1
|
Meijs S, Andreis FR, Janjua TAM, Graven-Nielsen T, Jensen W. High-frequency electrical stimulation increases cortical excitability and mechanical sensitivity in a chronic large animal model. Pain 2025; 166:e18-e26. [PMID: 39133034 DOI: 10.1097/j.pain.0000000000003354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/12/2024] [Indexed: 08/13/2024]
Abstract
ABSTRACT Translational models of the sensitized pain system are needed to progress the understanding of involved mechanisms. In this study, long-term potentiation was used to develop a mechanism-based large-animal pain model. Event-related potentials to electrical stimulation of the ulnar nerve were recorded by intracranial recordings in pigs, 3 weeks before, immediately before and after, and 3 weeks after peripheral high-frequency stimulation (HFS) applied to the ulnar nerve in the right forelimb (7 pigs) or in control animals (5 pigs). Event-related potential recordings and peripheral HFS were done during anesthesia. Two weeks before and after the HFS, behavioral responses reflecting mechanical and thermal sensitivity were collected using brush, noxious limb-mounted pressure algometer, and noxious laser stimuli. The HFS intervention limb was progressively sensitized to noxious mechanical stimulation in week 1 and 2 compared with baseline ( P = 0.045) and the control group ( P < 0.034) but not significantly to laser or brush stimulation. The first negative (N1) peak of the event-related potential was increased 30 minutes after HFS compared with before ( P < 0.05). The N1 peak was also larger compared with control pigs 20 to 40 minutes after HFS ( P < 0.031) but not significantly increased 3 weeks after. The relative increase in N1 30 minutes after HFS and the degree of mechanical hyperalgesia 2 weeks post-HFS was correlated ( P < 0.033). These results show for the first time that the pig HFS model resembles the human HFS model closely where the profile of sensitization is comparable. Interestingly, the degree of sensitization was associated with the cortical signs of hyperexcitability at HFS induction.
Collapse
Affiliation(s)
- Suzan Meijs
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | | | | | | | | |
Collapse
|
2
|
Otis C, Cristofanilli KA, Frezier M, Delsart A, Martel-Pelletier J, Pelletier JP, Beaudry F, Lussier B, Boyer A, Troncy E. Predictive and concurrent validity of pain sensitivity phenotype, neuropeptidomics and neuroepigenetics in the MI-RAT osteoarthritic surgical model in rats. Front Cell Dev Biol 2024; 12:1400650. [PMID: 39175874 PMCID: PMC11338919 DOI: 10.3389/fcell.2024.1400650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Background Micro-RNAs could provide great insights about the neuropathological mechanisms associated with osteoarthritis (OA) pain processing. Using the validated Montreal Induction of Rat Arthritis Testing (MI-RAT) model, this study aimed to characterize neuroepigenetic markers susceptible to correlate with innovative pain functional phenotype and targeted neuropeptide alterations. Methods Functional biomechanical, somatosensory sensitization (peripheral-via tactile paw withdrawal threshold; central-via response to mechanical temporal summation), and diffuse noxious inhibitory control (via conditioned pain modulation) alterations were assessed sequentially in OA (n = 12) and Naïve (n = 12) rats. Joint structural, targeted spinal neuropeptides and differential expression of spinal cord micro-RNAs analyses were conducted at the sacrifice (day (D) 56). Results The MI-RAT model caused important structural damages (reaching 35.77% of cartilage surface) compared to the Naïve group (P < 0.001). This was concomitantly associated with nociceptive sensitization: ipsilateral weight shift to the contralateral hind limb (asymmetry index) from -55.61% ± 8.50% (D7) to -26.29% ± 8.50% (D35) (P < 0.0001); mechanical pain hypersensitivity was present as soon as D7 and persisting until D56 (P < 0.008); central sensitization was evident at D21 (P = 0.038); pain endogenous inhibitory control was distinguished with higher conditioned pain modulation rate (P < 0.05) at D7, D21, and D35 as a reflect of filtrated pain perception. Somatosensory profile alterations of OA rats were translated in a persistent elevation of pro-nociceptive neuropeptides substance P and bradykinin, along with an increased expression of spinal miR-181b (P = 0.029) at D56. Conclusion The MI-RAT OA model is associated, not only with structural lesions and static weight-bearing alterations, but also with a somatosensory profile that encompasses pain centralized sensitization, associated to active endogenous inhibitory/facilitatory controls, and corresponding neuropeptidomic and neuroepigenetic alterations. This preliminary neuroepigenetic research confirms the crucial role of pain endogenous inhibitory control in the development of OA chronic pain (not only hypersensitivity) and validates the MI-RAT model for its study.
Collapse
Affiliation(s)
- Colombe Otis
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Katrine-Ann Cristofanilli
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Marilyn Frezier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Aliénor Delsart
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Johanne Martel-Pelletier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Saint-Hyacinthe, QC, Canada
| | - Jean-Pierre Pelletier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Saint-Hyacinthe, QC, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et L’apprentissage (CIRCA), Université de Montréal, Montreal, QC, Canada
| | - Bertrand Lussier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Saint-Hyacinthe, QC, Canada
| | - Alexandre Boyer
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Département de Biomédecine Vétérinaire, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Eric Troncy
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Saint-Hyacinthe, QC, Canada
| |
Collapse
|
3
|
Hall KE, Tucker C, Dunn JA, Webb T, Watts SA, Kirkman E, Guillaumin J, Hoareau GL, Pidcoke HF. Breaking barriers in trauma research: A narrative review of opportunities to leverage veterinary trauma for accelerated translation to clinical solutions for pets and people. J Clin Transl Sci 2024; 8:e74. [PMID: 38715566 PMCID: PMC11075112 DOI: 10.1017/cts.2024.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 08/10/2024] Open
Abstract
Trauma is a common cause of morbidity and mortality in humans and companion animals. Recent efforts in procedural development, training, quality systems, data collection, and research have positively impacted patient outcomes; however, significant unmet need still exists. Coordinated efforts by collaborative, translational, multidisciplinary teams to advance trauma care and improve outcomes have the potential to benefit both human and veterinary patient populations. Strategic use of veterinary clinical trials informed by expertise along the research spectrum (i.e., benchtop discovery, applied science and engineering, large laboratory animal models, clinical veterinary studies, and human randomized trials) can lead to increased therapeutic options for animals while accelerating and enhancing translation by providing early data to reduce the cost and the risk of failed human clinical trials. Active topics of collaboration across the translational continuum include advancements in resuscitation (including austere environments), acute traumatic coagulopathy, trauma-induced coagulopathy, traumatic brain injury, systems biology, and trauma immunology. Mechanisms to improve funding and support innovative team science approaches to current problems in trauma care can accelerate needed, sustainable, and impactful progress in the field. This review article summarizes our current understanding of veterinary and human trauma, thereby identifying knowledge gaps and opportunities for collaborative, translational research to improve multispecies outcomes. This translational trauma group of MDs, PhDs, and DVMs posit that a common understanding of injury patterns and resulting cellular dysregulation in humans and companion animals has the potential to accelerate translation of research findings into clinical solutions.
Collapse
Affiliation(s)
- Kelly E. Hall
- Department of Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
| | - Claire Tucker
- Department of Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
- One Health Institute, Office of the Vice President of Research and Department of Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Julie A. Dunn
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
- Medical Center of the Rockies, University of Colorado Health North, Loveland, CO, USA
| | - Tracy Webb
- Department of Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
| | - Sarah A. Watts
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
- CBR Division, Medical and Trauma Sciences Porton Down, Salisbury, WI, UK
| | - Emrys Kirkman
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
- CBR Division, Dstl Porton Down, Salisbury, WI, UK
| | - Julien Guillaumin
- Department of Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
| | - Guillaume L. Hoareau
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
- Emergency Medicine Department and Nora Eccles-Harrison Cardiovascular Research and Training Institute and Biomedical Engineering Department, University of Utah, Salt Lake City, UT, USA
| | - Heather F. Pidcoke
- Department of Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
| |
Collapse
|
4
|
Monteiro BP, Otis C, Nitulescu R, Troncy E. Quantitative sensory testing in canine musculoskeletal pain: Findings from a systematic review, meta-analysis feasibility assessment, and limitations. Vet J 2024; 304:106102. [PMID: 38492631 DOI: 10.1016/j.tvjl.2024.106102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Quantitative sensory testing (QST) allows the study of pain mechanisms, patient phenotyping, and response to therapy. The goals of this study were to conduct a systematic review of the use of QST in dogs with musculoskeletal disease including osteoarthritis (OA), and to assess, by means of a meta-analysis, the ability of QST to differentiate affected dogs from healthy controls. The study protocol was registered; three bibliographic databases were screened. Studies involving QST in healthy dogs and those with musculoskeletal disease were included. Data were extracted using a standardized form. Assessment of quality and risk of bias were performed using the CAMARADES critical assessment tool. Twenty-nine articles met the inclusion criteria [systematic review (n = 11); meta-analysis (n = 28)]. In the systematic review, ten studies performed static QST: mechanical [punctate tactile (n = 6); mechanical pressure (n = 5)]; thermal [cold (n = 3); hot (n = 4)]; electrical (n = 1); and one study performed dynamic QST [conditioned pain modulation (n = 1)]. Most studies were of good scientific quality and showed low to moderate risk of bias. A meta-analysis was not possible due to numerous and severe issues of heterogeneity of data among studies. Methods to reduce risk of bias and use of reporting guidelines are some of the most needed improvements in QST research in dogs. Standardization of QST methodology is urgently needed in future studies to allow for data synthesis and a clear understanding of the sensory phenotype of dogs with and without chronic pain including OA.
Collapse
Affiliation(s)
- B P Monteiro
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - C Otis
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - R Nitulescu
- University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec H2X 0A9, Canada; Centre d'intégration et d'analyse des données médicales (CITADEL) du Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec H2X 0A9, Canada
| | - E Troncy
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada; University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec H2X 0A9, Canada.
| |
Collapse
|
5
|
de Amorim Ferreira M, Ferreira J. Role of Cav2.3 (R-type) Calcium Channel in Pain and Analgesia: A Scoping Review. Curr Neuropharmacol 2024; 22:1909-1922. [PMID: 37581322 PMCID: PMC11284728 DOI: 10.2174/1570159x21666230811102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 02/15/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Voltage-gated calcium channels (VGCCs) play an important role in pain development and maintenance. As Cav2.2 and Cav3.2 channels have been identified as potential drug targets for analgesics, the participation of Cav2.3 (that gives rise to R-type calcium currents) in pain and analgesia remains incompletely understood. OBJECTIVE Identify the participation of Cav2.3 in pain and analgesia. METHODS To map research in this area as well as to identify any existing gaps in knowledge on the potential role of Cav2.3 in pain signalling, we conducted this scoping review. We searched PubMed and SCOPUS databases, and 40 articles were included in this study. Besides, we organized the studies into 5 types of categories within the broader context of the role of Cav2.3 in pain and analgesia. RESULTS Some studies revealed the expression of Cav2.3 in pain pathways, especially in nociceptive neurons at the sensory ganglia. Other studies demonstrated that Cav2.3-mediated currents could be inhibited by analgesic/antinociceptive drugs either indirectly or directly. Some articles indicated that Cav2.3 modulates nociceptive transmission, especially at the pre-synaptic level at spinal sites. There are studies using different rodent pain models and approaches to reduce Cav2.3 activity or expression and mostly demonstrated a pro-nociceptive role of Cav2.3, despite some contradictory findings and deficiencies in the description of study design quality. There are three studies that reported the association of single-nucleotide polymorphisms in the Cav2.3 gene (CACNA1E) with postoperative pain and opioid consumption as well as with the prevalence of migraine in patients. CONCLUSION Cav2.3 is a target for some analgesic drugs and has a pro-nociceptive role in pain.
Collapse
Affiliation(s)
| | - Juliano Ferreira
- Graduate Program of Pharmacology, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| |
Collapse
|
6
|
Soliman N, Denk F. Practical approaches to improving translatability and reproducibility in preclinical pain research. Brain Behav Immun 2024; 115:38-42. [PMID: 37793487 DOI: 10.1016/j.bbi.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/21/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023] Open
Abstract
Pain research continues to face the challenge of poor translatability of pre-clinical studies. In this short primer, we are summarizing the possible causes, with an emphasis on practical and constructive solutions. In particular, we stress the importance of increased heterogeneity in animal studies; formal or informal pre-registration to combat publication bias; and increased statistical training in order to help pre-clinical scientists appreciate the usefulness of available experimental design and reporting guidelines.
Collapse
Affiliation(s)
- Nadia Soliman
- Pain Research, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Franziska Denk
- Wolfson Centre for Age-related Diseases, King's College London, Guy's Campus, London, SE1 1UL, United Kingdom.
| |
Collapse
|
7
|
Otis C, Bouet E, Keita-Alassane S, Frezier M, Delsart A, Guillot M, Bédard A, Pelletier JP, Martel-Pelletier J, Lussier B, Beaudry F, Troncy E. Face and Predictive Validity of MI-RAT ( Montreal Induction of Rat Arthritis Testing), a Surgical Model of Osteoarthritis Pain in Rodents Combined with Calibrated Exercise. Int J Mol Sci 2023; 24:16341. [PMID: 38003530 PMCID: PMC10671647 DOI: 10.3390/ijms242216341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Validating animal pain models is crucial to enhancing translational research and response to pharmacological treatment. This study investigated the effects of a calibrated slight exercise protocol alone or combined with multimodal analgesia on sensory sensitivity, neuroproteomics, and joint structural components in the MI-RAT model. Joint instability was induced surgically on day (D) 0 in female rats (N = 48) distributed into sedentary-placebo, exercise-placebo, sedentary-positive analgesic (PA), and exercise-PA groups. Daily analgesic treatment (D3-D56) included pregabalin and carprofen. Quantitative sensory testing was achieved temporally (D-1, D7, D21, D56), while cartilage alteration (modified Mankin's score (mMs)) and targeted spinal pain neuropeptide were quantified upon sacrifice. Compared with the sedentary-placebo (presenting allodynia from D7), the exercise-placebo group showed an increase in sensitivity threshold (p < 0.04 on D7, D21, and D56). PA treatment was efficient on D56 (p = 0.001) and presented a synergic anti-allodynic effect with exercise from D21 to D56 (p < 0.0001). Histological assessment demonstrated a detrimental influence of exercise (mMs = 33.3%) compared with sedentary counterparts (mMs = 12.0%; p < 0.001), with more mature transformations. Spinal neuropeptide concentration was correlated with sensory sensitization and modulation sites (inflammation and endogenous inhibitory control) of the forced mobility effect. The surgical MI-RAT OA model coupled with calibrated slight exercise demonstrated face and predictive validity, an assurance of higher clinical translatability.
Collapse
Affiliation(s)
- Colombe Otis
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Emilie Bouet
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Sokhna Keita-Alassane
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Marilyn Frezier
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Aliénor Delsart
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Martin Guillot
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Agathe Bédard
- Charles River Laboratories Montreal ULC, Senneville, QC H9X 1C1, Canada;
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
| | - Bertrand Lussier
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
- Centre de Recherche sur le Cerveau et L’Apprentissage (CIRCA), Université de Montréal, Montréal, QC H3T 1P1, Canada
| | - Eric Troncy
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
- Centre de Recherche sur le Cerveau et L’Apprentissage (CIRCA), Université de Montréal, Montréal, QC H3T 1P1, Canada
| |
Collapse
|
8
|
Perez-Sanchez J, Middleton SJ, Pattison LA, Hilton H, Awadelkareem MA, Zuberi SR, Renke MB, Hu H, Yang X, Clark AJ, Smith ESJ, Bennett DL. A humanized chemogenetic system inhibits murine pain-related behavior and hyperactivity in human sensory neurons. Sci Transl Med 2023; 15:eadh3839. [PMID: 37792955 PMCID: PMC7615191 DOI: 10.1126/scitranslmed.adh3839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Hyperexcitability in sensory neurons is known to underlie many of the maladaptive changes associated with persistent pain. Chemogenetics has shown promise as a means to suppress such excitability, yet chemogenetic approaches suitable for human applications are needed. PSAM4-GlyR is a modular system based on the human α7 nicotinic acetylcholine and glycine receptors, which responds to inert chemical ligands and the clinically approved drug varenicline. Here, we demonstrated the efficacy of this channel in silencing both mouse and human sensory neurons by the activation of large shunting conductances after agonist administration. Virally mediated expression of PSAM4-GlyR in mouse sensory neurons produced behavioral hyposensitivity upon agonist administration, which was recovered upon agonist washout. Stable expression of the channel led to similar reversible suppression of pain-related behavior even after 10 months of viral delivery. Mechanical and spontaneous pain readouts were also ameliorated by PSAM4-GlyR activation in acute and joint pain inflammation mouse models. Furthermore, suppression of mechanical hypersensitivity generated by a spared nerve injury model of neuropathic pain was also observed upon activation of the channel. Effective silencing of behavioral hypersensitivity was reproduced in a human model of hyperexcitability and clinical pain: PSAM4-GlyR activation decreased the excitability of human-induced pluripotent stem cell-derived sensory neurons and spontaneous activity due to a gain-of-function NaV1.7 mutation causing inherited erythromelalgia. Our results demonstrate the contribution of sensory neuron hyperexcitability to neuropathic pain and the translational potential of an effective, stable, and reversible humanized chemogenetic system for the treatment of pain.
Collapse
Affiliation(s)
- Jimena Perez-Sanchez
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford OX3 9DU, UK
| | - Steven J. Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford OX3 9DU, UK
| | - Luke A. Pattison
- Department of Pharmacology, University of Cambridge; Cambridge CB2 1PD, UK
| | - Helen Hilton
- Department of Pharmacology, University of Cambridge; Cambridge CB2 1PD, UK
| | | | - Sana R. Zuberi
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford OX3 9DU, UK
| | - Maria B. Renke
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford OX3 9DU, UK
| | - Huimin Hu
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford OX3 9DU, UK
| | - Xun Yang
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford OX3 9DU, UK
| | - Alex J. Clark
- Blizard Institute, Barts and the London School of Medicine and Dentistry; London E1 2AT, UK
| | | | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford OX3 9DU, UK
| |
Collapse
|
9
|
Portier K. Unifying two medicines to fight pain and to make anesthesia safer. Front Vet Sci 2023; 10:1248942. [PMID: 37732144 PMCID: PMC10507349 DOI: 10.3389/fvets.2023.1248942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Affiliation(s)
- Karine Portier
- Université de Lyon, VetAgro Sup, CREFAC, Marcy l'Etoile, France
- Université Claude Bernard Lyon, Centre de Recherche en Neurosciences de Lyon, INSERM, CRNL U1028 UMR5292, Trajectoire, Lyon, Bron, France
| |
Collapse
|
10
|
Lückemeyer DD, Prudente AS, de Amorim Ferreira M, da Silva AM, Tonello R, Junior SJM, do Prado CSH, de Castro Júnior CJ, Gomez MV, Calixto JB, Ferreira J. Critical Pronociceptive Role of Family 2 Voltage-Gated Calcium Channels in a Novel Mouse Model of HIV-Associated Sensory Neuropathy. Mol Neurobiol 2023; 60:2954-2968. [PMID: 36754911 DOI: 10.1007/s12035-023-03244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023]
Abstract
Some people living with HIV present painful sensory neuropathy (HIV-SN) that is pharmacoresistant, sex-associated, and a major source of morbidity. Since the specific mechanisms underlying HIV-SN are not well understood, the aim of our study was to characterize a novel model of painful HIV-SN by combining the HIV-1 gp120 protein and the antiretroviral stavudine (d4T) in mice and to investigate the pronociceptive role of the family 2 voltage-gated calcium channel (VGCC) α1 subunit (Cav2.X channels) in such a model. HIV-SN was induced in male and female C57BL/6 mice by administration of gp120 and/or d4T and detected by a battery of behavior tests and by immunohistochemistry. The role of Cav2.X channels was assessed by the treatment with selective blockers and agonists as well as by mRNA detection. Repeated administration with gp120 and/or d4T produced long-lasting touch-evoked painful-like behaviors (starting at 6 days, reaching a maximum on day 13, and lasting up to 28 days after treatment started), with a greater intensity in female mice treated with the combination of gp120 + d4T. Moreover, gp120 + d4T treatment reduced the intraepidermal nerve fibers and well-being of female mice, without altering other behaviors. Mechanistically, gp120 + d4T treatment induced Cav2.1, 2.2, and 2.3 transcriptional increases in the dorsal root ganglion and the Cav2.X agonist-induced nociception. Accordingly, intrathecal selective Cav2.2 blockade presented longer and better efficacy in reversing the hyperalgesia induced by gp120 + d4T treatment compared with Cav2.1 or Cav2.3, but also presented the worst safety (inducing side effects at effective doses). We conclude that the family 2 calcium channels (Cav2.X) exert a critical pronociceptive role in a novel mouse model of HIV-SN.
Collapse
Affiliation(s)
- Debora Denardin Lückemeyer
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Arthur Silveira Prudente
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Marcella de Amorim Ferreira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Ana Merian da Silva
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Raquel Tonello
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sérgio José Macedo Junior
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Centro de Inovação E Ensaios Pré-Clínicos, Florianópolis, SC, Brazil
| | | | | | - Marcus Vinicius Gomez
- Instituto de Educação E Pesquisa da Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | | | - Juliano Ferreira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
11
|
Black CJ, Saab CY, Borton DA. Transient gamma events delineate somatosensory modality in S1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534945. [PMID: 37034800 PMCID: PMC10081264 DOI: 10.1101/2023.03.30.534945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gamma band activity localized to the primary somatosensory cortex (S1) in humans and animals is implicated in the higher order neural processing of painful and tactile stimuli. However, it is unclear if gamma band activity differs between these distinct somatosensory modalities. Here, we coupled a novel behavioral approach with chronic extracellular electrophysiology to investigate differences in S1 gamma band activity elicited by noxious and innocuous hind paw stimulation in transgenic mice. Like prior studies, we found that trial-averaged gamma power in S1 increased following both noxious and innocuous stimuli. However, on individual trials, we noticed that evoked gamma band activity was not a continuous oscillatory signal but a series of transient spectral events. Upon further analysis we found that there was a significantly higher incidence of these gamma band events following noxious stimulation than innocuous stimulation. These findings suggest that somatosensory stimuli may be represented by specific features of gamma band activity at the single trial level, which may provide insight to mechanisms underlying acute pain.
Collapse
|
12
|
Modulating the activity of human nociceptors with a SCN10A promoter-specific viral vector tool. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100120. [PMID: 36816616 PMCID: PMC9932673 DOI: 10.1016/j.ynpai.2023.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Despite the high prevalence of chronic pain as a disease in our society, there is a lack of effective treatment options for patients living with this condition. Gene therapies using recombinant AAVs are a direct method to selectively express genes of interest in target cells with the potential of, in the case of nociceptors, reducing neuronal firing in pain conditions. We designed a recombinant AAV vector expressing cargos whose expression was driven by a portion of the SCN10A (NaV1.8) promoter, which is predominantly active in nociceptors. We validated its specificity for nociceptors in mouse and human dorsal root ganglia and showed that it can drive the expression of functional proteins. Our viral vector and promoter package drove the expression of both excitatory or inhibitory DREADDs in primary human DRG cultures and in whole cell electrophysiology experiments, increased or decreased neuronal firing, respectively. Taken together, we present a novel viral tool that drives expression of cargo specifically in human nociceptors. This will allow for future specific studies of human nociceptor properties as well as pave the way for potential future gene therapies for chronic pain.
Collapse
|
13
|
Finch-Edmondson M, Paton MCB, Honan I, Karlsson P, Stephenson C, Chiu D, Reedman S, Griffin AR, Morgan C, Novak I. Are We Getting It Right? A Scoping Review of Outcomes Reported in Cell Therapy Clinical Studies for Cerebral Palsy. J Clin Med 2022; 11:7319. [PMID: 36555936 PMCID: PMC9786692 DOI: 10.3390/jcm11247319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Cell therapies are an emergent treatment for cerebral palsy (CP) with promising evidence demonstrating efficacy for improving gross motor function. However, families value improvements in a range of domains following intervention and the non-motor symptoms, comorbidities and complications of CP can potentially be targeted by cell therapies. We conducted a scoping review to describe all outcomes that have been reported in cell therapy studies for CP to date, and to examine what instruments were used to capture these. Through a systematic search we identified 54 studies comprising 2066 participants that were treated with a range of cell therapy interventions. We categorized the reported 53 unique outcome instruments and additional descriptive measures into 10 categories and 12 sub-categories. Movement and Posture was the most frequently reported outcome category, followed by Safety, however Quality of Life, and various prevalent comorbidities and complications of CP were infrequently reported. Notably, many outcome instruments used do not have evaluative properties and thus are not suitable for measuring change following intervention. We provide a number of recommendations to ensure that future trials generate high-quality outcome data that is aligned with the priorities of the CP community.
Collapse
Affiliation(s)
- Megan Finch-Edmondson
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Madison C. B. Paton
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Ingrid Honan
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Petra Karlsson
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Candice Stephenson
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Darryl Chiu
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Sarah Reedman
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Alexandra R. Griffin
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Catherine Morgan
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Iona Novak
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
14
|
Serotype-specific transduction of canine joint tissue explants and cultured monolayers by self-complementary adeno-associated viral vectors. Gene Ther 2022; 30:398-404. [PMID: 36261499 DOI: 10.1038/s41434-022-00366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/04/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022]
Abstract
A formal screening of self-complementary adeno-associated virus (scAAV) vector serotypes in canine joint tissues has not been performed to date. Selecting appropriate serotypes is crucial for successful treatment due to their varying levels of tissue tropism. The objective of this study is to identify the most optimal scAAV vector serotype that maximizes transduction efficiencies in canine cell monolayer cultures (chondrocytes, synoviocytes, and mesenchymal stem cells) and tissue explant cultures (cartilage and synovium). Transduction efficiencies of scAAV serotypes 1, 2, 2.5, 3, 4, 5, 6, 8, and 9 were evaluated in each culture type in three different vector concentrations by encoding a green fluorescent protein. It was found that scAAV2 and 2.5 showed the overall highest transduction efficiency among serotypes with dose-response. Since possible immune response against conventional AAV2 was previously reported in dogs, the chimeric scAAV2.5 may be more suitable to use. Evaluation of the safety and efficacy of the scAAV2.5 vector with an appropriate therapeutic gene in vivo is indicated.
Collapse
|
15
|
Mogil JS. The history of pain measurement in humans and animals. FRONTIERS IN PAIN RESEARCH 2022; 3:1031058. [PMID: 36185770 PMCID: PMC9522466 DOI: 10.3389/fpain.2022.1031058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Pain needs to be measured in order to be studied and managed. Pain measurement strategies in both humans and non-human animals have varied widely over the years and continue to evolve. This review describes the historical development of human and animal algesiometry.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Department of Psychology and Anesthesia, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
A 2022 Systematic Review and Meta-Analysis of Enriched Therapeutic Diets and Nutraceuticals in Canine and Feline Osteoarthritis. Int J Mol Sci 2022; 23:ijms231810384. [PMID: 36142319 PMCID: PMC9499673 DOI: 10.3390/ijms231810384] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/04/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
With osteoarthritis being the most common degenerative disease in pet animals, a very broad panel of natural health products is available on the market for its management. The aim of this systematic review and meta-analysis, registered on PROSPERO (CRD42021279368), was to test for the evidence of clinical analgesia efficacy of fortified foods and nutraceuticals administered in dogs and cats affected by osteoarthritis. In four electronic bibliographic databases, 1578 publications were retrieved plus 20 additional publications from internal sources. Fifty-seven articles were included, comprising 72 trials divided into nine different categories of natural health compound. The efficacy assessment, associated to the level of quality of each trial, presented an evident clinical analgesic efficacy for omega-3-enriched diets, omega-3 supplements and cannabidiol (to a lesser degree). Our analyses showed a weak efficacy of collagen and a very marked non-effect of chondroitin-glucosamine nutraceuticals, which leads us to recommend that the latter products should no longer be recommended for pain management in canine and feline osteoarthritis.
Collapse
|
17
|
Lascelles BDX, Brown DC, Conzemius MG, Gill M, Oshinsky ML, Sharkey M. The beneficial role of companion animals in translational pain research. FRONTIERS IN PAIN RESEARCH 2022; 3:1002204. [PMID: 36133153 PMCID: PMC9483146 DOI: 10.3389/fpain.2022.1002204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
The use of spontaneous painful disease in companion pet animals has been highlighted as one of the changes that could be made to help improve translation of basic science to new therapeutics, acting as a bridge between preclinical and clinical studies, with the goal of accelerating the approval of new therapeutics. This review focuses on the utility of companion pet dogs for translational research by reviewing what outcome measures can be measured, and importantly, the relevance of these outcome measures to human translational research. It also details the practical considerations involved in incorporating companion dogs into human therapeutic development.
Collapse
Affiliation(s)
- B. Duncan X. Lascelles
- Translational Research in Pain, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Pain Research and Education Center, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Thurston Arthritis Centre, UNC School of Medicine, Chapel Hill, NC, United States
- Center for Translational Pain Research, Department of Anesthesiology, Duke University, Durham, NC, United States
- Correspondence: B. Duncan X. Lascelles
| | - Dottie C. Brown
- Global Efficacy & Model Development, Elanco Animal Health, Greenfield, IN, United States
| | - Michael G. Conzemius
- Clinical Investigation Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Marie Gill
- National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD, United States
| | - Michael L. Oshinsky
- National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD, United States
| | - Michelle Sharkey
- Center for Veterinary Medicine Food and Drug Administration, Rockville, MD, United States
| |
Collapse
|
18
|
Zaki S, Blaker CL, Little CB. OA foundations - experimental models of osteoarthritis. Osteoarthritis Cartilage 2022; 30:357-380. [PMID: 34536528 DOI: 10.1016/j.joca.2021.03.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is increasingly recognised as a disease of diverse phenotypes with variable clinical presentation, progression, and response to therapeutic intervention. This same diversity is readily apparent in the many animal models of OA. However, model selection, study design, and interpretation of resultant findings, are not routinely done in the context of the target human (or veterinary) patient OA sub-population or phenotype. This review discusses the selection and use of animal models of OA in discovery and therapeutic-development research. Beyond evaluation of the different animal models on offer, this review suggests focussing the approach to OA-animal model selection on study objective(s), alignment of available models with OA-patient sub-types, and the resources available to achieve valid and translatable results. How this approach impacts model selection is discussed and an experimental design checklist for selecting the optimal model(s) is proposed. This approach should act as a guide to new researchers and a reminder to those already in the field, as to issues that need to be considered before embarking on in vivo pre-clinical research. The ultimate purpose of using an OA animal model is to provide the best possible evidence if, how, when and where a molecule, pathway, cell or process is important in clinical disease. By definition this requires both model and study outcomes to align with and be predictive of outcomes in patients. Keeping this at the forefront of research using pre-clinical OA models, will go a long way to improving the quality of evidence and its translational value.
Collapse
Affiliation(s)
- S Zaki
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Australia; Raymond Purves Bone and Joint Research Laboratory, Australia.
| | - C L Blaker
- Raymond Purves Bone and Joint Research Laboratory, Australia; Murray Maxwell Biomechanics Laboratory, The Kolling Institute, University of Sydney Faculty of Medicine and Health, At Royal North Shore Hospital, Australia.
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratory, Australia.
| |
Collapse
|
19
|
Sadler KE, Mogil JS, Stucky CL. Innovations and advances in modelling and measuring pain in animals. Nat Rev Neurosci 2022; 23:70-85. [PMID: 34837072 PMCID: PMC9098196 DOI: 10.1038/s41583-021-00536-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 12/12/2022]
Abstract
Best practices in preclinical algesiometry (pain behaviour testing) have shifted over the past decade as a result of technological advancements, the continued dearth of translational progress and the emphasis that funding institutions and journals have placed on rigour and reproducibility. Here we describe the changing trends in research methods by analysing the methods reported in preclinical pain publications from the past 40 years, with a focus on the last 5 years. We also discuss how the status quo may be hampering translational success. This discussion is centred on four fundamental decisions that apply to every pain behaviour experiment: choice of subject (model organism), choice of assay (pain-inducing injury), laboratory environment and choice of outcome measures. Finally, we discuss how human tissues, which are increasingly accessible, can be used to validate the translatability of targets and mechanisms identified in animal pain models.
Collapse
Affiliation(s)
- Katelyn E Sadler
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jeffrey S Mogil
- Department of Psychology, McGill University, Montreal, QC, Canada
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
20
|
Drevet S, Favier B, Brun E, Gavazzi G, Lardy B. Mouse Models of Osteoarthritis: A Summary of Models and Outcomes Assessment. Comp Med 2022; 72:3-13. [PMID: 34986927 DOI: 10.30802/aalas-cm-21-000043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Osteoarthritis (OA) is a multidimensional health problem and a common chronic disease. It has a substantial impact onpatient quality of life and is a common cause of pain and mobility issues in older adults. The functional limitations, lack of curative treatments, and cost to society all demonstrate the need for translational and clinical research. The use of OA models in mice is important for achieving a better understanding of the disease. Models with clinical relevance are needed to achieve 2 main goals: to assess the impact of the OA disease (pain and function) and to study the efficacy of potential treatments. However, few OA models include practical strategies for functional assessment of the mice. OA signs in mice incorporate complex interrelations between pain and dysfunction. The current review provides a comprehensive compilation of mousemodels of OA and animal evaluations that include static and dynamic clinical assessment of the mice, merging evaluationof pain and function by using automatic and noninvasive techniques. These new techniques allow simultaneous recordingof spontaneous activity from thousands of home cages and also monitor environment conditions. Technologies such as videographyand computational approaches can also be used to improve pain assessment in rodents but these new tools must first be validated experimentally. An example of a new tool is the digital ventilated cage, which is an automated home-cage monitor that records spontaneous activity in the cages.
Collapse
|
21
|
Flesner BK, Torres BT, Hutcheson KD, Rindt H, Zalcman AR, Maitz CA. A Pilot Study of Cancer-Induced Bone Pain Using Validated Owner Questionnaires, Serum N-Telopeptide Concentration, Kinetic Analysis, and PET/CT. Front Vet Sci 2022; 8:637195. [PMID: 34977203 PMCID: PMC8716557 DOI: 10.3389/fvets.2021.637195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer-induced bone pain, despite its frequency and severity, is a poorly understood phenomenon in people and animals. Despite excitement regarding translational osteosarcoma studies, there is a lack of attention toward examining cancer pain in dogs. In this pilot study, we used a multimodal pain assessment methodology to evaluate pain relief after therapeutic intervention in dogs with primary bone cancer. We hypothesized that intervention would cause objective evidence of pain relief. Evaluations of 8 dogs with primary bone cancer included 18F-FDG PET/CT scans, kinetic analysis, validated owner questionnaires (Canine Brief Pain Inventory, canine BPI), and serum N-telopeptide (NTx) concentration. Dogs were routinely staged and had 18F-FDG PET/CT scans prior to treatment with day 0, 7, 14, and 28 canine BPI, serum NTx, orthopedic exam, and kinetic analysis. Dogs treated with zoledronate and radiation underwent day 28 18F-FDG PET scans. All clinical trial work was approved by the University of Missouri IACUC. Four dogs underwent amputation (AMP) for their appendicular bone tumors; four received neoadjuvant zoledronate and hypofractionated radiation therapy (ZOL+RT). Canine BPI revealed significant improvements in pain severity and pain interference scores compared to baseline for all dogs. Positive changes in peak vertical force (+16.7%) and vertical impulse (+29.1%) were noted at day 28 in ZOL+RT dogs. Dogs receiving ZOL+RT had a significant (at least 30%) reduction in serum NTx from baseline compared to amputated dogs (p = 0.029). SUVmax (p = 0.11) and intensity (p = 0.013) values from PET scans decreased while tumor uniformity (p = 0.017) significantly increased in ZOL+RT-treated tumors; gross tumor volume did not change (p = 0.78). Owner questionnaires, kinetic analysis, and 18F-FDG PET/CT scans showed improved pain relief in dogs receiving ZOL+RT. Serum NTx levels likely do not directly measure pain, but rather the degree of systemic osteoclastic activity. Larger, prospective studies are warranted to identify the ideal objective indicator of pain relief; however, use of multiple assessors is presumably best. With improved assessment of pain severity and relief in dogs with cancer, we can better evaluate the efficacy of our interventions. This could directly benefit people with cancer pain, potentially decreasing the amount of subtherapeutic novel drugs entering human clinical trials.
Collapse
Affiliation(s)
- Brian K Flesner
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Bryan T Torres
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Kyle D Hutcheson
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Hansjörg Rindt
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Amy R Zalcman
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Charles A Maitz
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
22
|
Budwany RR, Navalgund YA, Abd-Elsayed A. Translation research in pain medicine. PERIOPERATIVE NEUROSCIENCE 2022:203-213. [DOI: 10.1016/b978-0-323-91003-3.00001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
23
|
Complexity Assessment of Chronic Pain in Elderly Knee Osteoarthritis Based on Neuroimaging Recognition Techniques. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:7344102. [PMID: 34876922 PMCID: PMC8645396 DOI: 10.1155/2021/7344102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/06/2021] [Accepted: 10/30/2021] [Indexed: 12/24/2022]
Abstract
The chronic pain of knee osteoarthritis in the elderly is investigated in detail in this paper, as well as the complexity of chronic pain utilising neuroimaging recognition techniques. Chronic pain in knee osteoarthritis (KOA) has a major effect on patients' quality of life and functional activities; therefore, understanding the causes of KOA pain and the analgesic advantages of different therapies is important. In recent years, neuroimaging techniques have become increasingly important in basic and clinical pain research. Thanks to the application and development of neuroimaging techniques in the study of chronic pain in KOA, researchers have found that chronic pain in KOA contains both injury-receptive and neuropathic pain components. The neuropathic pain mechanism that causes KOA pain is complicated, and it may be produced by peripheral or central sensitization, but it has not gotten enough attention in clinical practice, and there is no agreement on how to treat combination neuropathic pain KOA. As a result, using neuroimaging techniques such as magnetic resonance imaging (MRI), electroencephalography (EEG), magnetoencephalography (MEG), and near-infrared spectroscopy (NIRS), this review examines the changes in brain pathophysiology-related regions caused by KOA pain, compares the latest results in pain assessment and prediction, and clarifies the central brain analgesic mechanistic. The capsule network model is introduced in this paper from the perspective of deep learning network structure to construct an information-complete and reversible image low-level feature bridge using isotropic representation, predict the corresponding capsule features from MRI voxel responses, and then, complete the accurate reconstruction of simple images using inverse transformation. The proposed model improves the structural similarity index by about 10%, improves the reconstruction performance of low-level feature content in simple images by about 10%, and achieves feature interpretation and analysis of low-level visual cortical fMRI voxels by visualising capsule features, according to the experimental results.
Collapse
|
24
|
Testa B, Reid J, Scott ME, Murison PJ, Bell AM. The Short Form of the Glasgow Composite Measure Pain Scale in Post-operative Analgesia Studies in Dogs: A Scoping Review. Front Vet Sci 2021; 8:751949. [PMID: 34660773 PMCID: PMC8515184 DOI: 10.3389/fvets.2021.751949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022] Open
Abstract
The measurement and treatment of acute pain in animals is essential from a welfare perspective. Valid pain-related outcome measures are also crucial for ensuring reliable and translatable findings in veterinary clinical trials. The short form of the Glasgow Composite Measure Pain Scale (CMPS-SF) is a multi-item behavioral pain assessment tool, developed and validated using a psychometric approach, to measure acute pain in the dog. Here we conduct a scoping review to identify prospective research studies that have used the CMPS-SF. We aim to describe the contexts in which it has been used, verify the correct use of the scale, and examine whether these studies are well-designed and adequately powered. We identify 114 eligible studies, indicating widespread use of the scale. We also document a limited number of modifications to the scale and intervention level, which would alter its validity. A variety of methods, with no consensus, were used to analyse data derived from the scale. However, we also find many deficiencies in reporting of experimental design in terms of the observers used, the underlying hypothesis of the research, the statement of primary outcome, and the use of a priori sample size calculations. These deficiencies may predispose to both type I and type II statistical errors in the small animal pain literature. We recommend more robust use of the scale and derived data to ensure success of future studies using the tool ensuring reliable and translatable outcomes.
Collapse
Affiliation(s)
- Barbara Testa
- School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Jacqueline Reid
- School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.,NewMetrica Research, Glasgow, United Kingdom
| | - Marian E Scott
- School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
| | - Pamela J Murison
- School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Andrew M Bell
- School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
25
|
Hudson SB, Virgin EE, Kepas ME, French SS. Energy expenditure across immune challenge severities in a lizard: consequences for innate immunity, locomotor performance and oxidative status. J Exp Biol 2021; 224:271845. [PMID: 34402514 DOI: 10.1242/jeb.242608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
Reptiles, like other vertebrates, rely on immunity to defend themselves from infection. The energetic cost of an immune response is liable to scale with infection severity, prompting constraints on other self-maintenance traits if immune prioritization exceeds energy budget. In this study, adult male side-blotched lizards (Uta stansburiana) were injected with saline (control) or high (20 µg g-1 body mass) or low (10 µg g-1 body mass) concentrations of lipopolysaccharide (LPS) to simulate bacterial infections of discrete severities. The costs and consequences of the immune response were assessed through comparisons of change in resting metabolic rate (RMR), energy metabolites (glucose, glycerol, triglycerides), innate immunity (bactericidal ability), sprint speed and oxidative status (antioxidant capacity, reactive oxygen metabolites). High-LPS lizards had the lowest glucose levels and greatest sprint reductions, while their RMR and bactericidal ability were similar to those of control lizards. Low-LPS lizards had elevated RMR and bactericidal ability, but glucose levels and sprint speed changes between those of high-LPS and control lizards. Levels of glycerol, triglycerides, reactive oxygen metabolites and antioxidant capacity did not differ by treatment. Taken together, energy expenditure for the immune response varies in a non-linear fashion with challenge severity, posing consequences for performance and self-maintenance processes in a reptile.
Collapse
Affiliation(s)
- Spencer B Hudson
- Department of Biology, Utah State University, Logan, UT 84322-5205, USA.,Ecology Center, Utah State University, Logan, UT 84322-5205, USA
| | - Emily E Virgin
- Department of Biology, Utah State University, Logan, UT 84322-5205, USA.,Ecology Center, Utah State University, Logan, UT 84322-5205, USA
| | - Megen E Kepas
- Department of Biology, Utah State University, Logan, UT 84322-5205, USA.,Ecology Center, Utah State University, Logan, UT 84322-5205, USA
| | - Susannah S French
- Department of Biology, Utah State University, Logan, UT 84322-5205, USA.,Ecology Center, Utah State University, Logan, UT 84322-5205, USA
| |
Collapse
|
26
|
Lai YHE, Lascelles BDX, Nolan MW. Behavioral phenotyping of cancer pain in domesticated cats with naturally occurring squamous cell carcinoma of the tongue: initial validation studies provide evidence for regional and widespread algoplasticity. PeerJ 2021; 9:e11984. [PMID: 34458024 PMCID: PMC8375511 DOI: 10.7717/peerj.11984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022] Open
Abstract
Feline oral squamous cell carcinoma (FOSCC) is a common and naturally occurring condition that recapitulates many features of human head and neck cancer (HNC). In both species, there is need for improved strategies to reduce pain caused by HNC and its treatment. Research to benefit both species could be conducted using pet cats as a comparative model, but this prospect is limited by lack of validated methods for quantifying FOSCC-associated pain. A prospective non-randomized pilot study was performed for initial validation of: (1) a pet owner administered quality of life questionnaire and visual assessment scoring tool (FORQ/CLIENT); (2) a clinician assessment questionnaire (UFEPS/VET); (3) electronic von Frey testing [EVF]; and (4) Cochet-Bonnet (COBO) aesthesiometry. To assess intra-rater reliability, discriminatory ability, and responsiveness of each assay, 6 cats with sublingual SCC and 16 healthy control cats were enrolled. The intra-rater reliability was moderate-to-good for the clinical metrology instruments and EVF (intraclass correlation coefficient [ICC] ≥ 0.68), but poor for COBO (ICC = 0.21). FORQ/CLIENT scores were higher (worse quality of life) in FOSCC cats vs healthy controls. The internal reliability of FORQ/CLIENT scoring was high (Cronbach α = 0.92); sensitivity and specificity were excellent (100% when using cut-offs determined using receiver operating characteristic [ROC] curves). For the FORQ/CLIENT, there was strong and inverse correlation between scores from the questions and visual assessment (r = − 0.77, r2 = 0.6, P < 0.0001). For the UFEPS/VET, Cronbach’s α was 0.74 (high reliability). Sensitivity and specificity were 100% and 94%, respectively, when using a cut-off score (3.5) based on ROC curves (Youden index of 0.94). Total UFEPS/VET scores were positively correlated with FORQ/CLIENT scores (r2 = 0.72, P < 0.0001). Sensitivity of EVF and COBO ranged from 83 to 100% and specificity ranged from 56 to 94%. Cats with cancer were more sensitive around the face (lower response thresholds) and on the cornea (longer filament lengths) than control animals (P < 0.03). Reduced pressure response thresholds were also observed at a distant site (P = 0.0002) in cancer cats. After giving buprenorphine, EVF pressure response thresholds increased (P = 0.04) near the mandible of cats with OSCC; the length of filament required to elicit a response in the COBO assay also improved (shortened; P = 0.017). Based on these preliminary assessments, the assays described herein had reasonable inter-rater reliability, and they were able to both discriminate between cats with and without oral cancer, and respond in a predictable manner to analgesic therapy. In cats with tongue cancer, there was evidence for regional peripheral sensitization, and widespread somatosensory sensitization. These results provide a basis for multi-dimensional assessments of pain and sensitivity in cats with oral SCC.
Collapse
Affiliation(s)
- Yen-Hao Erik Lai
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America.,Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - B Duncan X Lascelles
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America.,Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America.,Comparative Pain Research and Education Center, North Carolina State University, Raleigh, NC, United States of America
| | - Michael W Nolan
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America.,Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America.,Comparative Pain Research and Education Center, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
27
|
Iadarola MJ, Brown DC, Nahama A, Sapio MR, Mannes AJ. Pain Treatment in the Companion Canine Model to Validate Rodent Results and Incentivize the Transition to Human Clinical Trials. Front Pharmacol 2021; 12:705743. [PMID: 34421597 PMCID: PMC8375595 DOI: 10.3389/fphar.2021.705743] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
One of the biggest challenges for analgesic drug development is how to decide if a potential analgesic candidate will work in humans. What preclinical data are the most convincing, incentivizing and most predictive of success? Such a predicament is not unique to analgesics, and the pain field has certain advantages over drug development efforts in areas like neuropsychiatry where the etiological origins are either unknown or difficult to ascertain. For pain, the origin of the problem frequently is known, and the causative peripheral tissue insult might be observable. The main conundrum centers around evaluation of translational cell- and rodent-based results. While cell and rodent models are undeniably important first steps for screening, probing mechanism of action, and understanding factors of adsorption, distribution metabolism and excretion, two questions arise from such studies. First, are they reliable indicators of analgesic performance of a candidate drug in human acute and chronic pain? Second, what additional model systems might be capable of increasing translational confidence? We address this second question by assessing, primarily, the companion canine model, which can provide particularly strong predictive information for candidate analgesic agents in humans. This statement is mainly derived from our studies with resiniferatoxin (RTX) a potent TRPV1 agonist but also from protein therapeutics using a conjugate of Substance P and saporin. Our experience, to date, is that rodent models might be very well suited for acute pain translation, but companion canine models, and other large animal studies, can augment initial discovery research using rodent models for neuropathic or chronic pain. The larger animal models also provide strong translational predictive capacity for analgesic performance in humans, better predict dosing parameters for human trials and provide insight into behavior changes (bladder, bowel, mood, etc.) that are not readily assessed in laboratory animals. They are, however, not without problems that can be encountered with any experimental drug treatment or clinical trial. It also is important to recognize that pain treatment is a major veterinary concern and is an intrinsically worthwhile endeavor for animals as well as humans.
Collapse
Affiliation(s)
- Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, United States
| | | | | | - Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, United States
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, United States
| |
Collapse
|
28
|
Udell ME, Ni J, Garcia Martinez A, Mulligan MK, Redei EE, Chen H. TailTimer: A device for automating data collection in the rodent tail immersion assay. PLoS One 2021; 16:e0256264. [PMID: 34411163 PMCID: PMC8375991 DOI: 10.1371/journal.pone.0256264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
The tail immersion assay is a widely used method for measuring acute thermal pain in a way which is quantifiable and reproducible. It is non-invasive and measures response to a stimulus that may be encountered by an animal in its natural environment. However, quantification of tail withdrawal latency relies on manual timing of tail flick using a stopwatch, and precise temperatures of the water at the time of measurement are most often not recorded. These two factors greatly reduce the reproducibility of tail immersion assay data and likely contribute to some of the discrepancies present among relevant literature. We designed a device, TailTimer, which uses a Raspberry Pi single-board computer, a digital temperature sensor, and two electrical wires, to automatically record tail withdrawal latency and water temperature. We programmed TailTimer to continuously display and record water temperature and to only permit the assay to be conducted when the water is within ± 0.25°C of the target temperature. Our software also records the identification of the animals using a radio frequency identification (RFID) system. We further adapted the RFID system to recognize several specific keys as user interface commands, allowing TailTimer to be operated via RFID fobs for increased usability. Data recorded using the TailTimer device showed a negative linear relationship between tail withdrawal latency and water temperature when tested between 47-50°C. We also observed a previously unreported, yet profound, effect of water mixing speed on latency. In one experiment using TailTimer, we observed significantly longer latencies following administration of oral oxycodone versus a distilled water control when measured after 15 mins or 1 h, but not after 4 h. TailTimer also detected significant strain differences in baseline latency. These findings valorize TailTimer in its sensitivity and reliability for measuring thermal pain thresholds.
Collapse
Affiliation(s)
- Mallory E. Udell
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Jie Ni
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Angel Garcia Martinez
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Megan K. Mulligan
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, and Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States of America
- * E-mail:
| |
Collapse
|
29
|
Gregus AM, Levine IS, Eddinger KA, Yaksh TL, Buczynski MW. Sex differences in neuroimmune and glial mechanisms of pain. Pain 2021; 162:2186-2200. [PMID: 34256379 PMCID: PMC8277970 DOI: 10.1097/j.pain.0000000000002215] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT Pain is the primary motivation for seeking medical care. Although pain may subside as inflammation resolves or an injury heals, it is increasingly evident that persistency of the pain state can occur with significant regularity. Chronic pain requires aggressive management to minimize its physiological consequences and diminish its impact on quality of life. Although opioids commonly are prescribed for intractable pain, concerns regarding reduced efficacy, as well as risks of tolerance and dependence, misuse, diversion, and overdose mortality rates limit their utility. Advances in development of nonopioid interventions hinge on our appreciation of underlying mechanisms of pain hypersensitivity. For instance, the contributory role of immunity and the associated presence of autoimmune syndromes has become of particular interest. Males and females exhibit fundamental differences in innate and adaptive immune responses, some of which are present throughout life, whereas others manifest with reproductive maturation. In general, the incidence of chronic pain conditions, particularly those with likely autoimmune covariates, is significantly higher in women. Accordingly, evidence is now accruing in support of neuroimmune interactions driving sex differences in the development and maintenance of pain hypersensitivity and chronicity. This review highlights known sexual dimorphisms of neuroimmune signaling in pain states modeled in rodents, which may yield potential high-value sex-specific targets to inform future analgesic drug discovery efforts.
Collapse
Affiliation(s)
- Ann M. Gregus
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Ian S. Levine
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Kelly A. Eddinger
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
| | - Tony L. Yaksh
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
- Dept. of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0601
| | - Matthew W. Buczynski
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| |
Collapse
|
30
|
Ketogenic diets and the nervous system: a scoping review of neurological outcomes from nutritional ketosis in animal studies. Nutr Res Rev 2021; 35:268-281. [PMID: 34180385 DOI: 10.1017/s0954422421000214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Ketogenic diets have reported efficacy for neurological dysfunctions; however, there are limited published human clinical trials elucidating the mechanisms by which nutritional ketosis produces therapeutic effects. The purpose of this present study was to investigate animal models that report variations in nervous system function by changing from a standard animal diet to a ketogenic diet, synthesise these into broad themes, and compare these with mechanisms reported as targets in pain neuroscience to inform human chronic pain trials. METHODS An electronic search of seven databases was conducted in July 2020. Two independent reviewers screened studies for eligibility, and descriptive outcomes relating to nervous system function were extracted for a thematic analysis, then synthesised into broad themes. RESULTS In total, 170 studies from eighteen different disease models were identified and grouped into fourteen broad themes: alterations in cellular energetics and metabolism, biochemical, cortical excitability, epigenetic regulation, mitochondrial function, neuroinflammation, neuroplasticity, neuroprotection, neurotransmitter function, nociception, redox balance, signalling pathways, synaptic transmission and vascular supply. DISCUSSION The mechanisms presented centred around the reduction of inflammation and oxidative stress as well as a reduction in nervous system excitability. Given the multiple potential mechanisms presented, it is likely that many of these are involved synergistically and undergo adaptive processes within the human body, and controlled animal models that limit the investigation to a particular pathway in isolation may reach differing conclusions. Attention is required when translating this information to human chronic pain populations owing to the limitations outlined from the animal research.
Collapse
|
31
|
Alves JC, Dos Santos AMMP, Jorge P, Lavrador CFTVB, Carreira LM. Effect of a single intra-articular high molecular weight hyaluronan in a naturally occurring canine osteoarthritis model: a randomized controlled trial. J Orthop Surg Res 2021; 16:290. [PMID: 33941219 PMCID: PMC8091761 DOI: 10.1186/s13018-021-02423-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a complex joint disease and chronic pain source, affecting a patient's quality of life and posing a financial burden. As the dog is considered a nearly ideal species for translation research of human OA and the most used model for research, exploring spontaneous dog OA under the One Health/One Medicine concept can improve both humans and dogs' health and well-being. METHODS In a clinical treatment experiment, forty (N=40) joints were selected and randomly assigned to a control group (CG), which received 0.9% NaCl or a treatment (HG), which received Hylan G-F 20. Evaluations were performed on treatment day (T0), 8, 15, 30, 90, and 180 days post-treatment. They consisted of four different Clinical Metrology Instruments (CMI), evaluation of weight distribution, joint range of motion, thigh girth, radiographic and digital thermography imaging, synovial fluid interleukin-1 (IL-1), and C-reactive protein concentrations. Results were compared with repeated measures ANOVA, with a Huynh-Feldt correction, Paired samples T-test, or Wilcoxon signed-ranks test, with p<0.05. RESULTS Patients had a mean age of 6.5±2.4 years and a bodyweight of 26.6±5.2kg, and joints graded as mild (n=28, 70%), moderate (n=6, 15%), and severe OA (n=6, 15%). No differences were found between groups at T0. Symmetry index and deviation showed significant improvements in HG from 30 days (p<0.01) up to 180 days (p=0.01). Several CMI scores, particularly pain scores, improved from 90 to 180 days. Radiographic signs progressed in both groups. In both groups, increasing body weight and age corresponded to worse clinical presentation. IA hyaluronan administration produced increased lameness in six cases, which resolved spontaneously. CONCLUSIONS This study characterizes the response to treatment with Hylan G-F 20, which can produce significant functional and pain level improvements in patients with OA, even those with factors related to worse response to treatment.
Collapse
Affiliation(s)
- J C Alves
- Divisão de Medicina Veterinária, Guarda Nacional Republicana (GNR), Rua Presidente Arriaga, 9, 1200-771, Lisbon, Portugal.
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, p. 94, 7006-554, Évora, Portugal.
| | | | - Patrícia Jorge
- Divisão de Medicina Veterinária, Guarda Nacional Republicana (GNR), Rua Presidente Arriaga, 9, 1200-771, Lisbon, Portugal
| | - Catarina Falcão Trigoso Vieira Branco Lavrador
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, p. 94, 7006-554, Évora, Portugal
| | - L Miguel Carreira
- Faculty of Veterinary Medicine, University of Lisbon (FMV/ULisboa), Lisbon, Portugal
- Interdisciplinary Centre for Research in Animal Health (CIISA), University of Lisbon (FMV/ULisboa), Lisbon, Portugal
- Anjos of Assis Veterinary Medicine Centre (CMVAA), Barreiro, Portugal
| |
Collapse
|
32
|
Zhang H, Lecker I, Collymore C, Dokova A, Pham MC, Rosen SF, Crawhall-Duk H, Zain M, Valencia M, Filippini HF, Li J, D'Souza AJ, Cho C, Michailidis V, Whissell PD, Patel I, Steenland HW, Virginia Lee WJ, Moayedi M, Sterley TL, Bains JS, Stratton JA, Matyas JR, Biernaskie J, Dubins D, Vukobradovic I, Bezginov A, Flenniken AM, Martin LJ, Mogil JS, Bonin RP. Cage-lid hanging behavior as a translationally relevant measure of pain in mice. Pain 2021; 162:1416-1425. [PMID: 33230005 PMCID: PMC8054539 DOI: 10.1097/j.pain.0000000000002127] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022]
Abstract
ABSTRACT The development of new analgesic drugs has been hampered by the inability to translate preclinical findings to humans. This failure is due in part to the weak connection between commonly used pain outcome measures in rodents and the clinical symptoms of chronic pain. Most rodent studies rely on the use of experimenter-evoked measures of pain and assess behavior under ethologically unnatural conditions, which limits the translational potential of preclinical research. Here, we addressed this problem by conducting an unbiased, prospective study of behavioral changes in mice within a natural homecage environment using conventional preclinical pain assays. Unexpectedly, we observed that cage-lid hanging, a species-specific elective behavior, was the only homecage behavior reliably impacted by pain assays. Noxious stimuli reduced hanging behavior in an intensity-dependent manner, and the reduction in hanging could be restored by analgesics. Finally, we developed an automated approach to assess hanging behavior. Collectively, our results indicate that the depression of hanging behavior is a novel, ethologically valid, and translationally relevant pain outcome measure in mice that could facilitate the study of pain and analgesic development.
Collapse
Affiliation(s)
- Hantao Zhang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Irene Lecker
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Chereen Collymore
- Division of Comparative Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Animal Care and Veterinary Services, University of Ottawa, Ottawa, ON, Canada
| | - Anastassia Dokova
- Departments of Psychology and Anesthesia, McGill University, Montreal, QC, Canada
| | | | - Sarah F. Rosen
- Departments of Psychology and Anesthesia, McGill University, Montreal, QC, Canada
| | - Hayley Crawhall-Duk
- Departments of Psychology and Anesthesia, McGill University, Montreal, QC, Canada
| | - Maham Zain
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Megan Valencia
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | | - Jerry Li
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Abigail J. D'Souza
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- The Centre for Phenogenomics, Toronto, ON, Canada
| | - Chulmin Cho
- Department of Psychology, University of Toronto at Mississauga, Mississauga, ON, Canada
| | - Vassilia Michailidis
- Department of Psychology, University of Toronto at Mississauga, Mississauga, ON, Canada
| | - Paul D. Whissell
- Cell and Systems Biology, University of Toronto Toronto, ON, Canada
| | - Ingita Patel
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | | - Wai-Jane Virginia Lee
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Massieh Moayedi
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Toni-Lee Sterley
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jaideep S. Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - John R. Matyas
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - David Dubins
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | | | | | | - Loren J. Martin
- Department of Psychology, University of Toronto at Mississauga, Mississauga, ON, Canada
- Cell and Systems Biology, University of Toronto Toronto, ON, Canada
| | - Jeffrey S. Mogil
- Departments of Psychology and Anesthesia, McGill University, Montreal, QC, Canada
| | - Robert P. Bonin
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- Cell and Systems Biology, University of Toronto Toronto, ON, Canada
- Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Hudson SB, Virgin EE, Brodie ED, French SS. Recovery from discrete wound severities in side-blotched lizards (Uta stansburiana): implications for energy budget, locomotor performance, and oxidative stress. J Comp Physiol B 2021; 191:531-543. [PMID: 33582858 DOI: 10.1007/s00360-021-01347-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 12/22/2020] [Accepted: 01/18/2021] [Indexed: 01/21/2023]
Abstract
Wounding events (predation attempts, competitive combat) result in injuries and/or infections that induce integrated immune responses for the recovery process. Despite the survival benefits of immunity in this context, the costs incurred may require investment to be diverted from traits contributing to immediate and/or future survival, such as locomotor performance and oxidative status. Yet, whether trait constraints manifest likely depends on wound severity and the implications for energy budget. For this study, food intake, body mass, sprint speed, and oxidative indices (reactive oxygen metabolites, antioxidant capacity) were monitored in male side-blotched lizards (Uta stansburiana) healing from cutaneous wounds of discrete sizes (control, small, large). Results indicate that larger wounds induced faster healing, reduced food consumption, and led to greater oxidative stress over time. Granted wounding did not differentially affect body mass or sprint speed overall, small-wounded lizards with greater wound area healed had faster sprint speeds while large-wounded lizards with greater wound area healed had slower sprint speeds. During recovery from either wound severity, however, healing and sprint performance did not correspond with food consumption, body mass loss, nor oxidative status. These findings provide support that energy budget, locomotor performance, and oxidative status of a reptile are linked to wound recovery to an extent, albeit dependent on wound severity.
Collapse
Affiliation(s)
- Spencer B Hudson
- Department of Biology, Utah State University, Logan, UT, 84322-5205, USA. .,Ecology Center, Utah State University, Logan, UT, 84322‑5205, USA.
| | - Emily E Virgin
- Department of Biology, Utah State University, Logan, UT, 84322-5205, USA.,Ecology Center, Utah State University, Logan, UT, 84322‑5205, USA
| | - Edmund D Brodie
- Department of Biology, Utah State University, Logan, UT, 84322-5205, USA
| | - Susannah S French
- Department of Biology, Utah State University, Logan, UT, 84322-5205, USA.,Ecology Center, Utah State University, Logan, UT, 84322‑5205, USA
| |
Collapse
|
34
|
Cho C, Deol HK, Martin LJ. Bridging the Translational Divide in Pain Research: Biological, Psychological and Social Considerations. Front Pharmacol 2021; 12:603186. [PMID: 33935700 PMCID: PMC8082136 DOI: 10.3389/fphar.2021.603186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
A gap exists between translating basic science research into effective pain therapies in humans. While preclinical pain research has primarily used animal models to understand biological processes, a lesser focus has been toward using animal models to fully consider other components of the pain experience, such as psychological and social influences. Herein, we provide an overview of translational studies within pain research by breaking them down into purely biological, psychological and social influences using a framework derived from the biopsychosocial model. We draw from a wide landscape of studies to illustrate that the pain experience is highly intricate, and every attempt must be made to address its multiple components and interactors to aid in fully understanding its complexity. We highlight our work where we have developed animal models to assess the cognitive and social effects on pain modulation while conducting parallel experiments in people that provide proof-of-importance for human pain modulation. In some instances, human pain research has sparked the development of novel animal models, with these animal models used to better understand the complexity of phenomena considered to be uniquely human such as placebo responses and empathy.
Collapse
Affiliation(s)
- Chulmin Cho
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Harashdeep K Deol
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Loren J Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
35
|
Serum artemin is not correlated with sensitivity within dogs with naturally occurring osteoarthritis pain. Sci Rep 2021; 11:6682. [PMID: 33758254 PMCID: PMC7988108 DOI: 10.1038/s41598-021-85976-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 03/03/2021] [Indexed: 11/14/2022] Open
Abstract
Osteoarthritis (OA) pain is associated with peripheral and central sensitization in humans and results in widespread increased sensitivity across the body. Sensitization contributes to the OA-associated pain (OAP) state. We recently identified increased levels of an endogenous neurotrophic factor, artemin (ARTN), in dogs with OAP compared to healthy pain-free controls. Circulating ARTN released from damaged tissues in OA, may play a central role in widespread sensitivity and pain. However, the relationship between ARTN and somatosensory sensitivity remains unknown. The study aimed to assess the relationship between serum ARTN concentrations and measures of sensitivity in dogs with OAP using quantitative sensory testing. We hypothesized that there would be a positive association between circulating ARTN and increased sensitivity to mechanical and thermal stimuli in dogs with OAP. We used linear and logistic regression models to assess the relationship between ARTN, sensitization, and pain within a cohort of 43 dogs with spontaneous OAP. Serum ARTN was not associated with the degree of sensitization within dogs with OAP. Further, across dogs with varying OAP severity, we did not find any association between ARTN, and clinical measures of joint pain and disability. Although a relationship between ARTN and joint pain was not ruled out.
Collapse
|
36
|
Wangzhou A, Paige C, Neerukonda SV, Naik DK, Kume M, David ET, Dussor G, Ray PR, Price TJ. A ligand-receptor interactome platform for discovery of pain mechanisms and therapeutic targets. Sci Signal 2021; 14:14/674/eabe1648. [PMID: 33727337 DOI: 10.1126/scisignal.abe1648] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the peripheral nervous system, ligand-receptor interactions between cells and neurons shape sensory experience, including pain. We set out to identify the potential interactions between sensory neurons and peripheral cell types implicated in disease-associated pain. Using mouse and human RNA sequencing datasets and computational analysis, we created interactome maps between dorsal root ganglion (DRG) sensory neurons and an array of normal cell types, as well as colitis-associated glial cells, rheumatoid arthritis-associated synovial macrophages, and pancreatic tumor tissue. These maps revealed a common correlation between the abundance of heparin-binding EGF-like growth factor (HBEGF) in peripheral cells with that of its receptor EGFR (a member of the ErbB family of receptors) in DRG neurons. Subsequently, we confirmed that increased abundance of HBEGF enhanced nociception in mice, likely acting on DRG neurons through ErbB family receptors. Collectively, these interactomes highlight ligand-receptor interactions that may lead to treatments for disease-associated pain and, furthermore, reflect the complexity of cell-to-neuron signaling in chronic pain states.
Collapse
Affiliation(s)
- Andi Wangzhou
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Candler Paige
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Sanjay V Neerukonda
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Dhananjay K Naik
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Moeno Kume
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Eric T David
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Pradipta R Ray
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA.
| | - Theodore J Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA.
| |
Collapse
|
37
|
Midavaine É, Côté J, Marchand S, Sarret P. Glial and neuroimmune cell choreography in sexually dimorphic pain signaling. Neurosci Biobehav Rev 2021; 125:168-192. [PMID: 33582232 DOI: 10.1016/j.neubiorev.2021.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Chronic pain is a major global health issue that affects all populations regardless of sex, age, ethnicity/race, or country of origin, leading to persistent physical and emotional distress and to the loss of patients' autonomy and quality of life. Despite tremendous efforts in the elucidation of the mechanisms contributing to the pathogenesis of chronic pain, the identification of new potential pain targets, and the development of novel analgesics, the pharmacological treatment options available for pain management remain limited, and most novel pain medications have failed to achieve advanced clinical development, leaving many patients with unbearable and undermanaged pain. Sex-specific susceptibility to chronic pain conditions as well as sex differences in pain sensitivity, pain tolerance and analgesic efficacy are increasingly recognized in the literature and have thus prompted scientists to seek mechanistic explanations. Hence, recent findings have highlighted that the signaling mechanisms underlying pain hypersensitivity are sexually dimorphic, which sheds light on the importance of conducting preclinical and clinical pain research on both sexes and of developing sex-specific pain medications. This review thus focuses on the clinical and preclinical evidence supporting the existence of sex differences in pain neurobiology. Attention is drawn to the sexually dimorphic role of glial and immune cells, which are both recognized as key players in neuroglial maladaptive plasticity at the origin of the transition from acute pain to chronic pathological pain. Growing evidence notably attributes to microglial cells a pivotal role in the sexually dimorphic pain phenotype and in the sexually dimorphic analgesic efficacy of opioids. This review also summarizes the recent advances in understanding the pathobiology underpinning the development of pain hypersensitivity in both males and females in different types of pain conditions, with particular emphasis on the mechanistic signaling pathways driving sexually dimorphic pain responses.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| | - Jérôme Côté
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Serge Marchand
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| |
Collapse
|
38
|
Woods HJ, Li MF, Patel UA, Lascelles BDX, Samson DR, Gruen ME. A functional linear modeling approach to sleep-wake cycles in dogs. Sci Rep 2020; 10:22233. [PMID: 33335259 PMCID: PMC7747556 DOI: 10.1038/s41598-020-79274-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/07/2020] [Indexed: 11/09/2022] Open
Abstract
The study of companion (pet) dogs is an area of great translational potential, as they share a risk for many conditions that afflict humans. Among these are conditions that affect sleep, including chronic pain and cognitive dysfunction. Significant advancements have occurred in the ability to study sleep in dogs, including development of non-invasive polysomnography; however, basic understanding of dog sleep patterns remains poorly characterized. The purpose of this study was to establish baseline sleep-wake cycle and activity patterns using actigraphy and functional linear modeling (FLM), for healthy, adult companion dogs. Forty-two dogs were enrolled and wore activity monitors for 14 days. FLM demonstrated a bimodal pattern of activity with significant effects of sex, body mass, and age; the effect of age was particularly evident during the times of peak activity. This study demonstrated that FLM can be used to describe normal sleep-wake cycles of healthy adult dogs and the effects of physiologic traits on these patterns of activity. This foundation makes it possible to characterize deviations from normal patterns, including those associated with chronic pain and cognitive dysfunction syndrome. This can improve detection of these conditions in dogs, benefitting them and their potential as models for human disease.
Collapse
Affiliation(s)
- Hope J Woods
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Ming Fei Li
- Department of Anthropology, University of Toronto, Toronto, ON, Canada
| | - Ujas A Patel
- Department of Anthropology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - B Duncan X Lascelles
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Translational Research in Pain (TRiP) Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Pain Research and Education Centre, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27612, USA.,Thurston Arthritis Centre, UNC School of Medicine, Chapel Hill, NC, USA.,Department of Anaesthesiology, Center for Translational Pain Research, Duke University, Durham, NC, USA
| | - David R Samson
- Department of Anthropology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Margaret E Gruen
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA. .,Comparative Pain Research and Education Centre, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA. .,Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27612, USA.
| |
Collapse
|
39
|
Abboud C, Duveau A, Bouali-Benazzouz R, Massé K, Mattar J, Brochoire L, Fossat P, Boué-Grabot E, Hleihel W, Landry M. Animal models of pain: Diversity and benefits. J Neurosci Methods 2020; 348:108997. [PMID: 33188801 DOI: 10.1016/j.jneumeth.2020.108997] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/15/2022]
Abstract
Chronic pain is a maladaptive neurological disease that remains a major health problem. A deepening of our knowledge on mechanisms that cause pain is a prerequisite to developing novel treatments. A large variety of animal models of pain has been developed that recapitulate the diverse symptoms of different pain pathologies. These models reproduce different pain phenotypes and remain necessary to examine the multidimensional aspects of pain and understand the cellular and molecular basis underlying pain conditions. In this review, we propose an overview of animal models, from simple organisms to rodents and non-human primates and the specific traits of pain pathologies they model. We present the main behavioral tests for assessing pain and investing the underpinning mechanisms of chronic pathological pain. The validity of animal models is analysed based on their ability to mimic human clinical diseases and to predict treatment outcomes. Refine characterization of pathological phenotypes also requires to consider pain globally using specific procedures dedicated to study emotional comorbidities of pain. We discuss the limitations of pain models when research findings fail to be translated from animal models to human clinics. But we also point to some recent successes in analgesic drug development that highlight strategies for improving the predictive validity of animal models of pain. Finally, we emphasize the importance of using assortments of preclinical pain models to identify pain subtype mechanisms, and to foster the development of better analgesics.
Collapse
Affiliation(s)
- Cynthia Abboud
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France; Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France; Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Alexia Duveau
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Rabia Bouali-Benazzouz
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Karine Massé
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Joseph Mattar
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Louison Brochoire
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Pascal Fossat
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Eric Boué-Grabot
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Walid Hleihel
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Lebanon; Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Marc Landry
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
40
|
Robertson-Plouch C, Stille JR, Liu P, Smith C, Brown D, Warner M, Hu L, Fisher MJ. A randomized clinical efficacy study targeting mPGES1 or EP4 in dogs with spontaneous osteoarthritis. Sci Transl Med 2020; 11:11/516/eaaw9993. [PMID: 31666405 DOI: 10.1126/scitranslmed.aaw9993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022]
Abstract
Canine studies of spontaneous osteoarthritis (OA) pain add valuable data supporting drug treatment mechanisms that may translate to humans. A multicenter, randomized, double-blind, placebo- and active-controlled study was conducted in client-owned dogs with moderate OA pain to evaluate efficacy of LYA, an inhibitor of microsomal prostaglandin E synthase-1 (mPGES1), an EP4 antagonist (LYB), and carprofen, versus placebo. Of 255 dogs screened, 163 were randomized (placebo/LYA/LYB/carprofen: n = 43/39/42/39) and 158 completed treatment. Efficacy versus placebo was assessed using Bayesian mixed-effect model for repeated measure analyses of the Canine Brief Pain Inventory (CBPI) pain interference score (PIS; primary endpoint), pain severity score, and overall impression, as well as the Liverpool Osteoarthritis in Dogs (LOAD) mobility score. The posterior probability that the difference to placebo was <0 at week 2 was 80% for LYA and 54% for LYB for CBPI PIS (both <95% predefined threshold). For secondary endpoints, the posterior probability that the difference to placebo was <0 at week 2 ranged from 89 to 96% for LYA and from 56 to 89% for LYB. The posterior probabilities comparing carprofen to placebo groups were ≥90% for all efficacy endpoints. The proportion of dogs with one or more adverse event was not significantly different from placebo (32.6%) for LYA (35.9%) or carprofen (25.6%), but the rate for LYB (59.5%) was higher versus placebo (P = 0.017). LYA treatment demonstrated consistent improvement in all efficacy measures, suggesting that inhibition of mPGES1 may be an effective treatment for chronic pain associated with OA.
Collapse
Affiliation(s)
| | - John R Stille
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | - Peng Liu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Claire Smith
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK
| | - Dorothy Brown
- Elanco, Eli Lilly and Company, Indianapolis, IN 46140, USA.,School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Margaret Warner
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Leijun Hu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Matthew J Fisher
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| |
Collapse
|
41
|
Black CJ, Allawala AB, Bloye K, Vanent KN, Edhi MM, Saab CY, Borton DA. Automated and rapid self-report of nociception in transgenic mice. Sci Rep 2020; 10:13215. [PMID: 32764714 PMCID: PMC7413385 DOI: 10.1038/s41598-020-70028-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/20/2020] [Indexed: 11/10/2022] Open
Abstract
There are currently no rapid, operant pain behaviors in rodents that use a self-report to directly engage higher-order brain circuitry. We have developed a pain detection assay consisting of a lick behavior in response to optogenetic activation of predominantly nociceptive peripheral afferent nerve fibers in head-restrained transgenic mice expressing ChR2 in TRPV1 containing neurons. TRPV1-ChR2-EYFP mice (n = 5) were trained to provide lick reports to the detection of light-evoked nociceptive stimulation to the hind paw. Using simultaneous video recording, we demonstrate that the learned lick behavior may prove more pertinent in investigating brain driven pain processes than the reflex behavior. Within sessions, the response bias of transgenic mice changed with respect to lick behavior but not reflex behavior. Furthermore, response similarity between the lick and reflex behaviors diverged near perceptual threshold. Our nociceptive lick-report detection assay will enable a host of investigations into the millisecond, single cell, neural dynamics underlying pain processing in the central nervous system of awake behaving animals.
Collapse
Affiliation(s)
| | | | - Kiernan Bloye
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
| | - Kevin N Vanent
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
| | - Muhammad M Edhi
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, 02903, USA
| | - Carl Y Saab
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, 02903, USA.,Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA
| | - David A Borton
- School of Engineering, Brown University, Providence, RI, 02912, USA. .,Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA. .,Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of Veterans Affairs Medical Center, Providence, RI, USA.
| |
Collapse
|
42
|
Chakrabarti S, Ai M, Henson FM, Smith ESJ. Peripheral mechanisms of arthritic pain: A proposal to leverage large animals for in vitro studies. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100051. [PMID: 32817908 PMCID: PMC7426561 DOI: 10.1016/j.ynpai.2020.100051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 04/14/2023]
Abstract
Pain arising from musculoskeletal disorders such as arthritis is one of the leading causes of disability. Whereas the past 20-years has seen an increase in targeted therapies for rheumatoid arthritis (RA), other arthritis conditions, especially osteoarthritis, remain poorly treated. Although modulation of central pain pathways occurs in chronic arthritis, multiple lines of evidence indicate that peripherally driven pain is important in arthritic pain. To understand the peripheral mechanisms of arthritic pain, various in vitro and in vivo models have been developed, largely in rodents. Although rodent models provide numerous advantages for studying arthritis pathogenesis and treatment, the anatomy and biomechanics of rodent joints differ considerably to those of humans. By contrast, the anatomy and biomechanics of joints in larger animals, such as dogs, show greater similarity to human joints and thus studying them can provide novel insight for arthritis research. The purpose of this article is firstly to review models of arthritis and behavioral outcomes commonly used in large animals. Secondly, we review the existing in vitro models and assays used to study arthritic pain, primarily in rodents, and discuss the potential for adopting these strategies, as well as likely limitations, in large animals. We believe that exploring peripheral mechanisms of arthritic pain in vitro in large animals has the potential to reduce the veterinary burden of arthritis in commonly afflicted species like dogs, as well as to improve translatability of pain research into the clinic.
Collapse
Affiliation(s)
- Sampurna Chakrabarti
- Department of Neuroscience, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
- Department of Pharmacology, University of Cambridge, UK
| | - Minji Ai
- Department of Veterinary Medicine, University of Cambridge, UK
| | | | | |
Collapse
|
43
|
Monteiro BP, Otis C, Del Castillo JRE, Nitulescu R, Brown K, Arendt-Nielsen L, Troncy E. Quantitative sensory testing in feline osteoarthritic pain - a systematic review and meta-analysis. Osteoarthritis Cartilage 2020; 28:885-896. [PMID: 32360738 DOI: 10.1016/j.joca.2020.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/31/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
UNLABELLED Quantitative sensory testing (QST) is a psychophysical test used to quantify somatosensory sensation under normal or pathological conditions including osteoarthritis (OA). OBJECTIVE This study aimed to conduct a systematic review and meta-analysis of studies using QST in healthy and osteoarthritic cats, registered at Systematic Review Research Facility (#26-06-2017). DESIGN Hierarchical models with random intercepts for each individual study extracted through the systematic review were fit to subject-level data; QST measures were contrasted between healthy and osteoarthritic cats. Four bibliographic databases were searched; quality and risk of bias assessment were performed using pre-established criteria. RESULTS Six articles were included; most were of high quality and low risk of bias. Punctate tactile threshold (n = 70) and mechanical temporal summation (n = 35) were eligible for analysis. Cats with OA have lower punctate tactile threshold [mean difference (95%HDI): -44 (-60; -26) grams] and facilitated temporal summation of pain [hazard ratio (95%HDI): 5.32 (2.19; 14) times] when compared with healthy cats. The effect of sex and body weight on sensory sensitivity remained inconclusive throughout all analyses. Due to the correlation between age and OA status, it remains difficult to assess the effect of OA on sensory sensitivity, independently of age. CONCLUSIONS Clear and transparent reporting using guidelines are warranted. Similar to people, centralized sensitization is a feature of OA in cats. Future studies should try to elucidate the age effect on feline OA. Research with natural OA in cats is promising with potential to benefit feline health and welfare, and improve translatability to clinical research.
Collapse
Affiliation(s)
- B P Monteiro
- GREPAQ (Groupe de Recherche en Pharmacologie Animale Du Québec), Department of Biomedical Sciences, Faculty of Veterinary Medicine - Université de Montréal, Saint-Hyacinthe, QC, Canada.
| | - C Otis
- GREPAQ (Groupe de Recherche en Pharmacologie Animale Du Québec), Department of Biomedical Sciences, Faculty of Veterinary Medicine - Université de Montréal, Saint-Hyacinthe, QC, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada.
| | - J R E Del Castillo
- GREPAQ (Groupe de Recherche en Pharmacologie Animale Du Québec), Department of Biomedical Sciences, Faculty of Veterinary Medicine - Université de Montréal, Saint-Hyacinthe, QC, Canada.
| | - R Nitulescu
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada.
| | - K Brown
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada.
| | - L Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Sensory-Motor Interaction (SMI®), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| | - E Troncy
- GREPAQ (Groupe de Recherche en Pharmacologie Animale Du Québec), Department of Biomedical Sciences, Faculty of Veterinary Medicine - Université de Montréal, Saint-Hyacinthe, QC, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada.
| |
Collapse
|
44
|
Zhou Z, Fan K, Shi W, Chen Q, Zhuo M, Lu J. Reduced behavioral withdrawal responses during fear retrieval in adult mice and rats. Mol Pain 2020; 15:1744806919876157. [PMID: 31452448 PMCID: PMC6740054 DOI: 10.1177/1744806919876157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pain triggers emotional changes in humans and animals, including fear and anxiety. Conversely, fear and anxiety may enhance suffering of patients with pain. However, in animal models of acute pain, it has been reported that fear may inhibit pain by activating endogenous inhibitory systems. In this study, we wanted to examine if behavioral withdrawal responses may be affected during fear retrieval, a condition where fear-associated tone is applied. We found that thermal pain thresholds were significantly increased during fear retrieval. Our results indicate that animals are suffering fear like-events, while their behavioral responses are inhibited. These results indicate that it will be important to evaluate both emotional and behavioral withdrawal responses for future development of new pain medicine.
Collapse
Affiliation(s)
- Zhaoxiang Zhou
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Kexin Fan
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wantong Shi
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qiyu Chen
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jingshan Lu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
45
|
Gruen ME, White P, Hare B. Do dog breeds differ in pain sensitivity? Veterinarians and the public believe they do. PLoS One 2020; 15:e0230315. [PMID: 32182261 PMCID: PMC7077843 DOI: 10.1371/journal.pone.0230315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/27/2020] [Indexed: 12/29/2022] Open
Abstract
Humans do not respond to the pain of all humans equally; physical appearance and associated group identity affect how people respond to the pain of others. Here we ask if a similar differential response occurs when humans evaluate different individuals of another species. Beliefs about pain in pet dogs (Canis familiaris) provide a powerful test, since dogs vary so much in size, shape, and color, and are often associated with behavioral stereotypes. Using an on-line survey, we asked both the general public and veterinarians to rate pain sensitivity in 28 different dog breeds, identified only by their pictures. We found that both the general public and veterinarians rated smaller dogs (i.e. based on height and weight) as being more sensitive to pain; the general public respondents rated breeds associated with breed specific legislation as having lower pain sensitivity. While there is currently no known physiological basis for such breed-level differences, over 90% of respondents from both groups indicated belief in differences in pain sensitivity among dog breeds. We discuss how these results inform theories of human social discrimination and suggest that the perception of breed-level differences in pain sensitivity may affect the recognition and management of painful conditions in dogs.
Collapse
Affiliation(s)
- Margaret E. Gruen
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| | - Philip White
- Department of Statistical Science, Duke University, Durham, North Carolina, United States of America
| | - Brian Hare
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
- Center for Cognitive Neuroscience, Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
46
|
Reker AN, Chen S, Etter K, Burger T, Caudill M, Davidson S. The Operant Plantar Thermal Assay: A Novel Device for Assessing Thermal Pain Tolerance in Mice. eNeuro 2020; 7:ENEURO.0210-19.2020. [PMID: 32071073 PMCID: PMC7078811 DOI: 10.1523/eneuro.0210-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
Pain is a multidimensional experience of sensory-discriminative, cognitive, and affective processes; however, current basic research methods rely heavily on response to threshold stimuli, bypassing the supraspinal processing that ultimately gives rise to the pain experience. We developed the operant plantar thermal assay (OPTA), which utilizes a novel, conflict-based operant task requiring evaluation and active decision-making to obtain reward under thermally aversive conditions to quantify thermal pain tolerance. In baseline measures, male and female mice exhibited similar temperature preferences, however in the OPTA, female mice exhibited greater temperature-dependent tolerance, as defined by choice time spent in an adverse thermal condition to obtain reward. Increasing reward salience (4% vs 10% sucrose solution) led to increased thermal tolerance for males but not females. To determine whether neuropathic and inflammatory pain models alter thermal tolerance, animals with chronic constriction injury (CCI) or complete Freund's adjuvant (CFA), respectively, were tested in the OPTA. Surprisingly, neuropathic animals exhibited increased thermal tolerance, as shown by greater time spent in the reward zone in an adverse thermal condition, compared with sham animals. There was no effect of inflammation on thermal tolerance. Administration of clonidine in the CCI model led to increased thermal tolerance in both injured and sham animals. In contrast, the non-steroidal anti-inflammatory meloxicam was anti-hyperalgesic in the CFA model, but reduced thermal pain tolerance. These data support the feasibility of using the OPTA to assess thermal pain tolerance to gain new insights into complex pain behaviors and to investigate novel aspects of analgesic efficacy.
Collapse
Affiliation(s)
- Ashlie N Reker
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH 45267
| | - Sisi Chen
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH 45267
| | - Katherine Etter
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH 45267
| | - Taylor Burger
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH 45267
| | - Makayla Caudill
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH 45267
| | - Steve Davidson
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH 45267
| |
Collapse
|
47
|
Meeson RL, Todhunter RJ, Blunn G, Nuki G, Pitsillides AA. Spontaneous dog osteoarthritis - a One Medicine vision. Nat Rev Rheumatol 2020; 15:273-287. [PMID: 30953036 PMCID: PMC7097182 DOI: 10.1038/s41584-019-0202-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is a global disease that, despite extensive research, has limited treatment options. Pet dogs share both an environment and lifestyle attributes with their owners, and a growing awareness is developing in the public and among researchers that One Medicine, the mutual co-study of animals and humans, could be beneficial for both humans and dogs. To that end, this Review highlights research opportunities afforded by studying dogs with spontaneous OA, with a view to sharing this active area of veterinary research with new audiences. Similarities and differences between dog and human OA are examined, and the proposition is made that suitably aligned studies of spontaneous OA in dogs and humans, in particular hip and knee OA, could highlight new avenues of discovery. Developing cross-species collaborations will provide a wealth of research material and knowledge that is relevant to human OA and that cannot currently be obtained from rodent models or experimentally induced dog models of OA. Ultimately, this Review aims to raise awareness of spontaneous dog OA and to stimulate discussion regarding its exploration under the One Medicine initiative to improve the health and well-being of both species. Osteoarthritis occurs spontaneously in pet dogs, which often share environmental and lifestyle risk-factors with their owners. This Review aims to stimulate cooperation between medical and veterinary research under the One Medicine initiative to improve the welfare of dogs and humans. Dogs have many analogous spontaneous diseases that result in end-stage osteoarthritis (OA). Inbreeding and the predisposition of certain dog breeds for OA enable easier identification of candidate genetic associations than in outbred humans. Dog OA subtypes offer a potential stratification rationale for aetiological differences and alignment to analogous human OA phenotypes. The relatively compressed time course of spontaneous dog OA offers longitudinal research opportunities. Collaboration with veterinary researchers can provide tissue samples from early-stage OA and opportunities to evaluate new therapeutics in a spontaneous disease model. Awareness of the limitations and benefits of using clinical veterinary patients in research is important.
Collapse
Affiliation(s)
- Richard L Meeson
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK.,Department of Clinical Services and Sciences, Royal Veterinary College, University of London, London, UK.,Institute of Orthopaedics and Musculoskeletal Science, University College London, London, UK
| | - Rory J Todhunter
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA.,Cornell Veterinary Biobank, Cornell University, Ithaca, NY, USA
| | - Gordon Blunn
- Institute of Orthopaedics and Musculoskeletal Science, University College London, London, UK.,School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - George Nuki
- Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Andrew A Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK.
| |
Collapse
|
48
|
Minnema L, Wheeler J, Enomoto M, Pitake S, Mishra SK, Lascelles BDX. Correlation of Artemin and GFRα3 With Osteoarthritis Pain: Early Evidence From Naturally Occurring Osteoarthritis-Associated Chronic Pain in Dogs. Front Neurosci 2020; 14:77. [PMID: 32116521 PMCID: PMC7031206 DOI: 10.3389/fnins.2020.00077] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Arthritis, including osteoarthritis (OA) and other musculoskeletal-associated pain, is a worldwide problem, however, effective drug options are limited. Several receptors, neurotransmitters, and endogenous mediators have been identified in rodent models, but the relevance of these molecules in disease-associated pain is not always clear. Artemin, a neurotrophic factor, and its receptor, glial-derived neurotrophic factor (GDNF) family receptor alpha-3 (GFRα3), have been identified as involved in pain in rodents. Their role in OA-associated pain is unknown. To explore a possible association, we analyzed tissue from naturally occurring OA in dogs to characterize the correlation with chronic pain. We used behavioral assessment, objective measures of limb use, and molecular tools to identify whether artemin and GFRα3 might be associated with OA pain. Our results using banked tissue from well-phenotyped dogs indicates that artemin/GFRα3 may play an important, and hitherto unrecognized, role in chronic OA-associated pain. Elevated serum levels of artemin from osteoarthritic humans compared to healthy individuals suggest translational relevance. Our data provide compelling evidence that the artemin/GFRα3 signaling pathway may be important in OA pain in both non-humans and humans and may ultimately lead to novel therapeutics.
Collapse
Affiliation(s)
- Laura Minnema
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Joshua Wheeler
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Pain Research and Education Center, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Masataka Enomoto
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Pain Research and Education Center, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Saumitra Pitake
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Santosh K Mishra
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Pain Research and Education Center, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - B Duncan X Lascelles
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Pain Research and Education Center, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Thurston Arthritis Research Center, UNC School of Medicine, Chapel Hill, NC, United States.,Center for Translational Pain Research, Department of Anesthesiology, Duke University, Durham, NC, United States
| |
Collapse
|
49
|
Herzberg D, Strobel P, Müller H, Meneses C, Werner M, Bustamante H. Proteomic profiling of proteins in the dorsal horn of the spinal cord in dairy cows with chronic lameness. PLoS One 2020; 15:e0228134. [PMID: 31990932 PMCID: PMC6986711 DOI: 10.1371/journal.pone.0228134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/08/2020] [Indexed: 01/03/2023] Open
Abstract
Chronic lameness affects bovine welfare and has a negative economic impact in dairy industry. Moreover, due to the translational gap between traditional pain models and new drugs development for treating chronic pain states, naturally occurring painful diseases could be a potential translational tool for chronic pain research. We therefore employed liquid chromatography tandem mass spectrometry (LC-MS/MS) to stablish the proteomic profile of the spinal cord samples from lumbar segments (L2-L4) of chronic lame dairy cows. Data were validated and quantified through software tool (Scaffold® v 4.0) using output data from two search engines (SEQUEST® and X-Tandem®). Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis was performed to detect proteins interactions. LC-MS/MS identified a total amount of 177 proteins; of which 129 proteins were able to be quantified. Lame cows showed a strong upregulation of interacting proteins with chaperone and stress functions such as Hsp70 (p < 0.006), Hsc70 (p < 0.0079), Hsp90 (p < 0.015), STIP (p > 0.0018) and Grp78 (p <0.0068), and interacting proteins associated to glycolytic pathway such as; γ-enolase (p < 0.0095), α-enolase (p < 0.013) and hexokinase-1 (p < 0.028). It was not possible to establish a clear network of interaction in several upregulated proteins in lame cows. Non-interacting proteins were mainly associated to redox process and cytoskeletal organization. The most relevant down regulated protein in lame cows was myelin basic protein (MBP) (p < 0.02). Chronic inflammatory lameness in cows is associated to increased expression of stress proteins with chaperone, metabolism, redox and structural functions. A state of endoplasmic reticulum stress and unfolded protein response (UPR) might explain the changes in protein expression in lame cows; however, further studies need to be performed in order to confirm these findings.
Collapse
Affiliation(s)
- Daniel Herzberg
- Veterinary Clinical Sciences Department, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
- * E-mail: (HB); (DH)
| | - Pablo Strobel
- Animal Science Department, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Heine Müller
- Veterinary Clinical Sciences Department, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Constanza Meneses
- Comparative Biomedical Science Graduate Program, College of Veterinary Medicine, North Caroline State University, Raleigh, North Carolina, United States of America
| | - Marianne Werner
- Animal Science Department, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Hedie Bustamante
- Veterinary Clinical Sciences Department, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
- * E-mail: (HB); (DH)
| |
Collapse
|
50
|
Larson CM, Wilcox GL, Fairbanks CA. The Study of Pain in Rats and Mice. Comp Med 2019; 69:555-570. [PMID: 31822322 PMCID: PMC6935695 DOI: 10.30802/aalas-cm-19-000062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/17/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023]
Abstract
Pain is a clinical syndrome arising from a variety of etiologies in a heterogeneous population, which makes successfully treating the individual patient difficult. Organizations and governments recognize the need for tailored and specific therapies, which drives pain research. This review summarizes the different types of pain assessments currently being used and the various rodent models that have been developed to recapitulate the human pain condition.
Collapse
Affiliation(s)
- Christina M Larson
- Comparative and Molecular Biosciences, University of Minnesota College of Veterinary Medicine, St Paul, Minnesota
| | - George L Wilcox
- Departments of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Carolyn A Fairbanks
- Departments of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota;,
| |
Collapse
|