not saline, activated bone marrow nociceptors in whole-nerve recordings and sensitized a subtype of Aδ-bone marrow nociceptors to mechanical stimulation. The activation and sensitization had a rapid time course that matched that of pain-like behaviours. Sequestration of endogenous artemin significantly reduced carrageenan-induced increases in ongoing activity and completely abolished sensitization of bone marrow nociceptors to mechanical stimulation. CONCLUSIONS These observations indicate that inflammation affects the activity and sensitivity of bone marrow nociceptors; that artemin plays a role in these changes; and that artemin might be a promising target for pharmacological manipulations in the treatment of inflammatory bone pain. SIGNIFICANCE Most pathologies that affect the bone marrow have an inflammatory component. We have used a model of carrageenan-induced inflammation to show that sequestration of artemin reduces inflammation-induced activation and sensitization of bone marrow nociceptors. Our findings suggest that artemin signalling is a target for the treatment of inflammatory bone pain.
Collapse
Affiliation(s)
- Sara Nencini
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Jenny Thai
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Jason J Ivanusic
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Del Fiacco M, Serra MP, Boi M, Poddighe L, Demontis R, Carai A, Quartu M. TRPV1-Like Immunoreactivity in the Human Locus K, a Distinct Subregion of the Cuneate Nucleus. Cells 2018; 7:cells7070072. [PMID: 29986526 PMCID: PMC6071077 DOI: 10.3390/cells7070072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/30/2018] [Accepted: 07/05/2018] [Indexed: 01/02/2023] Open
Abstract
The presence of transient receptor potential vanilloid type-1 receptor (TRPV1)-like immunoreactivity (LI), in the form of nerve fibres and terminals, is shown in a set of discrete gray matter subregions placed in the territory of the human cuneate nucleus. We showed previously that those subregions share neurochemical and structural features with the protopathic nuclei and, after the ancient name of our town, collectively call them Locus Karalis, and briefly Locus K. TRPV1-LI in the Locus K is codistributed, though not perfectly overlapped, with that of the neuropeptides calcitonin gene-related peptide and substance P, the topography of the elements immunoreactive to the three markers, in relation to each other, reflecting that previously described in the caudal spinal trigeminal nucleus. Myelin stainings show that myelinated fibres, abundant in the cuneate, gracile and trigeminal magnocellular nuclei, are scarce in the Locus K as in the trigeminal substantia gelatinosa. Morphometric analysis shows that cell size and density of Locus K neurons are consistent with those of the trigeminal substantia gelatinosa and significantly different from those of the magnocellular trigeminal, solitary and dorsal column nuclei. We propose that Locus K is a special component of the human dorsal column nuclei. Its functional role remains to be determined, but TRPV1 appears to play a part in it.
Collapse
Affiliation(s)
- Marina Del Fiacco
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Maria Pina Serra
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Marianna Boi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Laura Poddighe
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Roberto Demontis
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Antonio Carai
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Marina Quartu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| |
Collapse
|
26
|
Ritchie A, Kramer JM. Recent Advances in the Etiology and Treatment of Burning Mouth Syndrome. J Dent Res 2018; 97:1193-1199. [PMID: 29913093 DOI: 10.1177/0022034518782462] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Burning mouth syndrome (BMS) is a debilitating condition that has a striking female predilection. Although the oral mucosa is normal in appearance, patients with BMS experience oral burning that most commonly localizes to the lips and tongue. BMS is a diagnosis of exclusion, and all underlying pathoses associated with allodynia must be ruled out prior to rendering the diagnosis. The etiopathogenesis of BMS remains poorly understood, and thus patient management is challenging. Data indicate that oral and systemic factors both contribute to the development and persistence of the condition. Of particular interest, emerging work identifies structural and functional deficits within the nervous system that may lead to a more mechanistic understanding of BMS pathology. In addition, several novel findings suggest that circadian rhythm dysfunction may be a previously unappreciated yet clinically significant driver of disease. Circadian rhythm controls pain perception, mood, and sleep and plays a key role in the regulation of the hypothalamic-pituitary-adrenal axis. Since these are altered in patients with BMS, this may be reflective of underlying circadian dysfunction. While evidence-based treatment strategies for BMS are lacking, current treatment approaches consist of local and systemic medications, such as clonazepam, alpha lipoic acid, capsaicin, low-level laser therapy, gabapentin, and amitriptylin. In addition, the use of cognitive behavioral therapy is reported. This review provides an overview of the recent literature related to the etiology and treatment of BMS and identifies current challenges facing researchers and clinicians alike.
Collapse
Affiliation(s)
- A Ritchie
- 1 Department of Oral Pathology, Medicine and Radiology, School of Dentistry, Indiana University, Indianapolis, IN, USA
| | - J M Kramer
- 2 Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA.,3 Department of Oral Diagnostic Sciences, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
27
|
Artemin transiently increases iNOS expression in primary cultured trigeminal ganglion neurons. Neurosci Lett 2017; 660:34-38. [DOI: 10.1016/j.neulet.2017.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022]
|
28
|
Downregulations of TRPM8 expression and membrane trafficking in dorsal root ganglion mediate the attenuation of cold hyperalgesia in CCI rats induced by GFRα3 knockdown. Brain Res Bull 2017; 135:8-24. [PMID: 28867384 DOI: 10.1016/j.brainresbull.2017.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/07/2017] [Accepted: 08/04/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Cold hyperalgesia is an intractable sensory abnormality commonly seen in peripheral neuropathies. Although glial cell line-derived neurotrophic factor family receptor alpha3 (GFRα3) is required for the formation of pathological cold pain has been revealed, potential transduction mechanism is poorly elucidated. We have previously demonstrated the contribution of enhanced activity of transient receptor potential melastatin 8 (TRPM8) to cold hyperalgesia in neuropathic pain using a rat model of chronic constriction injury (CCI) to the sciatic nerve. Recently, the enhancement of TRPM8 activity is attributed to the increased TRPM8 plasma membrane trafficking. In addition, TRPM8 can be sensitized by the activation of GFRα3, leading to increased cold responses in vivo. The aim of this study was to investigate whether GFRα3 could influence cold hyperalgesia of CCI rats via modulating TRPM8 expression and plasma membrane trafficking in dorsal root ganglion (DRG). METHODS Mechanical allodynia, cold and heat hyperalgesia were measured on 1day before CCI and the 1st, 4th, 7th, 10th and 14th day after CCI. TRPM8 total expression and membrane trafficking as well as GFRα3 expression in DRG were detected by immunofluorescence and western blot. Furthermore, GFRα3 small interfering RNA (siRNA) was intrathecally administrated to reduce GFRα3 expression in DRG, and the effects of GFRα3 knockdown on CCI-induced behavioral sensitization as well as TRPM8 total expression and membrane trafficking in both mRNA and protein levels were investigated, and the change in coexpression of TRPM8 with GFRα3 was also evaluated. Then, the effect of GFRα3 activation with artemin on pain behavior of CCI rats pretreated with the selective TRPM8 antagonist RQ-00203078 was observed. RESULTS Here we found that TRPM8 total expression and plasma membrane trafficking as well as GFRα3 expression in DRG were initially increased on the 4th day after CCI, and maintained at the peak level from the 10th to the 14th day, which entirely conformed with the induction and maintenance of behavioral-reflex facilitation following CCI. The coexpression of TRPM8 with GFRα3, which was mainly located in peptidergic C-fibers DRG neurons, was also increased after CCI. Downregulation of GFRα3 protein in DRG attenuated CCI-induced cold hyperalgesia without affecting mechanical allodynia and heat hyperalgesia, and reduced the upregulations of TRPM8 total expression and plasma membrane trafficking as well as coexpression of TRPM8 with GFRα3 induced by CCI. Additionally, the inhibition of TRPM8 abolished the influence of GFRα3 activation on cold hyperalgesia after CCI. CONCLUSION Our results demonstrate that GFRα3 knockdown specially inhibits cold hyperalgesia following CCI via decreasing the expression level and plasma membrane trafficking of TRPM8 in DRG. GFRα3 and its downstream mediator, TRPM8, represent a new analgesia axis which can be further exploited in sensitized cold reflex under the condition of chronic pain.
Collapse
|
29
|
Shang HQ, Wang Y, Mao YY, Kong LG, Sun GY, Xu L, Zhang DG, Han YC, Li JF, Wang HB, Fan ZM. Expression of artemin and GFRα3 in an animal model of migraine: possible role in the pathogenesis of this disorder. J Headache Pain 2016; 17:81. [PMID: 27600145 PMCID: PMC5013005 DOI: 10.1186/s10194-016-0673-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Neurotrophic factors have been implicated in hyperalgesia and peripheral levels of these molecules are altered in migraine pathophysiology. Artemin, a vasculature-derived neurotrophic factor, contributes to pain modulation and trigeminal primary afferent sensitization through binding its selective receptor GFRα3. The distribution of artemin and GFRα3 in the dura mater raises an anatomy supports that they may be involved in migraine. In this study we evaluated the expression of artemin and GFRα3 in an animal migraine model that may be relevant for migraine. METHODS In this study, using a rat migraine model by administration of nitroglycerin (NTG), we investigated the expression of artemin in the dura mater and GFRα3 in the trigeminal ganglia (TG) by means of quantitative reverse transcription-polymerase chain reaction, western blot and immunofluorescence labeling. RESULTS Artemin immunoreactivity was found in the smooth muscle cells of dural vasculature and GFRα3 was present in cytoplasm of TG neurons. The mRNA levels of artemin and GFRα3 were significantly elevated after NTG treatment at 2 and 4 h respectively (P < 0.05). The expression of artemin protein was increased at 4 h and continually up to 8 h in the dura mater following NTG administration (P < 0.05). The expression of GFRα3 protein was elevated at 4 h and continually up to 10 h in the TG following NTG administration (P < 0.05). CONCLUSION The findings suggest that artemin and GFRα3 play an important role in the pathogenesis of migraine and may represent potential therapeutic targets for the treatment of migraine.
Collapse
Affiliation(s)
- Hai-Qiong Shang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China.,Shandong Provincial Key Laboratory of Otology, Jinan, 250022, People's Republic of China
| | - Yan Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China.,Department of Otolaryngology, People's Hospital of Rizhao, Rizhao, 276800, People's Republic of China
| | - Yan-Yan Mao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China.,Shandong Provincial Key Laboratory of Otology, Jinan, 250022, People's Republic of China
| | - Li-Gang Kong
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China.,Shandong Provincial Key Laboratory of Otology, Jinan, 250022, People's Republic of China
| | - Gao-Ying Sun
- Shandong Provincial Key Laboratory of Otology, Jinan, 250022, People's Republic of China.,Institute of Eye and ENT, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250022, People's Republic of China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China
| | - Dao-Gong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China
| | - Yue-Chen Han
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China
| | - Jian-Feng Li
- Shandong Provincial Key Laboratory of Otology, Jinan, 250022, People's Republic of China.,Institute of Eye and ENT, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250022, People's Republic of China
| | - Hai-Bo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China.,Shandong Provincial Key Laboratory of Otology, Jinan, 250022, People's Republic of China.,Institute of Eye and ENT, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250022, People's Republic of China
| | - Zhao-Min Fan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China.
| |
Collapse
|
30
|
Zaccone EJ, Lieu T, Muroi Y, Potenzieri C, Undem BE, Gao P, Han L, Canning BJ, Undem BJ. Parainfluenza 3-Induced Cough Hypersensitivity in the Guinea Pig Airways. PLoS One 2016; 11:e0155526. [PMID: 27213574 PMCID: PMC4877001 DOI: 10.1371/journal.pone.0155526] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/29/2016] [Indexed: 02/06/2023] Open
Abstract
The effect of respiratory tract viral infection on evoked cough in guinea pigs was evaluated. Guinea pigs were inoculated intranasally with either parainfluenza type 3 (PIV3) and cough was quantified in conscious animals. The guinea pigs infected with PIV3 (day 4) coughed nearly three times more than those treated with the viral growth medium in response to capsaicin, citric acid, and bradykinin. Since capsaicin, citric acid, and bradykinin evoked coughing in guinea pigs can be inhibited by drugs that antagonize the transient receptor potential cation channel, subfamily V, member 1 (TRPV1), it was reasoned that the virally-induced hypertussive state may involve alterations in TPRV1 activity. PIV3 infection caused a phenotypic switch in tracheal nodose Aδ “cough receptors” such that nearly 50% of neurons began to express, de novo, TRPV1 mRNA. There was also an increase TRPV1 expression in jugular C-fiber neurons as determined by qPCR. It has previously been reported that tracheal-specific nodose neurons express the BDNF receptor TrkB and jugular neurons express the NGF receptor TrkA. Jugular neurons also express the artemin receptor GFRα3. All these neurotrophic factors have been associated with increases in TRPV1 expression. In an ex vivo perfused guinea pig tracheal preparation, we demonstrated that within 8 h of PIV3 infusion there was no change in NGF mRNA expression, but there was nearly a 10-fold increase in BDNF mRNA in the tissue, and a small but significant elevation in the expression of artemin mRNA. In summary, PIV3 infection leads to elevations in TRPV1 expression in the two key cough evoking nerve subtypes in the guinea pig trachea, and this is associated with a hypertussive state with respect to various TRPV1 activating stimuli.
Collapse
Affiliation(s)
- Eric J. Zaccone
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - TinaMarie Lieu
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Yukiko Muroi
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Carl Potenzieri
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Blair E. Undem
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Peisong Gao
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Liang Han
- The Solomon H. Snyder Department of Neuroscience, Center of Sensory Biology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Brendan J. Canning
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Bradley J. Undem
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
31
|
Abstract
Many dental patients complain of oral symptoms after dental treatment, such as chronic pain or occlusal discomfort, for which the cause remains undetermined. These symptoms are often thought to be mental or emotional in origin, and patients are considered to have an "oral psychosomatic disorder". Representative medically unexplained oral symptoms/syndromes (MUOS) include burning mouth syndrome, atypical odontalgia, phantom bite syndrome, oral cenesthopathy, or halitophobia. With an increasing prevalence of these MUOS, dentists are being asked to develop new approaches to dental treatment, which include taking care of not only the patient's teeth but also the patient's suffering. Progress in the understanding of mind-body interactions will lead to investigations on the pathophysiology of MUOS and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Akira Toyofuku
- Psychosomatic Dentistry, Graduate School Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549 Japan
| |
Collapse
|
32
|
Inflammatory and neuropathic cold allodynia are selectively mediated by the neurotrophic factor receptor GFRα3. Proc Natl Acad Sci U S A 2016; 113:4506-11. [PMID: 27051069 DOI: 10.1073/pnas.1603294113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tissue injury prompts the release of a number of proalgesic molecules that induce acute and chronic pain by sensitizing pain-sensing neurons (nociceptors) to heat and mechanical stimuli. In contrast, many proalgesics have no effect on cold sensitivity or can inhibit cold-sensitive neurons and diminish cooling-mediated pain relief (analgesia). Nonetheless, cold pain (allodynia) is prevalent in many inflammatory and neuropathic pain settings, with little known of the mechanisms promoting pain vs. those dampening analgesia. Here, we show that cold allodynia induced by inflammation, nerve injury, and chemotherapeutics is abolished in mice lacking the neurotrophic factor receptor glial cell line-derived neurotrophic factor family of receptors-α3 (GFRα3). Furthermore, established cold allodynia is blocked in animals treated with neutralizing antibodies against the GFRα3 ligand, artemin. In contrast, heat and mechanical pain are unchanged, and results show that, in striking contrast to the redundant mechanisms sensitizing other modalities after an insult, cold allodynia is mediated exclusively by a single molecular pathway, suggesting that artemin-GFRα3 signaling can be targeted to selectively treat cold pain.
Collapse
|