1
|
Jouvenel A, Tassou A, Thouaye M, Ruel J, Antri M, Leyris JP, Giraudin A, Mallié S, Sar C, Diouloufet L, Sonrier C, Daubeuf F, Bertin J, Alves S, Ventéo S, Frossard N, Carroll P, Mechaly I, Rognan D, Sokoloff P, Dallel R, Delmas P, Valmier J, Rivat C. FLT3 signaling inhibition abrogates opioid tolerance and hyperalgesia while preserving analgesia. Nat Commun 2024; 15:9633. [PMID: 39511220 PMCID: PMC11543937 DOI: 10.1038/s41467-024-54054-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Navigating the duality of opioids' potent analgesia and side effects, including tolerance and hyperalgesia, is a significant challenge in chronic pain management, often prompting hazardous dose escalation to maintain analgesic effects. The peripheral mu-opioid receptor (MOR) is known to mediate these contradictory effects. Here, we show that the fms-like tyrosine kinase receptor 3 (FLT3) in peripheral somatosensory neurons drives morphine tolerance and hyperalgesia in a male rodent model. We found that chronic morphine treatment increases FLT3 and MOR co-expression, and that inhibiting FLT3 represses MOR-induced hyperactivation of the cyclic adenosine monophosphate (cAMP) signaling pathway, mitigating maladaptive excitatory processes engaged after chronic morphine treatment. Furthermore, in postsurgical or inflammatory models of chronic pain, co-administering morphine with a FLT3-specific inhibitor not only prevents or suppresses tolerance and hyperalgesia but also potentiates the analgesic efficacy of morphine, without aggravating other morphine-induced adverse effects. Our findings suggest that pairing morphine with FLT3 inhibitors could become a promising avenue for chronic pain management to safely harness the power of opioids, without the risk of dose escalation. By enhancing morphine analgesic potency through FLT3 inhibition, this approach could minimize opioid dosage, thereby curtailing the risk of addiction and other opioid-related side effects.
Collapse
Affiliation(s)
- Antoine Jouvenel
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Adrien Tassou
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Maxime Thouaye
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Jérôme Ruel
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université - INSERM 1263 -INRAE 1260, Marseille, France
| | | | | | | | - Sylvie Mallié
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Chamroeum Sar
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Lucie Diouloufet
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
- Biodol Therapeutics, 165 rue Denis Papin, Montarnaud, 34570, France
| | - Corinne Sonrier
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
- Biodol Therapeutics, 165 rue Denis Papin, Montarnaud, 34570, France
| | - François Daubeuf
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, 67400, Illkirch, France
| | - Juliette Bertin
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
- Biodol Therapeutics, 165 rue Denis Papin, Montarnaud, 34570, France
| | - Stacy Alves
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Stéphanie Ventéo
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, 67400, Illkirch, France
| | - Patrick Carroll
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Ilana Mechaly
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Didier Rognan
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, 67400, Illkirch, France
| | - Pierre Sokoloff
- Biodol Therapeutics, 165 rue Denis Papin, Montarnaud, 34570, France
| | | | - Patrick Delmas
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université - INSERM 1263 -INRAE 1260, Marseille, France
| | - Jean Valmier
- Université de Montpellier, Montpellier, France.
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France.
| | - Cyril Rivat
- Université de Montpellier, Montpellier, France.
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France.
| |
Collapse
|
2
|
Breault É, Desgagné M, Neve JD, Côté J, Barlow TMA, Ballet S, Sarret P. Multitarget ligands that comprise opioid/nonopioid pharmacophores for pain management: Current state of the science. Pharmacol Res 2024; 209:107408. [PMID: 39307212 DOI: 10.1016/j.phrs.2024.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Chronic pain, which affects more than one-third of the world's population, represents one of the greatest medical challenges of the 21st century, yet its effective management remains sub-optimal. The 'gold standard' for the treatment of moderate to severe pain consists of opioid ligands, such as morphine and fentanyl, that target the µ-opioid receptor (MOP). Paradoxically, these opioids also cause serious side effects, including constipation, respiratory depression, tolerance, and addiction. In addition, the development of opioid-use disorders, such as opioid diversion, misuse, and abuse, has led to the current opioid crisis, with dramatic increases in addiction, overdoses, and ultimately deaths. As pain is a complex, multidimensional experience involving a variety of pathways and mediators, dual or multitarget ligands that can bind to more than one receptor and exert complementary analgesic effects, represent a promising avenue for pain relief. Indeed, unlike monomodal therapeutic approaches, the modulation of several endogenous nociceptive systems can often result in an additive or even synergistic effect, thereby improving the analgesic-to-side-effect ratio. Here, we provide a comprehensive overview of research efforts towards the development of dual- or multi-targeting opioid/nonopioid hybrid ligands for effective and safer pain management. We reflect on the underpinning discovery rationale by discussing the design, medicinal chemistry, and in vivo pharmacological effects of multitarget antinociceptive compounds.
Collapse
Affiliation(s)
- Émile Breault
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Michael Desgagné
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Jérôme Côté
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Thomas M A Barlow
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Philippe Sarret
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
3
|
Zhao Y, Zhang Z, Gou D, Li P, Yang T, Niu Z, Simon JP, Guan X, Li X, He C, Dong S. Intrathecal administration of MCRT produced potent antinociception in chronic inflammatory pain models via μ-δ heterodimer with limited side effects. Biomed Pharmacother 2024; 179:117389. [PMID: 39243426 DOI: 10.1016/j.biopha.2024.117389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
An important goal in the opioid field is to discover effective analgesic drugs with minimal side effects. MCRT demonstrated potent antinociceptive effects with limited side effects, making it a promising candidate. However, its pharmacological properties and how it minimizes side effects remain unknown. Various mouse pain and opioid side effect models were used to evaluate the antinociceptive properties and safety at the spinal level. The targets of MCRT were identified through cAMP measurement, isolated tissue assays, and pharmacological experiments. Immunofluorescence was employed to visualize protein expression. MCRT displayed distinct antinociceptive effects between acute and chronic inflammatory pain models due to its multifunctional properties at the μ opioid receptor (MOR), µ-δ heterodimer (MDOR), and neuropeptide FF receptor 2 (NPFFR2). Activation of NPFFR2 reduced MOR-mediated antinociception, leading to bell-shaped response curves in acute pain models. However, activation of MDOR produced more effective antinociception in chronic inflammatory pain models. MCRT showed limited tolerance and opioid-induced hyperalgesia in both acute and chronic pain models and did not develop cross-tolerance to morphine. Additionally, MCRT did not exhibit addictive properties, gastrointestinal inhibition, and effects on motor coordination. Mechanistically, peripheral chronic inflammation or repeated administration of morphine and MCRT induced an increase in MDOR in the spinal cord. Chronic administration of MCRT had no apparent effect on microglial activation in the spinal cord. These findings suggest that MCRT is a versatile compound that provides potent antinociception with minimal opioid-related side effects. MDOR could be a promising target for managing chronic inflammatory pain and addressing the opioid crisis.
Collapse
MESH Headings
- Animals
- Injections, Spinal
- Chronic Pain/drug therapy
- Receptors, Opioid, mu/metabolism
- Mice
- Male
- Inflammation/drug therapy
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/pharmacology
- Disease Models, Animal
- Receptors, Neuropeptide/metabolism
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Mice, Inbred C57BL
- Analgesics/pharmacology
- Analgesics/administration & dosage
- Morphine/administration & dosage
- Morphine/pharmacology
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Hyperalgesia/drug therapy
- Humans
- Oligopeptides/administration & dosage
- Oligopeptides/pharmacology
Collapse
Affiliation(s)
- Yaofeng Zhao
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Zhonghua Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Dingnian Gou
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Pengtao Li
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Tong Yang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Zhanyu Niu
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Jerine Peter Simon
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Xuyan Guan
- Cuiying Honors College, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Xinyu Li
- Cuiying Honors College, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Chunbo He
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Shouliang Dong
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China.
| |
Collapse
|
4
|
De Neve J, Breault É, Previti S, Vangeloven E, Loranger B, Chartier M, Brouillette R, Lanoie A, Holleran BJ, Longpré JM, Gendron L, Tourwé D, Sarret P, Ballet S. Design, Synthesis, and In Vitro Characterization of Proteolytically-Stable Opioid-Neurotensin Hybrid Peptidomimetics. ACS Pharmacol Transl Sci 2024; 7:2784-2798. [PMID: 39296263 PMCID: PMC11406707 DOI: 10.1021/acsptsci.4c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024]
Abstract
Linking an opioid to a nonopioid pharmacophore represents a promising approach for reducing opioid-induced side effects during pain management. Herein, we describe the optimization of the previously reported opioid-neurotensin hybrids (OPNT-hybrids), SBL-OPNT-05 & -10, containing the μ-/δ-opioid agonist H-Dmt-d-Arg-Aba-β-Ala-NH2 and NT(8-13) analogs optimized for NTS2 affinity. In the present work, the constrained dipeptide Aba-β-Ala was modified to investigate the optimal linker length between the two pharmacophores, as well as the effect of expanding the aromatic moiety within constrained dipeptide analogs, via the inclusion of a naphthyl moiety. Additionally, the N-terminal Arg residue of the NT(8-13) pharmacophore was substituted with β3 hArg. For all analogs, affinity was determined at the MOP, DOP, NTS1, and NTS2 receptors. Several of the hybrid ligands showed a subnanomolar affinity for MOP, improved binding for DOP compared to SBL-OPNT-05 & -10, as well as an excellent NTS2-affinity with high selectivity over NTS1. Subsequently, the Gαi1 and β-arrestin-2 pathways were evaluated for all hybrids, along with their stability in rat plasma. Upon MOP activation, SBL-OPNT-13 and -18 were the least effective at recruiting β-arrestin-2 (E max = 17 and 12%, respectively), while both compounds were also found to be partial agonists at the Gαi1 pathway, despite improved potency compared to DAMGO. Importantly, these analogs also showed a half-life in rat plasma in excess of 48 h, making them valuable tools for future in vivo investigations.
Collapse
Affiliation(s)
- Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Émile Breault
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4 Sherbrooke, Quebec, Canada
| | - Santo Previti
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Esaü Vangeloven
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Bobbi Loranger
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4 Sherbrooke, Quebec, Canada
| | - Magali Chartier
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4 Sherbrooke, Quebec, Canada
| | - Rebecca Brouillette
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4 Sherbrooke, Quebec, Canada
| | - Annik Lanoie
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4 Sherbrooke, Quebec, Canada
| | - Brian J Holleran
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4 Sherbrooke, Quebec, Canada
| | - Jean-Michel Longpré
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4 Sherbrooke, Quebec, Canada
| | - Louis Gendron
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4 Sherbrooke, Quebec, Canada
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Philippe Sarret
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4 Sherbrooke, Quebec, Canada
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
5
|
De Neve J, Elhabazi K, Gonzalez S, Herby C, Schneider S, Utard V, Fellmann-Clauss R, Petit-Demouliere N, Lecat S, Kremer M, Ces A, Daubeuf F, Martin C, Ballet S, Bihel F, Simonin F. Multitarget μ-Opioid Receptor Agonists─Neuropeptide FF Receptor Antagonists Induce Potent Antinociception with Reduced Adverse Side Effects. J Med Chem 2024. [PMID: 38687204 DOI: 10.1021/acs.jmedchem.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The design of bifunctional compounds is a promising approach toward the development of strong analgesics with reduced side effects. We here report the optimization of the previously published lead peptide KGFF09, which contains opioid receptor agonist and neuropeptide FF receptor antagonist pharmacophores and is shown to induce potent antinociception and reduced side effects. We evaluated the novel hybrid peptides for their in vitro activity at MOP, NPFFR1, and NPFFR2 and selected four of them (DP08/14/32/50) for assessment of their acute antinociceptive activity in mice. We further selected DP32 and DP50 and observed that their antinociceptive activity is mostly peripherally mediated; they produced no respiratory depression, no hyperalgesia, significantly less tolerance, and strongly attenuated withdrawal syndrome, as compared to morphine and the recently FDA-approved TRV130. Overall, these data suggest that MOP agonist/NPFF receptor antagonist hybrids might represent an interesting strategy to develop novel analgesics with reduced side effects.
Collapse
Affiliation(s)
- Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Khadija Elhabazi
- Biotechnologie et Signalisation Cellulaire, UMR 7242, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Simon Gonzalez
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Claire Herby
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR 7200, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Séverine Schneider
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR 7200, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Valérie Utard
- Biotechnologie et Signalisation Cellulaire, UMR 7242, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Rosine Fellmann-Clauss
- Biotechnologie et Signalisation Cellulaire, UMR 7242, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Nathalie Petit-Demouliere
- Biotechnologie et Signalisation Cellulaire, UMR 7242, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Sandra Lecat
- Biotechnologie et Signalisation Cellulaire, UMR 7242, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Mélanie Kremer
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (INCI), 67000 Strasbourg, France
| | - Aurelia Ces
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (INCI), 67000 Strasbourg, France
| | - François Daubeuf
- Plateforme de Chimie Biologique Intégrative de Strasbourg, UAR 3286, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Charlotte Martin
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Frédéric Bihel
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR 7200, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| |
Collapse
|
6
|
Galal KA, Obeng S, Pallares VLC, Senetra A, Seabra MABL, Awad A, McCurdy CR. Guanidine-to-piperidine switch affords high affinity small molecule NPFF ligands with preference for NPFF1-R and NPFF2-R subtypes. Eur J Med Chem 2024; 269:116330. [PMID: 38522114 DOI: 10.1016/j.ejmech.2024.116330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The Neuropeptide FF (NPFF) receptor system is known to modulate opioid actions and has been shown to mediate opioid-induced hyperalgesia and tolerance. The lack of subtype selective small molecule compounds has hampered further exploration of the pharmacology of this receptor system. The vast majority of available NPFF ligands possess a highly basic guanidine group, including our lead small molecule, MES304. Despite providing strong receptor binding, the guanidine group presents a potential pharmacokinetic liability for in vivo pharmacological tool development. Through structure-activity relationship exploration, we were able to modify our lead molecule MES304 to arrive at guanidine-free NPFF ligands. The novel piperidine analogues 8b and 16a are among the few non-guanidine based NPFF ligands known in literature. Both compounds displayed nanomolar NPFF-R binding affinity approaching that of the parent molecule. Moreover, while MES304 was non-subtype selective, these two analogues presented new starting points for subtype selective scaffolds, whereby 8b displayed a 15-fold preference for NPFF1-R, and 16a demonstrated an 8-fold preference for NPFF2-R. Both analogues showed no agonist activity on either receptor subtype in the in vitro functional activity assay, while 8b displayed antagonistic properties at NPFF1-R. The calculated physicochemical properties of 8b and 16a were also shown to be more favorable for in vivo tool design. These results indicate the possibility of developing potent, subtype selective NPFF ligands devoid of a guanidine functionality.
Collapse
Affiliation(s)
- Kareem A Galal
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA.
| | - Samuel Obeng
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA; Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Victoria L C Pallares
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA
| | - Alexandria Senetra
- Department of Pharmaceutics, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA
| | - Maria A B L Seabra
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA
| | - Ahmed Awad
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA; Department of Pharmaceutics, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA; UF Translational Drug Development Core, The University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
7
|
Gach-Janczak K, Biernat M, Kuczer M, Adamska-Bartłomiejczyk A, Kluczyk A. Analgesic Peptides: From Natural Diversity to Rational Design. Molecules 2024; 29:1544. [PMID: 38611824 PMCID: PMC11013236 DOI: 10.3390/molecules29071544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Pain affects one-third of the global population and is a significant public health issue. The use of opioid drugs, which are the strongest painkillers, is associated with several side effects, such as tolerance, addiction, overdose, and even death. An increasing demand for novel, safer analgesic agents is a driving force for exploring natural sources of bioactive peptides with antinociceptive activity. Since the G protein-coupled receptors (GPCRs) play a crucial role in pain modulation, the discovery of new peptide ligands for GPCRs is a significant challenge for novel drug development. The aim of this review is to present peptides of human and animal origin with antinociceptive potential and to show the possibilities of their modification, as well as the design of novel structures. The study presents the current knowledge on structure-activity relationship in the design of peptide-based biomimetic compounds, the modification strategies directed at increasing the antinociceptive activity, and improvement of metabolic stability and pharmacodynamic profile. The procedures employed in prolonged drug delivery of emerging compounds are also discussed. The work summarizes the conditions leading to the development of potential morphine replacements.
Collapse
Affiliation(s)
- Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (A.A.-B.)
| | - Monika Biernat
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| | - Mariola Kuczer
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| | - Anna Adamska-Bartłomiejczyk
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (A.A.-B.)
| | - Alicja Kluczyk
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| |
Collapse
|
8
|
Chandarana C, Juwarwala I, Shetty S, Bose A. Peptide Drugs: Current Status and it's Applications in the Treatment of Various Diseases. Curr Drug Res Rev 2024; 16:381-394. [PMID: 38638039 DOI: 10.2174/0125899775295960240406073630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024]
Abstract
Peptides represent a class of natural molecules with diverse physiological functions, including hormone regulation, neurotransmission, and immune modulation. In recent years, peptide- based therapeutics have gained significant attention in pharmaceutical research and development due to their high specificity, efficacy, and relatively low toxicity. This review provides an overview of the current landscape of peptide drug development, highlighting the challenges faced in their formulation and delivery and the innovative strategies employed to overcome these hurdles. The review explores the wide range of applications of peptide drugs in treating various diseases, including HIV, multiple sclerosis, osteoporosis, chronic pain, diabetes, and cancer. Examples of FDA-approved peptide drugs and ongoing clinical trials are presented, showcasing the continuous advancements in peptide-based therapeutics across different therapeutic areas. This review underscores the promising potential of peptide drugs as targeted and effective treatments for a multitude of medical conditions, offering improved therapeutic outcomes and enhanced patient care.
Collapse
Affiliation(s)
- Chandni Chandarana
- Department of Quality Assurance, SSR College of Pharmacy, Sayli Road, Silvassa, U.T of Dadra Nagar and Haveli, 396230, India
| | - Isha Juwarwala
- Department of Quality Assurance, SSR College of Pharmacy, Sayli Road, Silvassa, U.T of Dadra Nagar and Haveli, 396230, India
| | - Shravi Shetty
- Department of Quality Assurance, SSR College of Pharmacy, Sayli Road, Silvassa, U.T of Dadra Nagar and Haveli, 396230, India
| | - Anushree Bose
- Department of Quality Assurance, SSR College of Pharmacy, Sayli Road, Silvassa, U.T of Dadra Nagar and Haveli, 396230, India
| |
Collapse
|
9
|
Dumitrascuta M, Martin C, Ballet S, Spetea M. Bifunctional Peptidomimetic G Protein-Biased Mu-Opioid Receptor Agonist and Neuropeptide FF Receptor Antagonist KGFF09 Shows Efficacy in Visceral Pain without Rewarding Effects after Subcutaneous Administration in Mice. Molecules 2022; 27:8785. [PMID: 36557917 PMCID: PMC9780937 DOI: 10.3390/molecules27248785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
There is still an unmet clinical need to develop new pharmaceuticals for effective and safe pain management. Current pharmacotherapy offers unsatisfactory solutions due to serious side effects related to the chronic use of opioid drugs. Prescription opioids produce analgesia through activation of the mu-opioid receptor (MOR) and are major contributors to the current opioid crisis. Multifunctional ligands possessing activity at more than one receptor represent a prominent therapeutic approach for the treatment of pain with fewer adverse effects. We recently reported on the design of a bifunctional MOR agonist/neuropeptide FF receptor (NPFFR) antagonist peptididomimetic, KGFF09 (H-Dmt-DArg-Aba-βAla-Bpa-Phe-NH2), and its antinociceptive effects after subcutaneous (s.c.) administration in acute and persistent pain in mice with reduced propensity for unwanted side effects. In this study, we further investigated the antinociceptive properties of KGFF09 in a mouse model of visceral pain after s.c. administration and the potential for opioid-related liabilities of rewarding and sedation/locomotor dysfunction following chronic treatment. KGFF09 produced a significant dose-dependent inhibition of the writhing behavior in the acetic acid-induced writhing assay with increased potency when compared to morphine. We also demonstrated the absence of harmful effects caused by typical MOR agonists, i.e., rewarding effects (conditioned-place preference test) and sedation/locomotor impairment (open-field test), at a dose shown to be highly effective in inhibiting pain behavior. Consequently, KGFF09 displayed a favorable benefit/side effect ratio regarding these opioid-related side effects compared to conventional opioid analgesics, such as morphine, underlining the development of dual MOR agonists/NPFFR antagonists as improved treatments for various pain conditions.
Collapse
Affiliation(s)
- Maria Dumitrascuta
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Charlotte Martin
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Steven Ballet
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
10
|
Koponen ME, Forget P. Pharmacological Interventions for Opioid-Induced Hyperalgesia: A Scoping Review of Preclinical Trials. J Clin Med 2022; 11:jcm11237060. [PMID: 36498635 PMCID: PMC9735807 DOI: 10.3390/jcm11237060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Opioid analgesics are the most effective pharmacological agents for moderate and severe pain. However, opioid use has several limitations such as opioid-induced hyperalgesia (OIH), which refers to the increased pain sensitivity that occurs once analgesia wears off after opioid administration. Several pharmacological interventions have been suggested for OIH, but the current literature does not provide guidelines on which interventions are the most effective and whether they differ depending on the opioid that induces hyperalgesia. This scoping review aimed to identify and describe all the preclinical trials investigating pharmacological interventions for OIH caused by remifentanil, fentanyl, or morphine as the first step towards evaluating whether the most effective OIH interventions are different for different opioids. METHODS Electronic database searches were carried out in Embase, PubMed, and Web of Science. Detailed data extraction was conducted on the eligible trials. RESULTS 72 trials were eligible for the review. Of these, 27 trials investigated remifentanil, 14 trials investigated fentanyl, and 31 trials investigated morphine. A total of 82 interventions were identified. The most studied interventions were ketamine (eight trials) and gabapentin (four trials). The majority of the interventions were studied in only one trial. The most common mechanism suggested for the interventions was inhibition of N-methyl-D-aspartate (NMDA) receptors. CONCLUSION This scoping review identified plenty of preclinical trials investigating pharmacological interventions for OIH. Using the current literature, it is not possible to directly compare the effectiveness of the interventions. Hence, to identify the most effective interventions for each opioid, the interventions must be indirectly compared in a meta-analysis.
Collapse
Affiliation(s)
- Mia Elena Koponen
- Neuroscience with Psychology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Correspondence:
| | - Patrice Forget
- Epidemiology Group, Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Department of Anaesthesia, National Health Service (NHS) Grampian, Aberdeen AB25 2ZN, UK
- Pain and Opioids after Surgery (PANDOS) European Society of Anaesthesiology and Intensive Care (ESAIC) Research Group, 1000 Brussels, Belgium
| |
Collapse
|
11
|
Zhang M, Xu B, Li N, Zhang R, Zhang Q, Chen D, Rizvi SFA, Xu K, Shi Y, Yu B, Fang Q. OFP011 Cyclic Peptide as a Multifunctional Agonist for Opioid/Neuropeptide FF Receptors with Improved Blood-Brain Barrier Penetration. ACS Chem Neurosci 2022; 13:3078-3092. [PMID: 36262082 DOI: 10.1021/acschemneuro.2c00442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mounting evidence indicates that the neuropeptide FF (NPFF) system is involved in the side effects of opioid usage, including antinociceptive tolerance, hyperalgesia, abuse, constipation, and respiratory depression. Our group recently discovered that the multitarget opioid/NPFF receptor agonist DN-9 exhibits peripheral antinociceptive activity. To improve its metabolic stability, antinociceptive potency, and duration, in this study, we designed and synthesized a novel cyclic disulfide analogue of DN-9, OFP011, and examined its bioactivity through in vitro cyclic adenosine monophosphate (cAMP) functional assays and in vivo behavioral experiments. OFP011 exhibited multifunctional agonistic effects at the μ-opioid and the NPFF1 and NPFF2 receptors and partial agonistic effects at the δ- and κ-opioid in vitro, as determined via the cAMP functional assays. Pharmacokinetic and pharmacological experiments revealed improvement in its blood-brain barrier permeability after systemic administration. In addition, subcutaneous OFP011 exhibited potent and long-lasting antinociceptive activity via the central μ- and κ-opioid receptors, as observed in different physiological and pathological pain models. At the highest antinociceptive doses, subcutaneous OFP011 exhibited limited tolerance, gastrointestinal transit, motor coordination, addiction, reward, and respiration depression. Notably, OFP011 exhibited potent oral antinociceptive activities in mouse models of acute, inflammatory, and neuropathic pain. These results suggest that the multifunctional opioid/NPFF receptor agonists with improved blood-brain barrier penetration are a promising strategy for long-term treatment of moderate to severe nociceptive and pathological pain with fewer side effects.
Collapse
Affiliation(s)
- Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Syed Faheem Askari Rizvi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Kangtai Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Yonghang Shi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Bowen Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| |
Collapse
|
12
|
Chen T, Sun T, Bian Y, Pei Y, Feng F, Chi H, Li Y, Tang X, Sang S, Du C, Chen Y, Chen Y, Sun H. The Design and Optimization of Monomeric Multitarget Peptides for the Treatment of Multifactorial Diseases. J Med Chem 2022; 65:3685-3705. [DOI: 10.1021/acs.jmedchem.1c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tingkai Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yaoyao Bian
- College of Acupuncture and Massage, College of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Feng Feng
- Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceuticals Science College, Huaian 223003, People’s Republic of China
| | - Heng Chi
- Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceuticals Science College, Huaian 223003, People’s Republic of China
| | - Yuan Li
- Department of Pharmaceutical Engineering, Jiangsu Food and Pharmaceuticals Science College, Huaian 223005, People’s Republic of China
| | - Xu Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Shenghu Sang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Chenxi Du
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Ying Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| |
Collapse
|
13
|
Witkowska E, Godlewska M, Osiejuk J, Gątarz S, Wileńska B, Kosińska K, Starnowska-Sokół J, Piotrowska A, Lipiński PFJ, Matalińska J, Dyniewicz J, Halik PK, Gniazdowska E, Przewlocka B, Misicka A. Bifunctional Opioid/Melanocortin Peptidomimetics for Use in Neuropathic Pain: Variation in the Type and Length of the Linker Connecting the Two Pharmacophores. Int J Mol Sci 2022; 23:674. [PMID: 35054860 PMCID: PMC8775902 DOI: 10.3390/ijms23020674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/25/2023] Open
Abstract
Based on the mechanism of neuropathic pain induction, a new type of bifunctional hybrid peptidomimetics was obtained for potential use in this type of pain. Hybrids consist of two types of pharmacophores that are connected by different types of linkers. The first pharmacophore is an opioid agonist, and the second pharmacophore is an antagonist of the pronociceptive system, i.e., an antagonist of the melanocortin-4 receptor. The results of tests in acute and neuropathic pain models of the obtained compounds have shown that the type of linker used to connect pharmacophores had an effect on antinociceptive activity. Peptidomimetics containing longer flexible linkers were very effective at low doses in the neuropathic pain model. To elucidate the effect of linker lengths, two hybrids showing very high activity and two hybrids with lower activity were further tested for affinity for opioid (mu, delta) and melanocortin-4 receptors. Their complexes with the target receptors were also studied by molecular modelling. Our results do not show a simple relationship between linker length and affinity for particular receptor types but suggest that activity in neuropathic pain is related to a proper balance of receptor affinity rather than maximum binding to any or all of the target receptors.
Collapse
Affiliation(s)
- Ewa Witkowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.G.); (J.O.); (S.G.); (B.W.); (K.K.)
| | - Magda Godlewska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.G.); (J.O.); (S.G.); (B.W.); (K.K.)
| | - Jowita Osiejuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.G.); (J.O.); (S.G.); (B.W.); (K.K.)
| | - Sandra Gątarz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.G.); (J.O.); (S.G.); (B.W.); (K.K.)
| | - Beata Wileńska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.G.); (J.O.); (S.G.); (B.W.); (K.K.)
- Biological and Chemical Research Centre, University of Warsaw, 101 Zwirki i Wigury St., 02-097 Warsaw, Poland
| | - Katarzyna Kosińska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.G.); (J.O.); (S.G.); (B.W.); (K.K.)
| | - Joanna Starnowska-Sokół
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland; (J.S.-S.); (A.P.); (B.P.)
| | - Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland; (J.S.-S.); (A.P.); (B.P.)
| | - Piotr F. J. Lipiński
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (P.F.J.L.); (J.M.); (J.D.)
| | - Joanna Matalińska
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (P.F.J.L.); (J.M.); (J.D.)
| | - Jolanta Dyniewicz
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (P.F.J.L.); (J.M.); (J.D.)
| | - Paweł K. Halik
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (P.K.H.); (E.G.)
| | - Ewa Gniazdowska
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (P.K.H.); (E.G.)
| | - Barbara Przewlocka
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland; (J.S.-S.); (A.P.); (B.P.)
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.G.); (J.O.); (S.G.); (B.W.); (K.K.)
- Biological and Chemical Research Centre, University of Warsaw, 101 Zwirki i Wigury St., 02-097 Warsaw, Poland
| |
Collapse
|
14
|
Paul AK, Smith CM, Rahmatullah M, Nissapatorn V, Wilairatana P, Spetea M, Gueven N, Dietis N. Opioid Analgesia and Opioid-Induced Adverse Effects: A Review. Pharmaceuticals (Basel) 2021; 14:1091. [PMID: 34832873 PMCID: PMC8620360 DOI: 10.3390/ph14111091] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023] Open
Abstract
Opioids are widely used as therapeutic agents against moderate to severe acute and chronic pain. Still, these classes of analgesic drugs have many potential limitations as they induce analgesic tolerance, addiction and numerous behavioural adverse effects that often result in patient non-compliance. As opium and opioids have been traditionally used as painkillers, the exact mechanisms of their adverse reactions over repeated use are multifactorial and not fully understood. Older adults suffer from cancer and non-cancer chronic pain more than younger adults, due to the physiological changes related to ageing and their reduced metabolic capabilities and thus show an increased number of adverse reactions to opioid drugs. All clinically used opioids are μ-opioid receptor agonists, and the major adverse effects are directly or potentially connected to this receptor. Multifunctional opioid ligands or peripherally restricted opioids may elicit fewer adverse effects, as shown in preclinical studies, but these results need reproducibility from further extensive clinical trials. The current review aims to overview various mechanisms involved in the adverse effects induced by opioids, to provide a better understanding of the underlying pathophysiology and, ultimately, to help develop an effective therapeutic strategy to better manage pain.
Collapse
Affiliation(s)
- Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Craig M. Smith
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia;
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhanmondi, Dhaka 1207, Bangladesh;
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD) and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria;
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Nikolas Dietis
- Medical School, University of Cyprus, Nicosia 1678, Cyprus;
| |
Collapse
|
15
|
Gadais C, Piekielna-Ciesielska J, De Neve J, Martin C, Janecka A, Ballet S. Harnessing the Anti-Nociceptive Potential of NK2 and NK3 Ligands in the Design of New Multifunctional μ/δ-Opioid Agonist-Neurokinin Antagonist Peptidomimetics. Molecules 2021; 26:molecules26175406. [PMID: 34500841 PMCID: PMC8434392 DOI: 10.3390/molecules26175406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Opioid agonists are well-established analgesics, widely prescribed for acute but also chronic pain. However, their efficiency comes with the price of drastically impacting side effects that are inherently linked to their prolonged use. To answer these liabilities, designed multiple ligands (DMLs) offer a promising strategy by co-targeting opioid and non-opioid signaling pathways involved in nociception. Despite being intimately linked to the Substance P (SP)/neurokinin 1 (NK1) system, which is broadly examined for pain treatment, the neurokinin receptors NK2 and NK3 have so far been neglected in such DMLs. Herein, a series of newly designed opioid agonist-NK2 or -NK3 antagonists is reported. A selection of reported peptidic, pseudo-peptidic, and non-peptide neurokinin NK2 and NK3 ligands were covalently linked to the peptidic μ-opioid selective pharmacophore Dmt-DALDA (H-Dmt-d-Arg-Phe-Lys-NH2) and the dual μ/δ opioid agonist H-Dmt-d-Arg-Aba-βAla-NH2 (KGOP01). Opioid binding assays unequivocally demonstrated that only hybrids SBL-OPNK-5, SBL-OPNK-7 and SBL-OPNK-9, bearing the KGOP01 scaffold, conserved nanomolar range μ-opioid receptor (MOR) affinity, and slightly reduced affinity for the δ-opioid receptor (DOR). Moreover, NK binding experiments proved that compounds SBL-OPNK-5, SBL-OPNK-7, and SBL-OPNK-9 exhibited (sub)nanomolar binding affinity for NK2 and NK3, opening promising opportunities for the design of next-generation opioid hybrids.
Collapse
Affiliation(s)
- Charlène Gadais
- Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (J.D.N.); (C.M.)
- Institut des Sciences Chimiques de Rennes, Equipe CORINT, UMR 6226, Université de Rennes 1, 2 Avenue du Pr. Léon Bernard, CEDEX, 35043 Rennes, France
- Correspondence: (C.G.); (S.B.); Tel.: +32-2-6293-292 (S.B.)
| | - Justyna Piekielna-Ciesielska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (J.P.-C.); (A.J.)
| | - Jolien De Neve
- Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (J.D.N.); (C.M.)
| | - Charlotte Martin
- Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (J.D.N.); (C.M.)
| | - Anna Janecka
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (J.P.-C.); (A.J.)
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (J.D.N.); (C.M.)
- Correspondence: (C.G.); (S.B.); Tel.: +32-2-6293-292 (S.B.)
| |
Collapse
|
16
|
Dumitrascuta M, Bermudez M, Trovato O, De Neve J, Ballet S, Wolber G, Spetea M. Antinociceptive Efficacy of the µ-Opioid/Nociceptin Peptide-Based Hybrid KGNOP1 in Inflammatory Pain without Rewarding Effects in Mice: An Experimental Assessment and Molecular Docking. Molecules 2021; 26:3267. [PMID: 34071603 PMCID: PMC8198056 DOI: 10.3390/molecules26113267] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 01/09/2023] Open
Abstract
Opioids are the most effective analgesics, with most clinically available opioids being agonists to the µ-opioid receptor (MOR). The MOR is also responsible for their unwanted effects, including reward and opioid misuse leading to the current public health crisis. The imperative need for safer, non-addictive pain therapies drives the search for novel leads and new treatment strategies. In this study, the recently discovered MOR/nociceptin (NOP) receptor peptide hybrid KGNOP1 (H-Dmt-D-Arg-Aba-β-Ala-Arg-Tyr-Tyr-Arg-Ile-Lys-NH2) was evaluated following subcutaneous administration in mouse models of acute (formalin test) and chronic inflammatory pain (Complete Freund's adjuvant-induced paw hyperalgesia), liabilities of spontaneous locomotion, conditioned place preference, and the withdrawal syndrome. KGNOP1 demonstrated dose-dependent antinociceptive effects in the formalin test, and efficacy in attenuating thermal hyperalgesia with prolonged duration of action. Antinociceptive effects of KGNOP1 were reversed by naltrexone and SB-612111, indicating the involvement of both MOR and NOP receptor agonism. In comparison with morphine, KGNOP1 was more potent and effective in mouse models of inflammatory pain. Unlike morphine, KGNOP1 displayed reduced detrimental liabilities, as no locomotor impairment nor rewarding and withdrawal effects were observed. Docking of KGNOP1 to the MOR and NOP receptors and subsequent 3D interaction pattern analyses provided valuable insights into its binding mode. The mixed MOR/NOP receptor peptide KGNOP1 holds promise in the effort to develop new analgesics for the treatment of various pain states with fewer MOR-mediated side effects, particularly abuse and dependence liabilities.
Collapse
Affiliation(s)
- Maria Dumitrascuta
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.D.); (O.T.)
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany; (M.B.); (G.W.)
| | - Olga Trovato
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.D.); (O.T.)
| | - Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; (J.D.N.); (S.B.)
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; (J.D.N.); (S.B.)
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany; (M.B.); (G.W.)
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.D.); (O.T.)
| |
Collapse
|
17
|
Quillet R, Schneider S, Utard V, Drieu la Rochelle A, Elhabazi K, Henningsen JB, Gizzi P, Schmitt M, Kugler V, Simonneaux V, Ilien B, Simonin F, Bihel F. Identification of an N-acylated- DArg-Leu-NH 2 Dipeptide as a Highly Selective Neuropeptide FF1 Receptor Antagonist That Potently Prevents Opioid-Induced Hyperalgesia. J Med Chem 2021; 64:7555-7564. [PMID: 34008968 DOI: 10.1021/acs.jmedchem.1c00256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RFamide-related peptide-3 (RFRP-3) and neuropeptide FF (NPFF) target two different receptor subtypes called neuropeptide FF1 (NPFF1R) and neuropeptide FF2 (NPFF2R) that modulate several functions. However, the study of their respective role is severely limited by the absence of selective blockers. We describe here the design of a highly selective NPFF1R antagonist called RF3286, which potently blocks RFRP-3-induced hyperalgesia in mice and luteinizing hormone release in hamsters. We then showed that the pharmacological blockade of NPFF1R in mice prevents the development of fentanyl-induced hyperalgesia while preserving its analgesic effect. Altogether, our data indicate that RF3286 represents a useful pharmacological tool to study the involvement of the NPFF1R/RFRP-3 system in different functions and different species. Thanks to this compound, we showed that this system is critically involved in the development of opioid-induced hyperalgesia, suggesting that NPFF1R antagonists might represent promising therapeutic tools to improve the use of opioids in the treatment of chronic pain.
Collapse
Affiliation(s)
- Raphaëlle Quillet
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, 300 Boulevard Sébastien Brant, 67412 Illkirch, France
| | - Séverine Schneider
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Valérie Utard
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, 300 Boulevard Sébastien Brant, 67412 Illkirch, France
| | - Armand Drieu la Rochelle
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, 300 Boulevard Sébastien Brant, 67412 Illkirch, France
| | - Khadija Elhabazi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, 300 Boulevard Sébastien Brant, 67412 Illkirch, France
| | - Jo Beldring Henningsen
- Institut des Neurosciences Cellulaires et Intégratives, UPR 3212 CNRS, 8 Allée du Général Rouvillois, 67000 Strasbourg, France
| | - Patrick Gizzi
- TechMedIll, UMS 3286 CNRS, Université de Strasbourg, 300 Boulevard Sébastien Brant, 67412 Illkirch, France
| | - Martine Schmitt
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Valérie Kugler
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, 300 Boulevard Sébastien Brant, 67412 Illkirch, France
| | - Valérie Simonneaux
- Institut des Neurosciences Cellulaires et Intégratives, UPR 3212 CNRS, 8 Allée du Général Rouvillois, 67000 Strasbourg, France
| | - Brigitte Ilien
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, 300 Boulevard Sébastien Brant, 67412 Illkirch, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, 300 Boulevard Sébastien Brant, 67412 Illkirch, France
| | - Frédéric Bihel
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| |
Collapse
|
18
|
Transcriptomic Changes in Mouse Bone Marrow-Derived Macrophages Exposed to Neuropeptide FF. Genes (Basel) 2021; 12:genes12050705. [PMID: 34065092 PMCID: PMC8151073 DOI: 10.3390/genes12050705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/27/2022] Open
Abstract
Neuropeptide FF (NPFF) is a neuropeptide that regulates various biological activities. Currently, the regulation of NPFF on the immune system is an emerging field. However, the influence of NPFF on the transcriptome of primary macrophages has not been fully elucidated. In this study, the effect of NPFF on the transcriptome of mouse bone marrow-derived macrophages (BMDMs) was explored by RNA sequencing, bioinformatics, and molecular simulation. BMDMs were treated with 1 nM NPFF for 18 h, followed by RNA sequencing. Differentially expressed genes (DEGs) were obtained, followed by GO, KEGG, and PPI analysis. A total of eight qPCR-validated DEGs were selected as hub genes. Subsequently, the three-dimensional (3-D) structures of the eight hub proteins were constructed by Modeller and Rosetta. Next, the molecular dynamics (MD)-optimized 3-D structure of hub protein was acquired with Gromacs. Finally, the binding modes between NPFF and hub proteins were studied by Rosetta. A total of 2655 DEGs were obtained (up-regulated 1442 vs. down-regulated 1213), and enrichment analysis showed that NPFF extensively regulates multiple functional pathways mediated by BMDMs. Moreover, the 3-D structure of the hub protein was obtained after MD-optimization. Finally, the docking modes of NPFF-hub proteins were predicted. Besides, NPFFR2 was expressed on the cell membrane of BMDMs, and NPFF 1 nM significantly activated NPFFR2 protein expression. In summary, instead of significantly inhibiting the expression of the immune-related gene transcriptome of RAW 264.7 cells, NPFF simultaneously up-regulated and down-regulated the gene expression profile of a large number of BMDMs, hinting that NPFF may profoundly affect a variety of cellular processes dominated by BMDMs. Our work provides transcriptomics clues for exploring the influence of NPFF on the physiological functions of BMDMs.
Collapse
|
19
|
Kudla L, Przewlocki R. Influence of G protein-biased agonists of μ-opioid receptor on addiction-related behaviors. Pharmacol Rep 2021; 73:1033-1051. [PMID: 33835467 PMCID: PMC8413226 DOI: 10.1007/s43440-021-00251-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/05/2021] [Accepted: 03/16/2021] [Indexed: 01/09/2023]
Abstract
Opioid analgesics remain a gold standard for the treatment of moderate to severe pain. However, their clinical utility is seriously limited by a range of adverse effects. Among them, their high-addictive potential appears as very important, especially in the context of the opioid epidemic. Therefore, the development of safer opioid analgesics with low abuse potential appears as a challenging problem for opioid research. Among the last few decades, different approaches to the discovery of novel opioid drugs have been assessed. One of the most promising is the development of G protein-biased opioid agonists, which can activate only selected intracellular signaling pathways. To date, discoveries of several biased agonists acting via μ-opioid receptor were reported. According to the experimental data, such ligands may be devoid of at least some of the opioid side effects, such as respiratory depression or constipation. Nevertheless, most data regarding the addictive properties of biased μ-opioid receptor agonists are inconsistent. A global problem connected with opioid abuse also requires the search for effective pharmacotherapy for opioid addiction, which is another potential application of biased compounds. This review discusses the state-of-the-art on addictive properties of G protein-biased μ-opioid receptor agonists as well as we analyze whether these compounds can diminish any symptoms of opioid addiction. Finally, we provide a critical view on recent data connected with biased signaling and its implications to in vivo manifestations of addiction.
Collapse
Affiliation(s)
- Lucja Kudla
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, ul. Smetna 12, 31-343, Krakow, Poland
| | - Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, ul. Smetna 12, 31-343, Krakow, Poland.
| |
Collapse
|
20
|
Sun Y, Kuang Y, Zuo Z, Zhang J, Ma X, Xing X, Liu L, Miao Y, Ren T, Li H, Mei Q. Cellular processes involved in RAW 264.7 macrophages exposed to NPFF: A transcriptional study. Peptides 2021; 136:170469. [PMID: 33309723 DOI: 10.1016/j.peptides.2020.170469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/25/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022]
Abstract
Neuropeptide FF (NPFF) is a neuropeptide that modulates various physiological processes. The regulatory role of NPFF in the immune and inflammatory response is currently being revealed. However, the effect of NPFF at the transcriptome level in macrophages has not been fully elucidated. Here, the impact of NPFF on gene expression at the transcriptome level of RAW 264.7 cells was investigated by RNA-seq. RAW 264.7 macrophages were treated with NPFF (1 nM) for 18 h, followed by RNA-seq examination. Differentially expressed genes (DEGs) were acquired, followed by GO, KEGG, and PPI analysis. A total of eight qPCR-verified DEGs were obtained. Next, three-dimensional models of the eight hub proteins were constructed by using homology modeling with Modeller (9v23). Finally, molecular dynamics simulation (300 ns) was performed with GROMACS 2018.2 to investigate the structural characteristics of these hub proteins. NPFF had no detectable effect on the morphology of RAW264.7 cells. A total of 211 DEGs were acquired, and an enrichment study demonstrated that the immune response-related pathway was significantly inhibited by NPFF. Moreover, the molecular dynamics optimized-protein models of the hub proteins were obtained. Collectively, NPFF inhibited the expression of immune-related genes in RAW 264.7 cells at the transcriptome level, which suggested a negative relationship between NPFF and this set of immune-related genes in RAW 264.7 macrophages. Therefore, our data may provide direct evidence of the role of NPFF in peripheral or central inflammatory diseases.
Collapse
Affiliation(s)
- Yulong Sun
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China.
| | - Yuanyuan Kuang
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Zhuo Zuo
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Jin Zhang
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi Province, 710049, China
| | - Xiaolong Ma
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Xiaoyu Xing
- School of Humanities, Economics and Laws, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Lingyi Liu
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Yuchen Miao
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Tao Ren
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Hui Li
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, South Door Slightly Friendship Road 555, Xi'an, Shaanxi Province, 710054, China
| | - Qibing Mei
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| |
Collapse
|
21
|
Gonzalez S, Dumitrascuta M, Eiselt E, Louis S, Kunze L, Blasiol A, Vivancos M, Previti S, Dewolf E, Martin C, Tourwé D, Cavelier F, Gendron L, Sarret P, Spetea M, Ballet S. Optimized Opioid-Neurotensin Multitarget Peptides: From Design to Structure-Activity Relationship Studies. J Med Chem 2020; 63:12929-12941. [PMID: 32902268 PMCID: PMC7667639 DOI: 10.1021/acs.jmedchem.0c01376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 01/20/2023]
Abstract
Fusion of nonopioid pharmacophores, such as neurotensin, with opioid ligands represents an attractive approach for pain treatment. Herein, the μ-/δ-opioid agonist tetrapeptide H-Dmt-d-Arg-Aba-β-Ala-NH2 (KGOP01) was fused to NT(8-13) analogues. Since the NTS1 receptor has been linked to adverse effects, selective MOR-NTS2 ligands are preferred. Modifications were introduced within the native NT sequence, particularly a β3-homo amino acid in position 8 and Tyr11 substitutions. Combination of β3hArg and Dmt led to peptide 7, a MOR agonist, showing the highest NTS2 affinity described to date (Ki = 3 pM) and good NTS1 affinity (Ki = 4 nM), providing a >1300-fold NTS2 selectivity. The (6-OH)Tic-containing analogue 9 also exhibited high NTS2 affinity (Ki = 1.7 nM), with low NTS1 affinity (Ki = 4.7 μM), resulting in an excellent NTS2 selectivity (>2700). In mice, hybrid 7 produced significant and prolonged antinociception (up to 8 h), as compared to the KGOP01 opioid parent compound.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Disease Models, Animal
- Drug Design
- Humans
- Male
- Mice
- Oligopeptides/chemistry
- Oligopeptides/metabolism
- Oligopeptides/therapeutic use
- Pain/drug therapy
- Pain/pathology
- Peptides/chemistry
- Peptides/metabolism
- Peptides/therapeutic use
- Protein Binding
- Receptors, Neurotensin/chemistry
- Receptors, Neurotensin/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Simon Gonzalez
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Maria Dumitrascuta
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Emilie Eiselt
- Department
of Pharmacology and Physiology, Faculty of Medicine and Health Sciences,
Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, J1H 5N4 Sherbrooke, Canada
| | - Stevany Louis
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Linda Kunze
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Annalisa Blasiol
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Mélanie Vivancos
- Department
of Pharmacology and Physiology, Faculty of Medicine and Health Sciences,
Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, J1H 5N4 Sherbrooke, Canada
| | - Santo Previti
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Elke Dewolf
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Charlotte Martin
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Dirk Tourwé
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Florine Cavelier
- Institut
des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, 34095 Montpellier, France
| | - Louis Gendron
- Department
of Pharmacology and Physiology, Faculty of Medicine and Health Sciences,
Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, J1H 5N4 Sherbrooke, Canada
| | - Philippe Sarret
- Department
of Pharmacology and Physiology, Faculty of Medicine and Health Sciences,
Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, J1H 5N4 Sherbrooke, Canada
| | - Mariana Spetea
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Steven Ballet
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
22
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
23
|
Zhang R, Xu B, Zhang Q, Chen D, Zhang M, Zhao G, Xu K, Xiao J, Zhu H, Niu J, Li N, Fang Q. Spinal administration of the multi-functional opioid/neuropeptide FF agonist BN-9 produced potent antinociception without development of tolerance and opioid-induced hyperalgesia. Eur J Pharmacol 2020; 880:173169. [PMID: 32416184 DOI: 10.1016/j.ejphar.2020.173169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Chronic opioids treatment is impeded by the development of analgesic tolerance and opioid-induced hyperalgesia. Recent studies have shown that multi-functional opioid compounds produce analgesic activities with limited side effects. We developed a novel multi-functional peptide targeting opioid and neuropeptide FF receptors named BN-9, which produced potent and non-tolerance forming antinociceptive effect after supraspinal and systemic administrations. In the present study, the analgesic properties and potential side effects of intrathecal BN-9 were investigated in a range of preclinical rodent models. In complete Freund's adjuvant-induced inflammatory pain model, intrathecal BN-9 dose-dependently produced analgesic effect via opioid receptors, and the spinal antinociceptive effect was augmented by the neuropeptide FF receptor antagonist RF9. In contrast, in plantar incision-induced postoperative pain model, BN-9 exhibited potent anti-allodynic effect via opioid receptors and, at least partially, neuropeptide FF receptors. In mouse models of acetic acid-induced visceral pain and formalin pain, BN-9-induced spinal antinociception was mainly mediated by opioid receptors, independent of neuropeptide FF receptors. Furthermore, at the spinal level, chronic treatments with BN-9 did not lead to analgesic tolerance and cross-tolerance to morphine. Moreover, opioid-induced hyperalgesia was observed after repeated administration of morphine, but not BN-9. Taken together, our present study suggests that intrathecal BN-9 produces potent and non-tolerance forming antinociception, and does not cause opioid-induced hyperalgesia. Thus, BN-9 might serve as a promising lead compound in the development of multi-functional opioid analgesics with minimized side effects.
Collapse
Affiliation(s)
- Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Guanghai Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Kangtai Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Jian Xiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Hanwen Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Jiandong Niu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
24
|
Nguyen T, Marusich J, Li JX, Zhang Y. Neuropeptide FF and Its Receptors: Therapeutic Applications and Ligand Development. J Med Chem 2020; 63:12387-12402. [PMID: 32673481 DOI: 10.1021/acs.jmedchem.0c00643] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endogenous neuropeptide FF (NPFF) and its two cognate G protein-coupled receptors, Neuropeptide FF Receptors 1 and 2 (NPFFR1 and NPFFR2), represent a relatively new target system for many therapeutic applications including pain regulation, modulation of opioid side effects, drug reward, anxiety, cardiovascular conditions, and other peripheral effects. Since the cloning of NPFFR1 and NPFFR2 in 2000, significant progress has been made to understand their pharmacological roles and interactions with other receptor systems, notably the opioid receptors. A variety of NPFFR ligands with different mechanisms of action (agonists or antagonists) have been discovered although with limited subtype selectivities. Differential pharmacological effects have been observed for many of these NPFFR ligands, depending on assays/models employed and routes of administration. In this Perspective, we highlight the therapeutic potentials, current knowledge gaps, and latest updates of the development of peptidic and small molecule NPFFR ligands as tool compounds and therapeutic candidates.
Collapse
Affiliation(s)
- Thuy Nguyen
- Center for Drug Discovery, Research Triangle Institute, 3040 East Cornwallis Road, Research Triangle Park, North Carolina 27709, United States
| | - Julie Marusich
- Center for Drug Discovery, Research Triangle Institute, 3040 East Cornwallis Road, Research Triangle Park, North Carolina 27709, United States
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, the State University of New York, Buffalo, New York 14203, United States
| | - Yanan Zhang
- Center for Drug Discovery, Research Triangle Institute, 3040 East Cornwallis Road, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
25
|
Duron DI, Lei W, Barker NK, Stine C, Mishra S, Blagg BSJ, Langlais PR, Streicher JM. Inhibition of Hsp90 in the spinal cord enhances the antinociceptive effects of morphine by activating an ERK-RSK pathway. Sci Signal 2020; 13:13/630/eaaz1854. [PMID: 32371496 DOI: 10.1126/scisignal.aaz1854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Morphine and other opioids are commonly used to treat pain despite their numerous adverse side effects. Modulating μ-opioid receptor (MOR) signaling is one way to potentially improve opioid therapy. In mice, the chaperone protein Hsp90 mediates MOR signaling within the brain. Here, we found that inhibiting Hsp90 specifically in the spinal cord enhanced the antinociceptive effects of morphine in mice. Intrathecal, but not systemic, administration of the Hsp90 inhibitors 17-AAG or KU-32 amplified the effects of morphine in suppressing sensitivity to both thermal and mechanical stimuli in mice. Hsp90 inhibition enabled opioid-induced phosphorylation of the kinase ERK and increased abundance of the kinase RSK in the dorsal horns of the spinal cord, which are heavily populated with primary afferent sensory neurons. The additive effects of Hsp90 inhibition were abolished upon intrathecal inhibition of ERK, RSK, or protein synthesis. This mechanism downstream of MOR, localized to the spinal cord and repressed by Hsp90, may potentially be used to enhance the efficacy and presumably decrease the side effects of opioid therapy.
Collapse
Affiliation(s)
- David I Duron
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Wei Lei
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Natalie K Barker
- Division of Endocrinology, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Carrie Stine
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Sanket Mishra
- Department of Chemistry and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul R Langlais
- Division of Endocrinology, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
26
|
Dumitrascuta M, Bermudez M, Ballet S, Wolber G, Spetea M. Mechanistic Understanding of Peptide Analogues, DALDA, [Dmt 1]DALDA, and KGOP01, Binding to the mu Opioid Receptor. Molecules 2020; 25:E2087. [PMID: 32365707 PMCID: PMC7248707 DOI: 10.3390/molecules25092087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 01/14/2023] Open
Abstract
The mu opioid receptor (MOR) is the primary target for analgesia of endogenous opioid peptides, alkaloids, synthetic small molecules with diverse scaffolds, and peptidomimetics. Peptide-based opioids are viewed as potential analgesics with reduced side effects and have received constant scientific interest over the years. This study focuses on three potent peptide and peptidomimetic MOR agonists, DALDA, [Dmt1]DALDA, and KGOP01, and the prototypical peptide MOR agonist DAMGO. We present the first molecular modeling study and structure-activity relationships aided by in vitro assays and molecular docking of the opioid peptide analogues, in order to gain insight into their mode of binding to the MOR. In vitro binding and functional assays revealed the same rank order with KGOP01 > [Dmt1]DALDA > DAMGO > DALDA for both binding and MOR activation. Using molecular docking at the MOR and three-dimensional interaction pattern analysis, we have rationalized the experimental outcomes and highlighted key amino acid residues responsible for agonist binding to the MOR. The Dmt (2',6'-dimethyl-L-Tyr) moiety of [Dmt1]DALDA and KGOP01 was found to represent the driving force for their high potency and agonist activity at the MOR. These findings contribute to a deeper understanding of MOR function and flexible peptide ligand-MOR interactions, that are of significant relevance for the future design of opioid peptide-based analgesics.
Collapse
Affiliation(s)
- Maria Dumitrascuta
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria;
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany;
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium;
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany;
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria;
| |
Collapse
|
27
|
Reiss D, Maduna T, Maurin H, Audouard E, Gaveriaux-Ruff C. Mu opioid receptor in microglia contributes to morphine analgesic tolerance, hyperalgesia, and withdrawal in mice. J Neurosci Res 2020; 100:203-219. [PMID: 32253777 DOI: 10.1002/jnr.24626] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/23/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022]
Abstract
A major challenge in medicine is developing potent pain therapies without the adverse effects of opiates. Neuroinflammation and in particular microglial activation have been shown to contribute to these effects. However, the implication of the microglial mu opioid receptor (MOR) is not known. We developed a novel conditional knockout (cKO) mouse line, wherein MOR is deleted in microglia. Morphine analgesic tolerance was delayed in both sexes in cKO mice in the hot plate assay. Opioid-induced hyperalgesia (OIH) as measured in the tail immersion assay was abolished in male cKO mice, and physical dependence to morphine as assessed by naloxone-induced withdrawal was attenuated in female cKO mice. Our results show a sex-dependent contribution of microglial MOR in morphine analgesic tolerance, OIH, and physical dependence. In conclusion, our data suggest that blockade of microglial MOR could represent a therapeutic target for opiate analgesia without the opiate adverse effects.
Collapse
Affiliation(s)
- David Reiss
- Translational Medicine and Neurogenetics Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,IGBMC, Université de Strasbourg, Illkirch, France.,UMR7104, Centre National de la Recherche Scientifique, Illkirch, France.,U1258, Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | - Tando Maduna
- Translational Medicine and Neurogenetics Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,IGBMC, Université de Strasbourg, Illkirch, France.,UMR7104, Centre National de la Recherche Scientifique, Illkirch, France.,U1258, Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Neurology Research Group, Department of Physiology, Stellenbosch University, Stellenbosch, South Africa
| | - Hervé Maurin
- Translational Medicine and Neurogenetics Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,IGBMC, Université de Strasbourg, Illkirch, France.,UMR7104, Centre National de la Recherche Scientifique, Illkirch, France.,U1258, Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | - Emilie Audouard
- Translational Medicine and Neurogenetics Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,IGBMC, Université de Strasbourg, Illkirch, France.,UMR7104, Centre National de la Recherche Scientifique, Illkirch, France.,U1258, Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | - Claire Gaveriaux-Ruff
- Translational Medicine and Neurogenetics Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,IGBMC, Université de Strasbourg, Illkirch, France.,UMR7104, Centre National de la Recherche Scientifique, Illkirch, France.,U1258, Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| |
Collapse
|
28
|
Zhang T, Zhao W, Zhang M, Xu B, Shi X, Zhang Q, Guo Y, Xiao J, Chen D, Zheng T, Fang Q. Analgesic activities of the mixed opioid and NPFF receptors agonist DN-9 in a mouse model of formalin-induced orofacial inflammatory pain. Peptides 2018; 110:30-39. [PMID: 30391423 DOI: 10.1016/j.peptides.2018.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/13/2018] [Accepted: 10/29/2018] [Indexed: 11/20/2022]
Abstract
Orofacial pain is one of the most common pain conditions and compromises the quality of life of the sufferer. Several studies have shown that opioid agonists produced significant analgesia in the orofacial pain, and combination of opioids with drugs belonging to other classes induced synergism in the orofacial pain. However, combination therapy of different analgesic drugs improves the risk of drug-drug interactions. Against this background, we sought to investigate the analgesic effects of the multi-functional opioid peptide DN-9, a mixed opioid and NPFF receptors agonist that produced robust analgesia in acute and inflammatory pain models, on formalin-induced orofacial pain. Our results showed that formalin injection caused significant spontaneous pain behaviors and increased the expressions of the mu-opioid receptor, c-Fos and phosphorylated extracellular signal-regulated kinase (p-ERK1/2) in the ipsilateral trigeminal ganglion (TG). In mice pretreated with DN-9, there was a significant reduction in nociceptive behaviors, which was selectively mediated by the mu- and kappa-opioid receptors, independently of the NPFF system. Four hours after formalin injection, the level of c-Fos immunoreactivity in the ipsilateral TG neurons was much lower in mice pretreated with DN-9 or morphine. In addition, DN-9 exhibited a significant inhibition in the expression of p-ERK1/2, which was reversed by the selective antagonists of the mu- and kappa-opioid receptors. In conclusion, our present results demonstrate that central administration of DN-9 produces potential antinociceptive effects via the mu- and kappa-opioid receptors, independently of the NPFF system, and this antinociceptive action is tightly linked with the intracellular ERK activation in TG neurons.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China
| | - Weidong Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China
| | - Xuerui Shi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China
| | - Yuanyuan Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China
| | - Jian Xiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China
| | - Ting Zheng
- Department of Clinical Medicine, Gansu Health Vocational College, 60 Donggang West Road, Lanzhou 730000, China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China.
| |
Collapse
|
29
|
Martin C, Dumitrascuta M, Mannes M, Lantero A, Bucher D, Walker K, Van Wanseele Y, Oyen E, Hernot S, Van Eeckhaut A, Madder A, Hoogenboom R, Spetea M, Ballet S. Biodegradable Amphipathic Peptide Hydrogels as Extended-Release System for Opioid Peptides. J Med Chem 2018; 61:9784-9789. [DOI: 10.1021/acs.jmedchem.8b01282] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Maria Dumitrascuta
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Morgane Mannes
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Aquilino Lantero
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Dominik Bucher
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Katja Walker
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Yannick Van Wanseele
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Edith Oyen
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Sophie Hernot
- In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| |
Collapse
|
30
|
Li N, Han ZL, Xu B, Zhang MN, Zhang T, Shi XR, Zhao WD, Guo YY, Zhang QQ, Fang Q. Systemic administration of the bifunctional opioid/neuropeptide FF receptors agonist BN-9 produced peripheral antinociception in preclinical mouse models of pain. Eur J Pharmacol 2018; 837:53-63. [DOI: 10.1016/j.ejphar.2018.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 01/10/2023]
|