1
|
Wang J, Su M, Zhang D, Zhang L, Niu C, Li C, You S, Sang Y, Zhang Y, Du X, Zhang H. The cation channel mechanisms of subthreshold inward depolarizing currents in the mice VTA dopaminergic neurons and their roles in the chronic-stress-induced depression-like behavior. eLife 2024; 12:RP88319. [PMID: 39642080 PMCID: PMC11623934 DOI: 10.7554/elife.88319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024] Open
Abstract
The slow-intrinsic-pacemaker dopaminergic (DA) neurons originating in the ventral tegmental area (VTA) are implicated in various mood- and emotion-related disorders, such as anxiety, fear, stress and depression. Abnormal activity of projection-specific VTA DA neurons is the key factor in the development of these disorders. Here, we describe the crucial role of the NALCN and TRPC6, non-selective cation channels in mediating the subthreshold inward depolarizing current and driving the firing of action potentials of VTA DA neurons in physiological conditions. Furthermore, we demonstrate that down-regulation of TRPC6 protein expression in the VTA DA neurons likely contributes to the reduced activity of projection-specific VTA DA neurons in chronic mild unpredictable stress (CMUS) depressive mice. In consistent with these, selective knockdown of TRPC6 channels in the VTA DA neurons conferred mice with depression-like behavior. This current study suggests down-regulation of TRPC6 expression/function is involved in reduced VTA DA neuron firing and chronic stress-induced depression-like behavior of mice.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacology, Hebei Medical UniversityShijiazhuangChina
- Department of Chinese Medicinal Chemistry, Hebei University of Chinese MedicineShijiazhuangChina
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical UniversityShijiazhuangChina
- The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical UniversityShijiazhuangChina
| | - Min Su
- Department of Pharmacology, Hebei Medical UniversityShijiazhuangChina
- Yiling Pharmaceutical CompanyShijiazhuangChina
| | - Dongmei Zhang
- Department of Pharmacology, Hebei Medical UniversityShijiazhuangChina
- Department of Clinical Pharmacy, Xingtai Ninth HospitalXingtaiChina
| | - Ludi Zhang
- Department of Pharmacology, Hebei Medical UniversityShijiazhuangChina
| | - Chenxu Niu
- Department of Pharmacology, Hebei Medical UniversityShijiazhuangChina
| | - Chaoyi Li
- Department of Pharmacology, Hebei Medical UniversityShijiazhuangChina
| | - Shuangzhu You
- Department of Pharmacology, Hebei Medical UniversityShijiazhuangChina
| | - Yuqi Sang
- Department of Pharmacology, Hebei Medical UniversityShijiazhuangChina
- College of Chemical Engineering, Shijiazhuang UniversityShijiazhuangChina
- Shijiazhuang Key Laboratory of Targeted Drugs Research and Efficacy EvaluationShijiazhuangChina
| | - Yongxue Zhang
- Department of Pharmacology, Hebei Medical UniversityShijiazhuangChina
- Department of Pharmacy, Handan First HospitalHandanChina
| | - Xiaona Du
- Department of Pharmacology, Hebei Medical UniversityShijiazhuangChina
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical UniversityShijiazhuangChina
- Department of Psychiatry, The First Hospital of Hebei Medical University, Mental Health Institute of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
2
|
Yang Y, Qiu J, Liu J, Zhang D, Ou M, Huang H, Liang P, Zhu T, Zhou C. Sodium leak channels in the central amygdala modulate the analgesic potency of volatile anaesthetics in mice. Br J Anaesth 2024; 133:983-997. [PMID: 39322470 DOI: 10.1016/j.bja.2024.06.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Analgesia is an important effect of volatile anaesthetics, for which the spinal cord is a critical neural target. However, how supraspinal mechanisms modulate analgesic potency of volatile anaesthetics is not clear. We investigated the contribution of the central amygdala (CeA) to the analgesic effects of isoflurane and sevoflurane. METHODS Analgesic potencies of volatile anaesthetics were tested during optogenetic and chemogenetic inhibition of CeA neurones. In vivo calcium imaging was used to measure neuronal activities of CeA neuronal subtypes under volatile anaesthesia. Contributions of the sodium leak channel (NALCN) in GABAergic CeA (CeAGABA) neurones to analgesic effects of volatile anaesthetics were explored by specific NALCN knockdown. Electrophysiological recordings on acute brain slices were applied to measure volatile anaesthetic modulation of CeA neuronal activity by NALCN. RESULTS Optogenetic or chemogenetic silencing CeA neurones reduced the analgesic effects of isoflurane or sevoflurane in vivo. The calcium signals of CeAGABA neurones increased during exposure to isoflurane or sevoflurane at analgesic concentrations. Knockdown of NALCN in CeAGABA neurones attenuated antinociceptive effects of isoflurane, sevoflurane, or both. For example, mean concentrations of isoflurane, sevoflurane, or both that induced immobility to tail-flick stimuli were significantly increased (isoflurane: 1.17 [0.05] vol% vs 1.24 [0.04] vol%, P=0.01; sevoflurane: 2.65 [0.07] vol% vs 2.81 [0.07] vol%; P<0.001). In brain slices, isoflurane, sevoflurane, or both at clinical concentrations increased NALCN-mediated holding currents and conductance in CeAGABA neurones, which increased excitability of CeAGABA neurones in an NALCN-dependent manner. CONCLUSIONS The analgesic potencies of volatile anaesthetics are partially mediated by modulation of NALCN in CeAGABA neurones.
Collapse
Affiliation(s)
- Yaoxin Yang
- Department of Anaesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China; Research Center of Anaesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jingxuan Qiu
- Department of Anaesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China; Research Center of Anaesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jin Liu
- Department of Anaesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China; Research Center of Anaesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Donghang Zhang
- Department of Anaesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China; Research Center of Anaesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mengchan Ou
- Department of Anaesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Han Huang
- Department of Anaesthesiology & Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Liang
- Department of Anaesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Tao Zhu
- Department of Anaesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.
| | - Cheng Zhou
- Research Center of Anaesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
3
|
Lucas-Romero J, Rivera-Arconada I, Lopez-Garcia JA. Noise or signal? Spontaneous activity of dorsal horn neurons: patterns and function in health and disease. Pflugers Arch 2024; 476:1171-1186. [PMID: 38822875 PMCID: PMC11271371 DOI: 10.1007/s00424-024-02971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/10/2024] [Accepted: 05/05/2024] [Indexed: 06/03/2024]
Abstract
Spontaneous activity refers to the firing of action potentials by neurons in the absence of external stimulation. Initially considered an artifact or "noise" in the nervous system, it is now recognized as a potential feature of neural function. Spontaneous activity has been observed in various brain areas, in experimental preparations from different animal species, and in live animals and humans using non-invasive imaging techniques. In this review, we specifically focus on the spontaneous activity of dorsal horn neurons of the spinal cord. We use a historical perspective to set the basis for a novel classification of the different patterns of spontaneous activity exhibited by dorsal horn neurons. Then we examine the origins of this activity and propose a model circuit to explain how the activity is generated and transmitted to the dorsal horn. Finally, we discuss possible roles of this activity during development and during signal processing under physiological conditions and pain states. By analyzing recent studies on the spontaneous activity of dorsal horn neurons, we aim to shed light on its significance in sensory processing. Understanding the different patterns of activity, the origins of this activity, and the potential roles it may play, will contribute to our knowledge of sensory mechanisms, including pain, to facilitate the modeling of spinal circuits and hopefully to explore novel strategies for pain treatment.
Collapse
Affiliation(s)
- Javier Lucas-Romero
- Department of Systems Biology, University of Alcala, 28805, Madrid, Spain
- Department of Physical Therapy, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | | | - Jose Antonio Lopez-Garcia
- Department of Systems Biology, University of Alcala, 28805, Madrid, Spain.
- Departamento de Biologia de Sistemas, Edificio de Medicina, Universidad de Alcala, Ctra. Madrid-Barcelona, Km 33,600, 28805, Alcala de Henares, Madrid, Spain.
| |
Collapse
|
4
|
Zhang D, Wei Y. Role of sodium leak channel (NALCN) in sensation and pain: an overview. Front Pharmacol 2024; 14:1349438. [PMID: 38273833 PMCID: PMC10808581 DOI: 10.3389/fphar.2023.1349438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
The sodium leak channel (NALCN) is widely expressed in the central nervous system and plays a pivotal role in regulating the resting membrane potential (RMP) by mediating the Na+ leak current. NALCN was first reported in 1999, and since then, increasing evidence has provided insights into the structure and functions of NALCN. As an essential component of neuronal background currents, NALCN has been shown to be involved in many important physiological functions, particularly in the respiratory rhythm, as NALCN mutant mice have a severely disrupted respiratory rhythm and die within 24 h of birth. Many patients with NALCN mutations also develop serious clinical syndromes, such as severe hypotonia, speech impairment, and cognitive delay. Recently, emerging studies have clarified the human NALCN structure and revealed additional properties and functions of NALCN. For instance, accumulating evidence highlights that the NALCN is involved in normal sensation and pain. Here, we review the current literature and summarize the role of the NALCN in sensation and pain.
Collapse
Affiliation(s)
- Donghang Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yiyong Wei
- Department of Anesthesiology, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| |
Collapse
|
5
|
Monteil A, Guérineau NC, Gil-Nagel A, Parra-Diaz P, Lory P, Senatore A. New insights into the physiology and pathophysiology of the atypical sodium leak channel NALCN. Physiol Rev 2024; 104:399-472. [PMID: 37615954 DOI: 10.1152/physrev.00014.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Cell excitability and its modulation by hormones and neurotransmitters involve the concerted action of a large repertoire of membrane proteins, especially ion channels. Unique complements of coexpressed ion channels are exquisitely balanced against each other in different excitable cell types, establishing distinct electrical properties that are tailored for diverse physiological contributions, and dysfunction of any component may induce a disease state. A crucial parameter controlling cell excitability is the resting membrane potential (RMP) set by extra- and intracellular concentrations of ions, mainly Na+, K+, and Cl-, and their passive permeation across the cell membrane through leak ion channels. Indeed, dysregulation of RMP causes significant effects on cellular excitability. This review describes the molecular and physiological properties of the Na+ leak channel NALCN, which associates with its accessory subunits UNC-79, UNC-80, and NLF-1/FAM155 to conduct depolarizing background Na+ currents in various excitable cell types, especially neurons. Studies of animal models clearly demonstrate that NALCN contributes to fundamental physiological processes in the nervous system including the control of respiratory rhythm, circadian rhythm, sleep, and locomotor behavior. Furthermore, dysfunction of NALCN and its subunits is associated with severe pathological states in humans. The critical involvement of NALCN in physiology is now well established, but its study has been hampered by the lack of specific drugs that can block or agonize NALCN currents in vitro and in vivo. Molecular tools and animal models are now available to accelerate our understanding of how NALCN contributes to key physiological functions and the development of novel therapies for NALCN channelopathies.
Collapse
Affiliation(s)
- Arnaud Monteil
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nathalie C Guérineau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
| | - Antonio Gil-Nagel
- Department of Neurology, Epilepsy Program, Hospital Ruber Internacional, Madrid, Spain
| | - Paloma Parra-Diaz
- Department of Neurology, Epilepsy Program, Hospital Ruber Internacional, Madrid, Spain
| | - Philippe Lory
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
6
|
Cobb-Lewis DE, Sansalone L, Khaliq ZM. Contributions of the Sodium Leak Channel NALCN to Pacemaking of Medial Ventral Tegmental Area and Substantia Nigra Dopaminergic Neurons. J Neurosci 2023; 43:6841-6853. [PMID: 37640554 PMCID: PMC10573758 DOI: 10.1523/jneurosci.0930-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023] Open
Abstract
We tested the role of the sodium leak channel, NALCN, in pacemaking of dopaminergic neuron (DAN) subpopulations from adult male and female mice. In situ hybridization revealed NALCN RNA in all DANs, with lower abundance in medial ventral tegmental area (VTA) relative to substantia nigra pars compacta (SNc). Despite lower relative abundance of NALCN, we found that acute pharmacological blockade of NALCN in medial VTA DANs slowed pacemaking by 49.08%. We also examined the electrophysiological properties of projection-defined VTA DAN subpopulations identified by retrograde labeling. Inhibition of NALCN reduced pacemaking in DANs projecting to medial nucleus accumbens (NAc) and others projecting to lateral NAc by 70.74% and 31.98%, respectively, suggesting that NALCN is a primary driver of pacemaking in VTA DANs. In SNc DANs, potentiating NALCN by lowering extracellular calcium concentration speeded pacemaking in wildtype but not NALCN conditional knockout mice, demonstrating functional presence of NALCN. In contrast to VTA DANs, however, pacemaking in SNc DANs was unaffected by inhibition of NALCN. Instead, we found that inhibition of NALCN increased the gain of frequency-current plots at firing frequencies slower than spontaneous firing. Similarly, inhibition of the hyperpolarization-activated cyclic nucleotide-gated (HCN) conductance increased gain but had little effect on pacemaking. Interestingly, simultaneous inhibition of NALCN and HCN resulted in significant reduction in pacemaker rate. Thus, we found NALCN makes substantial contributions to driving pacemaking in VTA DAN subpopulations. In SNc DANs, NALCN is not critical for pacemaking but inhibition of NALCN makes cells more sensitive to hyperpolarizing stimuli.SIGNIFICANCE STATEMENT Pacemaking in midbrain dopaminergic neurons (DAN) relies on multiple subthreshold conductances, including a sodium leak. Whether the sodium leak channel, NALCN, contributes to pacemaking in DANs located in the VTA and the SNc has not yet been determined. Using electrophysiology and pharmacology, we show that NALCN plays a prominent role in driving pacemaking in projection-defined VTA DAN subpopulations. By contrast, pacemaking in SNc neurons does not rely on NALCN. Instead, the presence of NALCN regulates the excitability of SNc DANs by reducing the gain of the neuron's response to inhibitory stimuli. Together, these findings will inform future efforts to obtain DAN subpopulation-specific treatments for use in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Dana E Cobb-Lewis
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
- Institute for Neuroscience, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| | - Lorenzo Sansalone
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Zayd M Khaliq
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
7
|
Wu L, Wu Y, Liu J, Jiang J, Zhou C, Zhang D. Sodium Leak Channel in Glutamatergic Neurons of the Lateral Parabrachial Nucleus Modulates Inflammatory Pain in Mice. Int J Mol Sci 2023; 24:11907. [PMID: 37569281 PMCID: PMC10418977 DOI: 10.3390/ijms241511907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Elevated excitability of glutamatergic neurons in the lateral parabrachial nucleus (PBL) is associated with the pathogenesis of inflammatory pain, but the underlying molecular mechanisms are not fully understood. Sodium leak channel (NALCN) is widely expressed in the central nervous system and regulates neuronal excitability. In this study, chemogenetic manipulation was used to explore the association between the activity of PBL glutamatergic neurons and pain thresholds. Complete Freund's adjuvant (CFA) was used to construct an inflammatory pain model in mice. Pain behaviour was tested using von Frey filaments and Hargreaves tests. Local field potential (LFP) was used to record the activity of PBL glutamatergic neurons. Gene knockdown techniques were used to investigate the role of NALCN in inflammatory pain. We further explored the downstream projections of PBL using cis-trans-synaptic tracer virus. The results showed that chemogenetic inhibition of PBL glutamatergic neurons increased pain thresholds in mice, whereas chemogenetic activation produced the opposite results. CFA plantar modelling increased the number of C-Fos protein and NALCN expression in PBL glutamatergic neurons. Knockdown of NALCN in PBL glutamatergic neurons alleviated CFA-induced pain. CFA injection induced C-Fos protein expression in central nucleus amygdala (CeA) neurons, which was suppressed by NALCN knockdown in PBL glutamatergic neurons. Therefore, elevated expression of NALCN in PBL glutamatergic neurons contributes to the development of inflammatory pain via PBL-CeA projections.
Collapse
Affiliation(s)
- Lin Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.W.); (Y.W.); (J.L.); (J.J.)
- Laboratory of Anaesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujie Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.W.); (Y.W.); (J.L.); (J.J.)
- Laboratory of Anaesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.W.); (Y.W.); (J.L.); (J.J.)
- Laboratory of Anaesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingyao Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.W.); (Y.W.); (J.L.); (J.J.)
- Laboratory of Anaesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.W.); (Y.W.); (J.L.); (J.J.)
- Laboratory of Anaesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.W.); (Y.W.); (J.L.); (J.J.)
- Laboratory of Anaesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Li J, Serafin EK, Baccei ML. Intrinsic and synaptic properties of adult mouse spinoperiaqueductal gray neurons and the influence of neonatal tissue damage. Pain 2023; 164:905-917. [PMID: 36149785 PMCID: PMC10033328 DOI: 10.1097/j.pain.0000000000002787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The periaqueductal gray (PAG) represents a key target of projection neurons residing in the spinal dorsal horn. In comparison to lamina I spinoparabrachial neurons, little is known about the intrinsic and synaptic properties governing the firing of spino-PAG neurons, or whether such activity is modulated by neonatal injury. In this study, this issue was addressed using ex vivo whole-cell patch clamp recordings from lamina I spino-PAG neurons in adult male and female FVB mice after hindpaw incision at postnatal day (P)3. Spino-PAG neurons were classified as high output, medium output, or low output based on their action potential discharge after dorsal root stimulation. The high-output subgroup exhibited prevalent spontaneous burst firing and displayed initial burst or tonic patterns of intrinsic firing, whereas low-output neurons showed little spontaneous activity. Interestingly, the level of dorsal root-evoked firing significantly correlated with the resting potential and membrane resistance but not with the strength of primary afferent-mediated glutamatergic drive. Neonatal incision failed to alter the pattern of monosynaptic sensory input, with most spino-PAG neurons receiving direct connections from low-threshold C-fibers. Furthermore, primary afferent-evoked glutamatergic input and action potential discharge in adult spino-PAG neurons were unaltered by neonatal surgical injury. Finally, Hebbian long-term potentiation at sensory synapses, which significantly increased afferent-evoked firing, was similar between P3-incised and naive littermates. Collectively, these data suggest that the functional response of lamina I spino-PAG neurons to sensory input is largely governed by their intrinsic membrane properties and appears resistant to the persistent influence of neonatal tissue damage.
Collapse
Affiliation(s)
- Jie Li
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | | | | |
Collapse
|
9
|
Li J, Chen Y, Liu J, Zhang D, Liang P, Lu P, Shen J, Miao C, Zuo Y, Zhou C. Elevated Expression and Activity of Sodium Leak Channel Contributes to Neuronal Sensitization of Inflammatory Pain in Rats. Front Mol Neurosci 2021; 14:723395. [PMID: 34512260 PMCID: PMC8430348 DOI: 10.3389/fnmol.2021.723395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023] Open
Abstract
Inflammatory pain encompasses many clinical symptoms, and there is no satisfactory therapeutic target. Neuronal hyperexcitability and/or sensitization of the primary nociceptive neurons in the dorsal root ganglion (DRG) and spinal dorsal horn are critical to the development and maintenance of inflammatory pain. The sodium leak channel (NALCN), a non-selective cation channel, mediates the background Na+ leak conductance and controls neuronal excitability. It is unknown whether abnormal activity of NALCN mediates the pathological process of inflammatory pain. Complete Freund’s adjuvant (CFA) was injected into the left footpad of rats to induce inflammatory pain. The thresholds of mechanical and thermal sensation and spontaneous pain behaviors were assessed. The expression of NALCN in DRG and spinal dorsal cord was measured. NALCN currents and the contribution of NALCN to neuronal excitability in the DRG and spinal dorsal cord were recorded using whole-cell patch-clamping recording. NALCN was abundantly expressed in neurons of the DRG and spinal dorsal cord. In acutely isolated DRG neurons and spinal cord slices from rats with CFA-induced inflammatory pain, NALCN currents and neuronal excitability were increased. Subsequently, intrathecal and sciatic nerve injection of NALCN-small interfering RNA (siRNA) decreased NALCN mRNA and reverted NALCN currents to normal levels, and then reduced CFA-induced neuronal excitability and alleviated pain symptoms. Furthermore, pain-related symptoms were significantly prevented by the NALCN-shRNA-mediated NALCN knockdown in DRG and spinal cord. Therefore, increased expression and activity of NALCN contributed to neuronal sensitization in CFA-induced inflammatory pain. NALCN may be a novel molecular target for the control of inflammatory pain.
Collapse
Affiliation(s)
- Jia Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Anesthesiology, Xi'an Jiaotong University-Affiliated Honghui Hospital, Xi'an, China
| | - Yali Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Liang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Peilin Lu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiefei Shen
- Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases and Department of Prosthodontics, West China Stomatology Hospital of Sichuan University, Chengdu, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Impheng H, Lemmers C, Bouasse M, Legros C, Pakaprot N, Guérineau NC, Lory P, Monteil A. The sodium leak channel NALCN regulates cell excitability of pituitary endocrine cells. FASEB J 2021; 35:e21400. [PMID: 33793981 DOI: 10.1096/fj.202000841rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 11/11/2022]
Abstract
Anterior pituitary endocrine cells that release hormones such as growth hormone and prolactin are excitable and fire action potentials. In these cells, several studies previously showed that extracellular sodium (Na+ ) removal resulted in a negative shift of the resting membrane potential (RMP) and a subsequent inhibition of the spontaneous firing of action potentials, suggesting the contribution of a Na+ background conductance. Here, we show that the Na+ leak channel NALCN conducts a Ca2+ - Gd3+ -sensitive and TTX-resistant Na+ background conductance in the GH3 cell line, a cell model of pituitary endocrine cells. NALCN knockdown hyperpolarized the RMP, altered GH3 cell electrical properties and inhibited prolactin secretion. Conversely, the overexpression of NALCN depolarized the RMP, also reshaping the electrical properties of GH3 cells. Overall, our results indicate that NALCN is functional in GH3 cells and involved in endocrine cell excitability as well as in hormone secretion. Indeed, the GH3 cell line suitably models native pituitary cells that display a similar Na+ background conductance and appears as a proper cellular model to study the role of NALCN in cellular excitability.
Collapse
Affiliation(s)
- Hathaichanok Impheng
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Céline Lemmers
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France.,PVM, BCM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Malik Bouasse
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Christian Legros
- MITOVASC Institute, UMR CNRS 6015 - UMR INSERM U1083, Université d'Angers, Angers, France
| | - Narawut Pakaprot
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nathalie C Guérineau
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Philippe Lory
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Arnaud Monteil
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics', Montpellier, France.,PVM, BCM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
11
|
Zhang D, Zhao W, Liu J, Ou M, Liang P, Li J, Chen Y, Liao D, Bai S, Shen J, Chen X, Huang H, Zhou C. Sodium leak channel contributes to neuronal sensitization in neuropathic pain. Prog Neurobiol 2021; 202:102041. [PMID: 33766679 DOI: 10.1016/j.pneurobio.2021.102041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/08/2021] [Accepted: 03/18/2021] [Indexed: 02/08/2023]
Abstract
Neuropathic pain affects up to 10 % of the total population and no specific target is ideal for therapeutic need. The sodium leak channel (NALCN), a non-selective cation channel, mediates the background Na+ leak conductance and controls neuronal excitability and rhythmic behaviors. Here, we show that increases of NALCN expression and function in dorsal root ganglion (DRG) and dorsal spinal cord contribute to chronic constriction injury (CCI)-induced neuropathic pain in rodents. NALCN current and neuronal excitability in acutely isolated DRG neurons and spinal cord slices of rats were increased after CCI which were decreased to normal levels by NALCN-siRNA. Accordingly, pain-related symptoms were significantly alleviated by NALCN-siRNA-mediated NALCN knockdown and completely prevented by NALCN-shRNA-mediated NALCN knockdown in rats or by conditional NALCN knockout in mice. Our results indicate that increases in NALCN expression and function contribute to CCI-induced neuronal sensitization; therefore, NALCN may be a novel molecular target for control of neuropathic pain.
Collapse
Affiliation(s)
- Donghang Zhang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenling Zhao
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jin Liu
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Mengchan Ou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Peng Liang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jia Li
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Yali Chen
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Daqing Liao
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Siqi Bai
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiefei Shen
- Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases and Department of Prosthodontics, West China Stomatology Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Han Huang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology & Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital of Sichuan University, Chengdu 610041, Sichuan, China.
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
12
|
Milman A, Ventéo S, Bossu JL, Fontanaud P, Monteil A, Lory P, Guérineau NC. A sodium background conductance controls the spiking pattern of mouse adrenal chromaffin cells in situ. J Physiol 2021; 599:1855-1883. [PMID: 33450050 PMCID: PMC7986707 DOI: 10.1113/jp281044] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Mouse chromaffin cells in acute adrenal slices exhibit two distinct spiking patterns, a repetitive mode and a bursting mode. A sodium background conductance operates at rest as demonstrated by the membrane hyperpolarization evoked by a low Na+ -containing extracellular saline. This sodium background current is insensitive to TTX, is not blocked by Cs+ ions and displays a linear I-V relationship at potentials close to chromaffin cell resting potential. Its properties are reminiscent of those of the sodium leak channel NALCN. In the adrenal gland, Nalcn mRNA is selectively expressed in chromaffin cells. The study fosters our understanding of how the spiking pattern of chromaffin cells is regulated and adds a sodium background conductance to the list of players involved in the stimulus-secretion coupling of the adrenomedullary tissue. ABSTRACT Chromaffin cells (CCs) are the master neuroendocrine units for the secretory function of the adrenal medulla and a finely-tuned regulation of their electrical activity is required for appropriate catecholamine secretion in response to the organismal demand. Here, we aim at deciphering how the spiking pattern of mouse CCs is regulated by the ion conductances operating near the resting membrane potential (RMP). At RMP, mouse CCs display a composite firing pattern, alternating between active periods composed of action potentials spiking with a regular or a bursting mode, and silent periods. RMP is sensitive to changes in extracellular sodium concentration, and a low Na+ -containing saline hyperpolarizes the membrane, regardless of the discharge pattern. This RMP drive reflects the contribution of a depolarizing conductance, which is (i) not blocked by tetrodotoxin or caesium, (ii) displays a linear I-V relationship between -110 and -40 mV, and (iii) is carried by cations with a conductance sequence gNa > gK > gCs . These biophysical attributes, together with the expression of the sodium-leak channel Nalcn transcript in CCs, state credible the contribution of NALCN. This inaugural report opens new research routes in the field of CC stimulus-secretion coupling, and extends the inventory of tissues in which NALCN is expressed to neuroendocrine glands.
Collapse
Affiliation(s)
- Alexandre Milman
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx "Ion Channel Science and Therapeutics", Montpellier, France
| | | | - Jean-Louis Bossu
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Strasbourg, France
| | - Pierre Fontanaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Arnaud Monteil
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx "Ion Channel Science and Therapeutics", Montpellier, France
| | - Philippe Lory
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx "Ion Channel Science and Therapeutics", Montpellier, France
| | - Nathalie C Guérineau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx "Ion Channel Science and Therapeutics", Montpellier, France
| |
Collapse
|
13
|
The Somatosensory World of the African Naked Mole-Rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:197-220. [PMID: 34424517 DOI: 10.1007/978-3-030-65943-1_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The naked mole-rat (Heterocephalus glaber) is famous for its longevity and unusual physiology. This eusocial species that lives in highly ordered and hierarchical colonies with a single breeding queen, also discovered secrets enabling somewhat pain-free living around 20 million years ago. Unlike most mammals, naked mole-rats do not feel the burn of chili pepper's active ingredient, capsaicin, nor the sting of acid. Indeed, by accumulating mutations in genes encoding proteins that are only now being exploited as targets for new pain therapies (the nerve growth factor receptor TrkA and voltage-gated sodium channel, NaV1.7), this species mastered the art of analgesia before humans evolved. Recently, we have identified pain-insensitivity as a trait shared by several closely related African mole-rat species. In this chapter we will show how African mole-rats have evolved pain insensitivity as well as discussing what the proximate factors may have been that led to the evolution of pain-free traits.
Collapse
|
14
|
Volatile Anesthetics Activate a Leak Sodium Conductance in Retrotrapezoid Nucleus Neurons to Maintain Breathing during Anesthesia in Mice. Anesthesiology 2020; 133:824-838. [PMID: 32773689 DOI: 10.1097/aln.0000000000003493] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Volatile anesthetics moderately depress respiratory function at clinically relevant concentrations. Phox2b-expressing chemosensitive neurons in the retrotrapezoid nucleus, a respiratory control center, are activated by isoflurane, but the underlying mechanisms remain unclear. The hypothesis of this study was that the sodium leak channel contributes to the volatile anesthetics-induced modulation of retrotrapezoid nucleus neurons and to respiratory output. METHODS The contribution of sodium leak channels to isoflurane-, sevoflurane-, and propofol-evoked activity of Phox2b-expressing retrotrapezoid nucleus neurons and respiratory output were evaluated in wild-type and genetically modified mice lacking sodium leak channels (both sexes). Patch-clamp recordings were performed in acute brain slices. Whole-body plethysmography was used to measure the respiratory activity. RESULTS Isoflurane at 0.42 to 0.50 mM (~1.5 minimum alveolar concentration) increased the sodium leak channel-mediated holding currents and conductance from -75.0 ± 12.9 to -130.1 ± 34.9 pA (mean ± SD, P = 0.002, n = 6) and 1.8 ± 0.5 to 3.6 ± 1.0 nS (P = 0.001, n = 6), respectively. At these concentrations, isoflurane increased activity of Phox2b-expressing retrotrapezoid nucleus neurons from 1.1 ± 0.2 to 2.8 ± 0.2 Hz (P < 0.001, n = 5), which was eliminated by bath application of gadolinium or genetic silencing of sodium leak channel. Genetic silencing of sodium leak channel in the retrotrapezoid nucleus resulted in a diminished ventilatory response to carbon dioxide in mice under control conditions and during isoflurane anesthesia. Sevoflurane produced an effect comparable to that of isoflurane, whereas propofol did not activate sodium leak channel-mediated holding conductance. CONCLUSIONS Isoflurane and sevoflurane increase neuronal excitability of chemosensitive retrotrapezoid nucleus neurons partly by enhancing sodium leak channel conductance. Sodium leak channel expression in the retrotrapezoid nucleus is required for the ventilatory response to carbon dioxide during anesthesia by isoflurane and sevoflurane, thus identifying sodium leak channel as a requisite determinant of respiratory output during anesthesia of volatile anesthetics. EDITOR’S PERSPECTIVE
Collapse
|
15
|
A Leptin-Mediated Neural Mechanism Linking Breathing to Metabolism. Cell Rep 2020; 33:108358. [PMID: 33176139 DOI: 10.1016/j.celrep.2020.108358] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/27/2020] [Accepted: 10/16/2020] [Indexed: 01/10/2023] Open
Abstract
Breathing is coupled to metabolism. Leptin, a peptide mainly secreted in proportion to adipose tissue mass, increases energy expenditure with a parallel increase in breathing. We demonstrate that optogenetic activation of LepRb neurons in the nucleus of the solitary tract (NTS) mimics the respiratory stimulation after systemic leptin administration. We show that leptin activates the sodium leak channel (NALCN), thereby depolarizing a subset of glutamatergic (VGluT2) LepRb NTS neurons expressing galanin. Mice with selective deletion of NALCN in LepRb neurons have increased breathing irregularity and central apneas. On a high-fat diet, these mice gain weight with an associated depression of minute ventilation and tidal volume, which are not detected in control littermates. Anatomical mapping reveals LepRb NTS-originating glutamatergic axon terminals in a brainstem inspiratory premotor region (rVRG) and dorsomedial hypothalamus. These findings directly link a defined subset of NTS LepRb cells to the matching of ventilation to energy balance.
Collapse
|
16
|
Wie J, Bharthur A, Wolfgang M, Narayanan V, Ramsey K, Aranda K, Zhang Q, Zhou Y, Ren D. Intellectual disability-associated UNC80 mutations reveal inter-subunit interaction and dendritic function of the NALCN channel complex. Nat Commun 2020; 11:3351. [PMID: 32620897 PMCID: PMC7335163 DOI: 10.1038/s41467-020-17105-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 06/11/2020] [Indexed: 01/08/2023] Open
Abstract
The sodium-leak channel NALCN forms a subthreshold sodium conductance that controls the resting membrane potentials of neurons. The auxiliary subunits of the channel and their functions in mammals are largely unknown. In this study, we demonstrate that two large proteins UNC80 and UNC79 are subunits of the NALCN complex. UNC80 knockout mice are neonatal lethal. The C-terminus of UNC80 contains a domain that interacts with UNC79 and overcomes a soma-retention signal to achieve dendritic localization. UNC80 lacking this domain, as found in human patients, still supports whole-cell NALCN currents but lacks dendritic localization. Our results establish the subunit composition of the NALCN complex, uncover the inter-subunit interaction domains, reveal the functional significance of regulation of dendritic membrane potential by the sodium-leak channel complex, and provide evidence supporting that genetic variations found in individuals with intellectual disability are the causes for the phenotype observed in patients.
Collapse
Affiliation(s)
- Jinhong Wie
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Apoorva Bharthur
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Morgan Wolfgang
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, 85012, USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, 85012, USA
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, 85012, USA
| | - Kimberly Aranda
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qi Zhang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yandong Zhou
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
17
|
Smith ESJ, Park TJ, Lewin GR. Independent evolution of pain insensitivity in African mole-rats: origins and mechanisms. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:313-325. [PMID: 32206859 PMCID: PMC7192887 DOI: 10.1007/s00359-020-01414-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 12/21/2022]
Abstract
The naked mole-rat (Heterocephalus glaber) is famous for its longevity and unusual physiology. This eusocial species that lives in highly ordered and hierarchical colonies with a single breeding queen, also discovered secrets enabling somewhat pain-free living around 20 million years ago. Unlike most mammals, naked mole-rats do not feel the burn of chili pepper's active ingredient, capsaicin, nor the sting of acid. Indeed, by accumulating mutations in genes encoding proteins that are only now being exploited as targets for new pain therapies (the nerve growth factor receptor TrkA and voltage-gated sodium channel, NaV1.7), this species mastered the art of analgesia before humans evolved. Recently, we have identified pain insensitivity as a trait shared by several closely related African mole-rat species. One of these African mole-rats, the Highveld mole-rat (Cryptomys hottentotus pretoriae), is uniquely completely impervious and pain free when confronted with electrophilic compounds that activate the TRPA1 ion channel. The Highveld mole-rat has evolved a biophysical mechanism to shut down the activation of sensory neurons that drive pain. In this review, we will show how mole-rats have evolved pain insensitivity as well as discussing what the proximate factors may have been that led to the evolution of pain-free traits.
Collapse
Affiliation(s)
- Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Thomas J Park
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Gary R Lewin
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, D-13125, Berlin, Germany.
| |
Collapse
|
18
|
Saro G, Lia AS, Thapliyal S, Marques F, Busch KE, Glauser DA. Specific Ion Channels Control Sensory Gain, Sensitivity, and Kinetics in a Tonic Thermonociceptor. Cell Rep 2020; 30:397-408.e4. [DOI: 10.1016/j.celrep.2019.12.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/17/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022] Open
|
19
|
Ou M, Zhao W, Liu J, Liang P, Huang H, Yu H, Zhu T, Zhou C. The General Anesthetic Isoflurane Bilaterally Modulates Neuronal Excitability. iScience 2019; 23:100760. [PMID: 31926429 PMCID: PMC6956953 DOI: 10.1016/j.isci.2019.100760] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/16/2019] [Accepted: 12/06/2019] [Indexed: 02/05/2023] Open
Abstract
Volatile anesthetics induce hyperactivity during induction while producing anesthesia at higher concentrations. They also bidirectionally modulate many neuronal functions. However, the neuronal mechanism is unclear. The effects of isoflurane on sodium channel currents were analyzed in acute mouse brain slices, including sodium leak (NALCN) currents and voltage-gated sodium channels (Nav) currents. Isoflurane at sub-anesthetic concentrations increased the spontaneous firing rate of CA3 pyramidal neurons, whereas anesthetic concentrations of isoflurane decreased the firing rate. Isoflurane at sub-anesthetic concentrations enhanced NALCN conductance but minimally inhibited Nav currents. Isoflurane at anesthetic concentrations depressed Nav currents and action potential amplitudes. Isoflurane at sub-anesthetic concentrations depolarized resting membrane potential (RMP) of neurons, whereas hyperpolarized the RMP at anesthetic concentrations. Isoflurane at low concentrations induced hyperactivity in vivo, which was diminished in NALCN knockdown mice. In conclusion, enhancement of NALCN by isoflurane contributes to its bidirectional modulation of neuronal excitability and the hyperactivity during induction. Volatile anesthetic isoflurane exerts bidirectional modulation of neuronal excitability Isoflurane enhances NALCN conductance at sub-anesthetic concentration NALCN knockdown diminishes behavioral hyperactivity during isoflurane induction
Collapse
Affiliation(s)
- Mengchan Ou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Wenling Zhao
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Jin Liu
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Peng Liang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Han Huang
- Department of Anesthesiology, West China Second Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Hai Yu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China.
| |
Collapse
|
20
|
Methylation determines the extracellular calcium sensitivity of the leak channel NALCN in hippocampal dentate granule cells. Exp Mol Med 2019; 51:1-14. [PMID: 31601786 PMCID: PMC6802672 DOI: 10.1038/s12276-019-0325-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
The sodium leak channel NALCN is a key player in establishing the resting membrane potential (RMP) in neurons and transduces changes in extracellular Ca2+ concentration ([Ca2+]e) into increased neuronal excitability as the downstream effector of calcium-sensing receptor (CaSR). Gain-of-function mutations in the human NALCN gene cause encephalopathy and severe intellectual disability. Thus, understanding the regulatory mechanisms of NALCN is important for both basic and translational research. This study reveals a novel mechanism for NALCN regulation by arginine methylation. Hippocampal dentate granule cells in protein arginine methyltransferase 7 (PRMT7)-deficient mice display a depolarization of the RMP, decreased threshold currents, and increased excitability compared to wild-type neurons. Electrophysiological studies combined with molecular analysis indicate that enhanced NALCN activities contribute to hyperexcitability in PRMT7−/− neurons. PRMT7 depletion in HEK293T cells increases NALCN activity by shifting the dose-response curve of NALCN inhibition by [Ca2+]e without affecting NALCN protein levels. In vitro methylation studies show that PRMT7 methylates a highly conserved Arg1653 of the NALCN gene located in the carboxy-terminal region that is implicated in CaSR-mediated regulation. A kinase-specific phosphorylation site prediction program shows that the adjacent Ser1652 is a potential phosphorylation site. Consistently, our data from site-specific mutants and PKC inhibitors suggest that Arg1653 methylation might modulate Ser1652 phosphorylation mediated by CaSR/PKC-delta, leading to [Ca2+]e-mediated NALCN suppression. Collectively, these data suggest that PRMT7 deficiency decreases NALCN methylation at Arg1653, which, in turn, decreases CaSR/PKC-mediated Ser1652 phosphorylation, lifting NALCN inhibition, thereby enhancing neuronal excitability. Thus, PRMT7-mediated NALCN inhibition provides a potential target for the development of therapeutic tools for neurological diseases. The addition of a methyl group to an arginine residue on the ion channel NALCN contributes to suppress the activity of this membrane protein and reduces neuronal excitability. Hana Cho, Jong-Sun Kang and colleagues at Sungkyunkwan University in South Korea found that neurons in the hippocampus of mice lacking an enzyme that mediates the transfer of methyl groups to proteins have increased NALCN activity and are more likely to fire an electrical signal. Furthermore, they showed that NALCN methylation facilitates the phosphorylation of an adjacent amino acid that prevents channel activation in response to extracellular calcium concentrations. These findings suggest that NALCN methylation has a key role in regulating the channel’s sensitivity to calcium. Moreover, they reveal a new mechanism for regulating neuronal excitability that could be targeted therapeutically to ameliorate diseases characterised by neuronal hyperexcitability.
Collapse
|
21
|
Bouasse M, Impheng H, Servant Z, Lory P, Monteil A. Functional expression of CLIFAHDD and IHPRF pathogenic variants of the NALCN channel in neuronal cells reveals both gain- and loss-of-function properties. Sci Rep 2019; 9:11791. [PMID: 31409833 PMCID: PMC6692409 DOI: 10.1038/s41598-019-48071-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 07/29/2019] [Indexed: 12/24/2022] Open
Abstract
The excitability of neurons is tightly dependent on their ion channel repertoire. Among these channels, the leak sodium channel NALCN plays a crucial role in the maintenance of the resting membrane potential. Importantly, NALCN mutations lead to complex neurodevelopmental syndromes, including infantile hypotonia with psychomotor retardation and characteristic facies (IHPRF) and congenital contractures of limbs and face, hypotonia and developmental delay (CLIFAHDD), which are recessively and dominantly inherited, respectively. Unfortunately, the biophysical properties of NALCN are still largely unknown to date, as well as the functional consequences of both IHPRF and CLIFAHDD mutations on NALCN current. Here we have set-up the heterologous expression of NALCN in the neuronal cell line NG108-15 to investigate the electrophysiological properties of NALCN carrying representative IHPRF and CLIFAHDD mutations. Several original properties of the wild-type (wt) NALCN current were retrieved: mainly carried by external Na+, blocked by Gd3+, insensitive to TTX and potentiated by low external Ca2+ concentration. However, we found that this current displays a time-dependent inactivation in the −80/−40 mV range of membrane potential, and a non linear current-voltage relationship indicative of voltage sensitivity. Importantly, no detectable current was recorded with the IHPRF missense mutation p.Trp1287Leu (W1287L), while the CLIFAHDD mutants, p.Leu509Ser (L509S) and p.Tyr578Ser (Y578S), showed higher current densities and slower inactivation, compared to wt NALCN current. This study reveals that heterologous expression of NALCN channel can be achieved in the neuronal cell line NG108-15 to study the electrophysiological properties of wt and mutants. From our results, we conclude that IHPRF and CLIFAHDD missense mutations are loss- and gain-of-function variants, respectively.
Collapse
Affiliation(s)
- Malik Bouasse
- IGF, CNRS, INSERM, University of Montpellier, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Hathaichanok Impheng
- IGF, CNRS, INSERM, University of Montpellier, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Zoe Servant
- IGF, CNRS, INSERM, University of Montpellier, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Philippe Lory
- IGF, CNRS, INSERM, University of Montpellier, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Arnaud Monteil
- IGF, CNRS, INSERM, University of Montpellier, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France.
| |
Collapse
|