1
|
Liu Y, Jin F, Zhou L, Li X, Li X, Chen Q, Yang S, Sun J, Qi F. Platelet-derived Growth Factor Receptor-α Induces Contraction Knots and Inflammatory Pain-like Behavior in a Rat Model of Myofascial Trigger Points. Anesthesiology 2024; 141:929-945. [PMID: 39058323 PMCID: PMC11463032 DOI: 10.1097/aln.0000000000005167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Myofascial trigger points (MTrPs) are the primary etiological characteristics of chronic myofascial pain syndrome. Receptor tyrosine kinases (RTKs) are associated with signal transduction in the central mechanisms of chronic pain, but the role of RTKs in the peripheral mechanisms of MTrPs remains unclear. The current study aimed to identify RTKs expression in MTrPs and elucidate the molecular mechanisms through which platelet-derived growth factor receptor-α (PDGFR-α) induces contraction knots and inflammatory pain-like behavior in a rat model of myofascial trigger points. METHODS MTrPs tissue samples were obtained from the trapezius muscles of patients with myofascial pain syndrome through needle biopsy, and PDGFR-α activation was analyzed by microarray, enzyme-linked immunosorbent assay, and histological staining. Sprague-Dawley rats (male and female) were used to investigate PDGFR-α signaling, assessing pain-like behaviors with Randall-Selitto and nest-building tests. Muscle fiber and sarcomere morphologies were observed using histology and electron microscopy. The PDGFR-α binding protein was identified by coimmunoprecipitation, liquid chromatograph mass spectrometer, and molecular docking. PDGFR-α-related protein or gene levels, muscle contraction, and inflammatory markers were determined by Western blot and reverse-transcription quantitative polymerase chain reaction. RESULTS PDGFR-α phosphorylation levels were elevated in the MTrPs tissues of individuals with trapezius muscle pain and were positively correlated with pain intensity. In rats, PDGFR-α activation caused pain-like behaviors and muscle contraction via the Janus kinase 2/signal transducer and activator of transcription-3 (JAK2/STAT3) pathway. JAK2/STAT3 inhibitors reversed the pain-like behaviors and muscle contraction induced by PDGFR-α activation. Collagen type I α 1 (COL1A1) binds to PDGFR-α and promotes its phosphorylation, which contributed to pain-like behaviors and muscle contraction. CONCLUSIONS COL1A1-induced phosphorylation of PDGFR-α and the subsequent activation of the JAK2/STAT3 pathway may induce dysfunctional muscle contraction and increased nociception at MTrPs. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Yu Liu
- Department of Anesthesiology, and Research Center for Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feihong Jin
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lingwei Zhou
- Department of Anesthesiology, and Research Center for Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuan Li
- Department of Anesthesiology, and Research Center for Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoyue Li
- Department of Anesthesiology, and Research Center for Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qinghe Chen
- Department of Anesthesiology, and Research Center for Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaozhong Yang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jintang Sun
- Research Center for Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, China
| | - Feng Qi
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
2
|
Chaker SC, Saad M, Mayes T, Lineaweaver WC. Burn Injury-related Growth Factor Expressions and Their Potential Roles in Burn-related Neuropathies. J Burn Care Res 2024; 45:25-31. [PMID: 37978864 DOI: 10.1093/jbcr/irad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 11/19/2023]
Abstract
In the context of burn injury, growth factors (GFs) play a significant role in mediating the complex local and systematic processes that occur. Among the many systemic complications that arise following a burn injury, peripheral neuropathy remains one of the most common. Despite the broad understanding of the effects GFs have on multiple tissues, their potential implications in both wound healing and neuropathy remain largely unexplored. Therefore, this review aims to investigate the expression patterns of GFs prominent during the burn wound healing process and explore the potential contributions these GFs have on the development of burn-related peripheral neuropathy.
Collapse
Affiliation(s)
- Sara C Chaker
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232USA
| | - Mariam Saad
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232USA
| | - Taylor Mayes
- Middle Tennessee State University, Murfreesboro, TN, 37132USA
| | - William C Lineaweaver
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232USA
| |
Collapse
|
3
|
Saloman JL, Li Y, Stello K, Li W, Li S, Phillips AE, Hall K, Fogel EL, Vege SS, Li L, Andersen DK, Fisher WE, Forsmark CE, Hart PA, Pandol SJ, Park WG, Topazian MD, Van Den Eeden SK, Serrano J, Conwell DL, Yadav D. Serum Biomarkers of Nociceptive and Neuropathic Pain in Chronic Pancreatitis. THE JOURNAL OF PAIN 2023; 24:2199-2210. [PMID: 37451493 PMCID: PMC10787046 DOI: 10.1016/j.jpain.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Debilitating abdominal pain is a common symptom affecting most patients with chronic pancreatitis (CP). There are multiple underlying mechanisms that contribute to CP-related pain, which makes successful treatment difficult. The identification of biomarkers for subtypes of pain could provide viable targets for nonopioid interventions and the development of mechanistic approaches to pain management in CP. Nineteen inflammation- and nociception-associated proteins were measured in serum collected from 358 subjects with definite CP enrolled in PROspective Evaluation of Chronic Pancreatitis for EpidEmiologic and Translational StuDies, a prospective observational study of pancreatitis in US adult subjects. First, serum levels of putative biomarkers were compared between CP subjects with and without pain. Only platelet-derived growth factor B (PDGF-B) stood out, with levels significantly higher in the CP pain group as compared to subjects with no pain. Subjects with pain were then stratified into 4 pain subtypes (Neuropathic, Nociceptive, Mixed, and Unclassified). A comparison of putative biomarker concentration among 5 groups (no pain and 4 pain subtypes) identified unique proteins that were correlated with pain subtypes. Serum transforming growth factor beta 1 (TGFβ1) level was significantly higher in the Nociceptive pain group compared to the No pain group, suggesting that TGFβ1 may be a biomarker for nociceptive pain. The Neuropathic pain only group was too small to detect statistical differences. However, glycoprotein 130 (GP130), a coreceptor for interleukin 6, was significantly higher in the Mixed pain group compared to the groups lacking a neuropathic pain component. These data suggest that GP130 may be a biomarker for neuropathic pain in CP. PERSPECTIVE: Serum TGFβ1 and GP130 may be biomarkers for nociceptive and neuropathic CP pain, respectively. Preclinical data suggest inhibiting TGFβ1 or GP130 reduces CP pain in rodent models, indicating that additional translational and clinical studies may be warranted to develop a precision medicine approach to the management of pain in CP.
Collapse
Affiliation(s)
- Jami L. Saloman
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, PA, USA
- Pittsburgh Center for Pain Research, School of Medicine, University of Pittsburgh, PA, USA
- Department of Neurobiology, School of Medicine, University of Pittsburgh, PA, USA
| | - Yan Li
- Department of Biostatistics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Kimberly Stello
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, PA, USA
| | - Wenhao Li
- Department of Biostatistics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Shuang Li
- Department of Biostatistics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Anna Evans Phillips
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, PA, USA
| | - Kristen Hall
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, PA, USA
| | - Evan L. Fogel
- Digestive and Liver Disorders, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | | | - Liang Li
- Department of Biostatistics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Dana K. Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - William E. Fisher
- Division of General Surgery, Baylor College of Medicine, Houston, TX
| | - Christopher E. Forsmark
- Division of Gastroenterology, Hepatology, and Nutrition. University of Florida, Gainesville, FL
| | - Phil A. Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Stephen J. Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Walter G. Park
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Mark D. Topazian
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | | | - Jose Serrano
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Darwin L. Conwell
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Dhiraj Yadav
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, PA, USA
| |
Collapse
|
4
|
Caspi Y, Mazar M, Kushnir Y, Mazor Y, Katz B, Lev S, Binshtok AM. Structural plasticity of axon initial segment in spinal cord neurons underlies inflammatory pain. Pain 2023; 164:1388-1401. [PMID: 36645177 DOI: 10.1097/j.pain.0000000000002829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/19/2022] [Indexed: 01/17/2023]
Abstract
ABSTRACT Physiological or pathology-mediated changes in neuronal activity trigger structural plasticity of the action potential generation site-the axon initial segment (AIS). These changes affect intrinsic neuronal excitability, thus tuning neuronal and overall network output. Using behavioral, immunohistochemical, electrophysiological, and computational approaches, we characterized inflammation-related AIS plasticity in rat's superficial (lamina II) spinal cord dorsal horn (SDH) neurons and established how AIS plasticity regulates the activity of SDH neurons, thus contributing to pain hypersensitivity. We show that in naive conditions, AIS in SDH inhibitory neurons is located closer to the soma than in excitatory neurons. Shortly after inducing inflammation, when the inflammatory hyperalgesia is at its peak, AIS in inhibitory neurons is shifted distally away from the soma. The shift in AIS location is accompanied by the decrease in excitability of SDH inhibitory neurons. These AIS location and excitability changes are selective for inhibitory neurons and reversible. We show that AIS shift back close to the soma, and SDH inhibitory neurons' excitability increases to baseline levels following recovery from inflammatory hyperalgesia. The computational model of SDH inhibitory neurons predicts that the distal shift of AIS is sufficient to decrease the intrinsic excitability of these neurons. Our results provide evidence of inflammatory pain-mediated AIS plasticity in the central nervous system, which differentially affects the excitability of inhibitory SDH neurons and contributes to inflammatory hyperalgesia.
Collapse
Affiliation(s)
- Yaki Caspi
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Mazar
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yishai Kushnir
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoav Mazor
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
| | - Ben Katz
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander M Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Puig S, Gutstein HB. Chronic Morphine Modulates PDGFR-β and PDGF-B Expression and Distribution in Dorsal Root Ganglia and Spinal Cord in Male Rats. Neuroscience 2023; 519:147-161. [PMID: 36997020 DOI: 10.1016/j.neuroscience.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
The analgesic effect of opioids decreases over time due to the development of analgesic tolerance. We have shown that inhibition of the platelet-derived growth factor beta (PDGFR-β) signaling eliminates morphine analgesic tolerance in rats. Although the PDGFR-β and its ligand, the platelet-derived growth factor type B (PDGF-B), are expressed in the substantia gelatinosa of the spinal cord (SG) and in the dorsal root ganglia (DRG), their precise distribution within different cell types of these structures is unknown. Additionally, the impact of a tolerance-mediating chronic morphine treatment, on the expression and distribution of PDGF-B and PDGFR-β has not yet been studied. Using immunohistochemistry (IHC), we found that in the spinal cord, PDGFR-β and PDGF-B were expressed in neurons and oligodendrocytes and co-localized with the mu-opioid receptor (MOPr) in opioid naïve rats. PDGF-B was also found in microglia and astrocytes. Both PDGFR-β and PDGF-B were detected in DRG neurons but not in spinal primary afferent terminals. Chronic morphine exposure did not change the cellular distribution of PDGFR-β or PDGF-B. However, PDGFR-β expression was downregulated in the SG and upregulated in the DRG. Consistent with our previous finding that morphine caused tolerance by inducing PDGF-B release, PDGF-B was upregulated in the spinal cord. We also found that chronic morphine exposure caused a spinal proliferation of oligodendrocytes. The changes in PDGFR-β and PDGF-B expression induced by chronic morphine treatment suggest potential mechanistic substrates underlying opioid tolerance.
Collapse
Affiliation(s)
- Stephanie Puig
- Department of Pharmacology and Physiology, Boston University School of Medicine, Boston, 02118 MA, USA
| | - Howard B Gutstein
- Department of Anesthesiology, University of Connecticut Health Science Center, Farmington, 06030 CT, USA.
| |
Collapse
|
6
|
Encoding of inflammatory hyperalgesia in mouse spinal cord. Pain 2023; 164:443-460. [PMID: 36149026 DOI: 10.1097/j.pain.0000000000002727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Inflammation modifies the input-output properties of peripheral nociceptive neurons such that the same stimulus produces enhanced nociceptive firing. This increased nociceptive output enters the superficial dorsal spinal cord (SDH), an intricate neuronal network composed largely of excitatory and inhibitory interneurons and a small percentage of projection neurons. The SDH network comprises the first central nervous system network integrating noxious information. Using in vivo calcium imaging and a computational approach, we characterized the responsiveness of the SDH network in mice to noxious stimuli in normal conditions and investigated the changes in SDH response patterns after acute burn injury-induced inflammation. We show that the application of noxious heat stimuli to the hind paw of naïve mice results in an overall increase in SDH network activity. Single-cell response analysis reveals that 70% of recorded neurons increase or suppress their activity, while ∼30% of neurons remain nonresponsive. After acute burn injury and the development of inflammatory hyperalgesia, application of the same noxious heat stimuli leads to the activation of previously nonresponding neurons and desuppression of suppressed neurons. We further demonstrate that an increase in afferent activity mimics the response of the SDH network to noxious heat stimuli under inflammatory conditions. Using a computational model of the SDH network, we predict that the changes in SDH network activity result in overall increased activity of excitatory neurons, amplifying the output from SDH to higher brain centers. We suggest that during acute local peripheral inflammation, the SDH network undergoes dynamic changes promoting hyperalgesia.
Collapse
|
7
|
Platelet Membrane Proteins as Pain Biomarkers in Patients with Severe Dementia. Biomedicines 2023; 11:biomedicines11020380. [PMID: 36830917 PMCID: PMC9953643 DOI: 10.3390/biomedicines11020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Pain is one of the most frequent health problems, and its evaluation and therapeutic approach largely depend on patient self-report. When it is not possible to obtain a self-report, the therapeutic decision becomes more difficult and limited. This study aims to evaluate whether some membrane platelet proteins could be of value in pain characterization. To achieve this goal, we used 53 blood samples obtained from palliative patients, 44 with non-oncological pain and nine without pain. We observed in patients with pain a decrease in the percentage of platelets expressing CD36, CD49f, and CD61 and in the expression levels of CD49f and CD61 when compared with patients without pain. Besides that, an increase in the percentage of platelets expressing CD62p was observed in patients with pain. These results suggest that the levels of these platelet cluster differentiations (CDs) could have some value as pain biomarkers objectively since they are not dependent on the patient's participation. Likewise, CD40 seems to have some importance as a biomarker of moderate and/or severe pain. The identification of pain biomarkers such as CD40, CD49f, CD62p and CD61 can lead to an adjustment of the therapeutic strategy, contributing to a faster and more adequate control of pain and reduction in patient-associated suffering.
Collapse
|
8
|
Li Z, Weng X. Platelet-rich plasma use in meniscus repair treatment: a systematic review and meta-analysis of clinical studies. J Orthop Surg Res 2022; 17:446. [PMID: 36209223 PMCID: PMC9548158 DOI: 10.1186/s13018-022-03293-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 08/20/2022] [Indexed: 11/15/2022] Open
Abstract
Background There is conflicting clinical evidence whether platelet-rich plasma (PRP) therapies could translate to an increased meniscus healing rate and improved functional outcomes. The objective of this systematic review and meta-analysis was to compare the failure rate and patient-reported functional outcomes in meniscus repair augmented with and without PRP. Methods We comprehensively searched the PubMed, Web of Science, Medline, Embase, and Cochrane Library databases to identify studies that compared the clinical efficacy of meniscus repair performed with PRP versus without PRP. The primary outcome was the meniscus repair failure rate, while the secondary outcomes were knee-specific patient-reported outcomes, including the International Knee Documentation Committee (IKDC) score, Lysholm knee scale, visual analog scale, Tegner activity level score, Western Ontario and McMaster Universities Osteoarthritis Index score, Single Assessment Numeric Evaluation score, and Knee injury and Osteoarthritis Outcome Score. Furthermore, subgroup analyses were performed by stratifying the studies according to the PRP preparation technique to investigate the potential sources of heterogeneity among studies. Results Our meta-analysis included nine studies (two RCTs and seven non-RCTs) with 1164 participants. The failure rate in the PRP group was significantly lower than that in the non-PRP group [odds ratio: 0.64, 95% confidence interval (CI) (0.42, 0.96), P = 0.03]. Furthermore, the PRP group was associated with a statistically significant improvement in the visual analog scale for pain [Mean difference (MD): − 0.76, 95% CI (− 1.32, − 0.21), P = 0.007] and Knee injury and Osteoarthritis Outcome Score-symptom [MD: 8.02, 95% CI (2.99, 13.05), P = 0.002] compared with the non-PRP group. However, neither the IKDC score nor the Lysholm knee scale showed any differences between the two groups. In addition, the results of subgroup analyses favored PRP over platelet-rich fibrin matrix (PRFM) regarding the IKDC score. Conclusions Although meniscus repairs augmented with PRP led to significantly lower failure rates and better postoperative pain control compared with those of the non-PRP group, there is insufficient RCT evidence to support PRP augmentation of meniscus repair improving functional outcomes. Moreover, PRP could be recommended in meniscus repair augmentation compared with PRFM. PRFM was shown to have no benefit in improving functional outcomes.
Collapse
Affiliation(s)
- Ziquan Li
- Department of Orthopedic Surgery, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Beijing, 100730, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Xisheng Weng
- Department of Orthopedic Surgery, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Beijing, 100730, China. .,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|
9
|
Tuttle AM, Pomaville MB, Delgado KC, Wright KM, Nechiporuk AV. c-Kit Receptor Maintains Sensory Axon Innervation of the Skin through Src Family Kinases. J Neurosci 2022; 42:6835-6847. [PMID: 35882558 PMCID: PMC9464017 DOI: 10.1523/jneurosci.0618-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Peripheral somatosensory neurons innervate the skin and sense the environment. Whereas many studies focus on initial axon outgrowth and pathfinding, how signaling pathways contribute to maintenance of the established axon arbors and terminals within the skin is largely unknown. This question is particularly relevant to the many types of neuropathies that affect mature neuronal arbors. We show that a receptor tyrosine kinase (RTK), c-Kit, contributes to maintenance, but not initial development, of cutaneous axons in the larval zebrafish before sex determination. Downregulation of Kit signaling rapidly induced retraction of established axon terminals in the skin and a reduction in axonal density. Conversely, misexpression of c-Kit ligand in the skin in larval zebrafish induced increases in local sensory axon density, suggesting an important role for Kit signaling in cutaneous axon maintenance. We found Src family kinases (SFKs) act directly downstream to mediate Kit's role in regulating cutaneous axon density. Our data demonstrate a requirement for skin-to-axon signaling to maintain axonal networks and elucidate novel roles for Kit and SFK signaling in this context. This Kit-SFK signaling axis offers a potential pathway to therapeutically target in sensory neuropathies and to further explore in other neurobiological processes.SIGNIFICANCE STATEMENT The skin is full of small nerve endings that sense different environmental stimuli. How these nerve endings grow and reach a specific area of the skin during development has been the focus of many studies. In contrast, the cellular and molecular mechanisms required to maintain the function and health of these structures is relatively unknown. We discovered that a specific receptor in sensory neurons, c-Kit, is required to maintain the density of nerve endings in the skin. Furthermore, we found that a molecular target of c-Kit, Src family kinases (SFKs), is necessary for this role. Thus, c-Kit/SFK signaling regulates density and maintenance of sensory nerve endings in the skin and may have important roles in neural disease and regeneration.
Collapse
Affiliation(s)
- Adam M Tuttle
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Matthew B Pomaville
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, Oregon 97239
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - Katherine C Delgado
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Kevin M Wright
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - Alex V Nechiporuk
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
10
|
Genetic analyses identify pleiotropy and causality for blood proteins and highlight Wnt/β-catenin signalling in migraine. Nat Commun 2022; 13:2593. [PMID: 35546551 PMCID: PMC9095680 DOI: 10.1038/s41467-022-30184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Migraine is a common complex disorder with a significant polygenic SNP heritability (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${h}_{{SNP}}^{2}$$\end{document}hSNP2). Here we utilise genome-wide association study (GWAS) summary statistics to study pleiotropy between blood proteins and migraine under the polygenic model. We estimate \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${h}_{{SNP}}^{2}$$\end{document}hSNP2 for 4625 blood protein GWASs and identify 325 unique proteins with a significant \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${h}_{{SNP}}^{2}$$\end{document}hSNP2 for use in subsequent genetic analyses. Pleiotropy analyses link 58 blood proteins to migraine risk at genome-wide, gene and/or single-nucleotide polymorphism levels—suggesting shared genetic influences or causal relationships. Notably, the identified proteins are largely distinct from migraine GWAS loci. We show that higher levels of DKK1 and PDGFB, and lower levels of FARS2, GSTA4 and CHIC2 proteins have a significant causal effect on migraine. The risk-increasing effect of DKK1 is particularly interesting—indicating a role for downregulation of β-catenin-dependent Wnt signalling in migraine risk, suggesting Wnt activators that restore Wnt/β-catenin signalling in brain could represent therapeutic tools against migraine. Understanding of the causes and treatment of migraine is incomplete. Here, the authors detect pleiotropic genetic effects and causal relationships between migraine and 58 proteins that are largely distinct from migraine-associated loci identified by GWAS.
Collapse
|
11
|
Alles SRA, Smith PA. Peripheral Voltage-Gated Cation Channels in Neuropathic Pain and Their Potential as Therapeutic Targets. FRONTIERS IN PAIN RESEARCH 2021; 2:750583. [PMID: 35295464 PMCID: PMC8915663 DOI: 10.3389/fpain.2021.750583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
The persistence of increased excitability and spontaneous activity in injured peripheral neurons is imperative for the development and persistence of many forms of neuropathic pain. This aberrant activity involves increased activity and/or expression of voltage-gated Na+ and Ca2+ channels and hyperpolarization activated cyclic nucleotide gated (HCN) channels as well as decreased function of K+ channels. Because they display limited central side effects, peripherally restricted Na+ and Ca2+ channel blockers and K+ channel activators offer potential therapeutic approaches to pain management. This review outlines the current status and future therapeutic promise of peripherally acting channel modulators. Selective blockers of Nav1.3, Nav1.7, Nav1.8, Cav3.2, and HCN2 and activators of Kv7.2 abrogate signs of neuropathic pain in animal models. Unfortunately, their performance in the clinic has been disappointing; some substances fail to meet therapeutic end points whereas others produce dose-limiting side effects. Despite this, peripheral voltage-gated cation channels retain their promise as therapeutic targets. The way forward may include (i) further structural refinement of K+ channel activators such as retigabine and ASP0819 to improve selectivity and limit toxicity; use or modification of Na+ channel blockers such as vixotrigine, PF-05089771, A803467, PF-01247324, VX-150 or arachnid toxins such as Tap1a; the use of Ca2+ channel blockers such as TTA-P2, TTA-A2, Z 944, ACT709478, and CNCB-2; (ii) improving methods for assessing "pain" as opposed to nociception in rodent models; (iii) recognizing sex differences in pain etiology; (iv) tailoring of therapeutic approaches to meet the symptoms and etiology of pain in individual patients via quantitative sensory testing and other personalized medicine approaches; (v) targeting genetic and biochemical mechanisms controlling channel expression using anti-NGF antibodies such as tanezumab or re-purposed drugs such as vorinostat, a histone methyltransferase inhibitor used in the management of T-cell lymphoma, or cercosporamide a MNK 1/2 inhibitor used in treatment of rheumatoid arthritis; (vi) combination therapy using drugs that are selective for different channel types or regulatory processes; (vii) directing preclinical validation work toward the use of human or human-derived tissue samples; and (viii) application of molecular biological approaches such as clustered regularly interspaced short palindromic repeats (CRISPR) technology.
Collapse
Affiliation(s)
- Sascha R A Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Peter A Smith
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Zhang P, Perez OC, Southey BR, Sweedler JV, Pradhan AA, Rodriguez-Zas SL. Alternative Splicing Mechanisms Underlying Opioid-Induced Hyperalgesia. Genes (Basel) 2021; 12:1570. [PMID: 34680965 PMCID: PMC8535871 DOI: 10.3390/genes12101570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/19/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Prolonged use of opioids can cause opioid-induced hyperalgesia (OIH). The impact of alternative splicing on OIH remains partially characterized. A study of the absolute and relative modes of action of alternative splicing further the understanding of the molecular mechanisms underlying OIH. Differential absolute and relative isoform profiles were detected in the trigeminal ganglia and nucleus accumbens of mice presenting OIH behaviors elicited by chronic morphine administration relative to control mice. Genes that participate in glutamatergic synapse (e.g., Grip1, Grin1, Wnk3), myelin protein processes (e.g., Mbp, Mpz), and axon guidance presented absolute and relative splicing associated with OIH. Splicing of genes in the gonadotropin-releasing hormone receptor pathway was detected in the nucleus accumbens while splicing in the vascular endothelial growth factor, endogenous cannabinoid signaling, circadian clock system, and metabotropic glutamate receptor pathways was detected in the trigeminal ganglia. A notable finding was the prevalence of alternatively spliced transcription factors and regulators (e.g., Ciart, Ablim2, Pbx1, Arntl2) in the trigeminal ganglia. Insights into the nociceptive and antinociceptive modulatory action of Hnrnpk were gained. The results from our study highlight the impact of alternative splicing and transcriptional regulators on OIH and expose the need for isoform-level research to advance the understanding of morphine-associated hyperalgesia.
Collapse
Affiliation(s)
- Pan Zhang
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Olivia C. Perez
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (O.C.P.); (B.R.S.)
| | - Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (O.C.P.); (B.R.S.)
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Amynah A. Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Sandra L. Rodriguez-Zas
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (O.C.P.); (B.R.S.)
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
13
|
The Efficacy and Safety of Glucocorticoid on Periarticular Infiltration Analgesia in Total Knee Arthroplasty: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Arthroplasty 2021; 36:3340-3350. [PMID: 33926778 DOI: 10.1016/j.arth.2021.03.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The objective of this systematic review and meta-analysis was to examine the effect and safety of multimodal cocktail protocols implemented with or without glucocorticoids on periarticular infiltration analgesia (PIA) in patients undergoing total knee arthroplasty (TKA). METHODS We comprehensively searched the PubMed, Medline, Embase, and Cochrane Library databases up to November 2020 for randomized controlled trials on glucocorticoids as a component of the cocktail protocol used in PIA for patients with TKA. RESULTS Our meta-analysis included 11 randomized controlled trial studies with 1051 primary TKAs (930 patients). Visual analog scale scores at postoperative day (POD) 1 and POD 2 in the glucocorticoid groups were significantly lower than those in the control group (95% CI [-1.01--0.10], P = .02; 95% CI [-0.51--0.13], P = .001). Furthermore, the glucocorticoid group was associated with a statistically significant improvement in the range of motion at POD 1 (95% CI [3.20-8.05] P < .00001), reduction in total morphine consumption at 24 hours, and lower levels of C-reactive protein on POD 2/3 compared with the control group. However, neither the length of hospital stays nor the long-term Knee Society Knee Score showed any differences between the two groups. In addition, the results of subgroup analyses favored triamcinolone acetonide over betamethasone, methylprednisolone, and dexamethasone regarding the postoperative visual analog scale scores and range of motion. CONCLUSION Glucocorticoid supplementation in PIA is effective and does not increase complications or side effects for patients with either unilateral or bilateral TKA. Moreover, triamcinolone acetonide could be recommended in multimodal cocktail protocols for glucocorticoid supplementation.
Collapse
|
14
|
Belair DG, Sudak K, Connelly K, Collins ND, Kopytek SJ, Kolaja KL. Investigation Into the Role of ERK in Tyrosine Kinase Inhibitor-Induced Neuropathy. Toxicol Sci 2021; 181:160-174. [PMID: 33749749 DOI: 10.1093/toxsci/kfab033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common and debilitating adverse event that can alter patient treatment options and halt candidate drug development. A case study is presented here describing the preclinical and clinical development of CC-90003, a small molecule extracellular signal-regulated kinase (ERK)1/2 inhibitor investigated as an oncology therapy. In a Phase Ia clinical trial, CC-90003 elicited adverse drug-related neuropathy and neurotoxicity that contributed to discontinued development of CC-90003 for oncology therapy. Preclinical evaluation of CC-90003 in dogs revealed clinical signs and electrophysiological changes consistent with peripheral neuropathy that was reversible. Mice did not exhibit signs of neuropathy upon daily dosing with CC-90003, supporting that rodents generally poorly predict CIPN. We sought to investigate the mechanism of CC-90003-induced peripheral neuropathy using a phenotypic in vitro assay. Translating preclinical neuropathy findings to humans proves challenging as no robust in vitro models of CIPN exist. An approach was taken to examine the influence of CIPN-associated drugs on human-induced pluripotent stem cell-derived peripheral neuron (hiPSC-PN) electrophysiology on multielectrode arrays (MEAs). The MEA assay with hiPSC-PNs was sensitive to CIPN-associated drugs cisplatin, sunitinib, colchicine, and importantly, to CC-90003 in concordance with clinical neuropathy incidence. Biochemical data together with in vitro MEA data for CC-90003 and 12 of its structural analogs, all having similar ERK inhibitory activity, revealed that CC-90003 disrupted in vitro neuronal electrophysiology likely via on-target ERK inhibition combined with off-target kinase inhibition and translocator protein inhibition. This approach could prove useful for assessing CIPN risk and interrogating mechanisms of drug-induced neuropathy.
Collapse
Affiliation(s)
- David G Belair
- Nonclinical Safety, Bristol Myers Squibb (formerly Celgene), Summit, New Jersey 07901, USA
| | - Katelyn Sudak
- Nonclinical Safety, Bristol Myers Squibb (formerly Celgene), Summit, New Jersey 07901, USA
| | - Kimberly Connelly
- Nonclinical Safety, Bristol Myers Squibb (formerly Celgene), Summit, New Jersey 07901, USA
| | - Nathaniel D Collins
- Nonclinical Safety, Bristol Myers Squibb (formerly Celgene), Summit, New Jersey 07901, USA
| | - Stephan J Kopytek
- Nonclinical Safety, Bristol Myers Squibb (formerly Celgene), Summit, New Jersey 07901, USA
| | - Kyle L Kolaja
- Nonclinical Safety, Bristol Myers Squibb (formerly Celgene), Summit, New Jersey 07901, USA
| |
Collapse
|
15
|
Borges JP, Mekhail K, Fairn GD, Antonescu CN, Steinberg BE. Modulation of Pathological Pain by Epidermal Growth Factor Receptor. Front Pharmacol 2021; 12:642820. [PMID: 34054523 PMCID: PMC8149758 DOI: 10.3389/fphar.2021.642820] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic pain has been widely recognized as a major public health problem that impacts multiple aspects of patient quality of life. Unfortunately, chronic pain is often resistant to conventional analgesics, which are further limited by their various side effects. New therapeutic strategies and targets are needed to better serve the millions of people suffering from this devastating disease. To this end, recent clinical and preclinical studies have implicated the epidermal growth factor receptor signaling pathway in chronic pain states. EGFR is one of four members of the ErbB family of receptor tyrosine kinases that have key roles in development and the progression of many cancers. EGFR functions by activating many intracellular signaling pathways following binding of various ligands to the receptor. Several of these signaling pathways, such as phosphatidylinositol 3-kinase, are known mediators of pain. EGFR inhibitors are known for their use as cancer therapeutics but given recent evidence in pilot clinical and preclinical investigations, may have clinical use for treating chronic pain. Here, we review the clinical and preclinical evidence implicating EGFR in pathological pain states and provide an overview of EGFR signaling highlighting how EGFR and its ligands drive pain hypersensitivity and interact with important pain pathways such as the opioid system.
Collapse
Affiliation(s)
- Jazlyn P Borges
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Katrina Mekhail
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Gregory D Fairn
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Costin N Antonescu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Benjamin E Steinberg
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
16
|
Lanzoni G, Linetsky E, Correa D, Messinger Cayetano S, Alvarez RA, Kouroupis D, Alvarez Gil A, Poggioli R, Ruiz P, Marttos AC, Hirani K, Bell CA, Kusack H, Rafkin L, Baidal D, Pastewski A, Gawri K, Leñero C, Mantero AMA, Metalonis SW, Wang X, Roque L, Masters B, Kenyon NS, Ginzburg E, Xu X, Tan J, Caplan AI, Glassberg MK, Alejandro R, Ricordi C. Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase 1/2a, randomized controlled trial. Stem Cells Transl Med 2021; 10:660-673. [PMID: 33400390 PMCID: PMC8046040 DOI: 10.1002/sctm.20-0472] [Citation(s) in RCA: 248] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/22/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) in COVID-19 is associated with high mortality. Mesenchymal stem cells are known to exert immunomodulatory and anti-inflammatory effects and could yield beneficial effects in COVID-19 ARDS. The objective of this study was to determine safety and explore efficacy of umbilical cord mesenchymal stem cell (UC-MSC) infusions in subjects with COVID-19 ARDS. A double-blind, phase 1/2a, randomized, controlled trial was performed. Randomization and stratification by ARDS severity was used to foster balance among groups. All subjects were analyzed under intention to treat design. Twenty-four subjects were randomized 1:1 to either UC-MSC treatment (n = 12) or the control group (n = 12). Subjects in the UC-MSC treatment group received two intravenous infusions (at day 0 and 3) of 100 ± 20 × 106 UC-MSCs; controls received two infusions of vehicle solution. Both groups received best standard of care. Primary endpoint was safety (adverse events [AEs]) within 6 hours; cardiac arrest or death within 24 hours postinfusion). Secondary endpoints included patient survival at 31 days after the first infusion and time to recovery. No difference was observed between groups in infusion-associated AEs. No serious adverse events (SAEs) were observed related to UC-MSC infusions. UC-MSC infusions in COVID-19 ARDS were found to be safe. Inflammatory cytokines were significantly decreased in UC-MSC-treated subjects at day 6. Treatment was associated with significantly improved patient survival (91% vs 42%, P = .015), SAE-free survival (P = .008), and time to recovery (P = .03). UC-MSC infusions are safe and could be beneficial in treating subjects with COVID-19 ARDS.
Collapse
Affiliation(s)
- Giacomo Lanzoni
- Diabetes Research Institute, Cell Transplant CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Elina Linetsky
- Diabetes Research Institute, Cell Transplant CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Department of SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Diego Correa
- Diabetes Research Institute, Cell Transplant CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Department of Orthopedics, UHealth Sports Medicine InstituteUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Shari Messinger Cayetano
- Division of Biostatistics, Department of Public Health SciencesUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Roger A. Alvarez
- Department of MedicineUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- University of Miami Health SystemMiamiFloridaUSA
| | - Dimitrios Kouroupis
- Diabetes Research Institute, Cell Transplant CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Ana Alvarez Gil
- Diabetes Research Institute, Cell Transplant CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Raffaella Poggioli
- Diabetes Research Institute, Cell Transplant CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Phillip Ruiz
- Department of SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Antonio C. Marttos
- Department of MedicineUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- University of Miami Health SystemMiamiFloridaUSA
- Jackson Health SystemMiamiFloridaUSA
| | - Khemraj Hirani
- Diabetes Research Institute, Cell Transplant CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Department of MedicineUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Crystal A. Bell
- Department of MedicineUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Halina Kusack
- Department of MedicineUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Lisa Rafkin
- Diabetes Research Institute, Cell Transplant CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - David Baidal
- Diabetes Research Institute, Cell Transplant CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Department of MedicineUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- University of Miami Health SystemMiamiFloridaUSA
| | | | - Kunal Gawri
- Department of MedicineUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- University of Miami Health SystemMiamiFloridaUSA
| | - Clarissa Leñero
- Diabetes Research Institute, Cell Transplant CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Alejandro M. A. Mantero
- Division of Biostatistics, Department of Public Health SciencesUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Sarah W. Metalonis
- Division of Biostatistics, Department of Public Health SciencesUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Xiaojing Wang
- Diabetes Research Institute, Cell Transplant CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Luis Roque
- Diabetes Research Institute, Cell Transplant CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Burlett Masters
- Diabetes Research Institute, Cell Transplant CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Norma S. Kenyon
- Diabetes Research Institute, Cell Transplant CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Enrique Ginzburg
- Department of SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- University of Miami Health SystemMiamiFloridaUSA
- Jackson Health SystemMiamiFloridaUSA
| | - Xiumin Xu
- Diabetes Research Institute, Cell Transplant CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Jianming Tan
- The Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanPeople's Republic of China
| | - Arnold I. Caplan
- Skeletal Research CenterCase Western Reserve UniversityClevelandOhioUSA
| | | | - Rodolfo Alejandro
- Diabetes Research Institute, Cell Transplant CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Department of MedicineUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- University of Miami Health SystemMiamiFloridaUSA
| | - Camillo Ricordi
- Diabetes Research Institute, Cell Transplant CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Department of SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| |
Collapse
|
17
|
Wangzhou A, Paige C, Neerukonda SV, Naik DK, Kume M, David ET, Dussor G, Ray PR, Price TJ. A ligand-receptor interactome platform for discovery of pain mechanisms and therapeutic targets. Sci Signal 2021; 14:14/674/eabe1648. [PMID: 33727337 DOI: 10.1126/scisignal.abe1648] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the peripheral nervous system, ligand-receptor interactions between cells and neurons shape sensory experience, including pain. We set out to identify the potential interactions between sensory neurons and peripheral cell types implicated in disease-associated pain. Using mouse and human RNA sequencing datasets and computational analysis, we created interactome maps between dorsal root ganglion (DRG) sensory neurons and an array of normal cell types, as well as colitis-associated glial cells, rheumatoid arthritis-associated synovial macrophages, and pancreatic tumor tissue. These maps revealed a common correlation between the abundance of heparin-binding EGF-like growth factor (HBEGF) in peripheral cells with that of its receptor EGFR (a member of the ErbB family of receptors) in DRG neurons. Subsequently, we confirmed that increased abundance of HBEGF enhanced nociception in mice, likely acting on DRG neurons through ErbB family receptors. Collectively, these interactomes highlight ligand-receptor interactions that may lead to treatments for disease-associated pain and, furthermore, reflect the complexity of cell-to-neuron signaling in chronic pain states.
Collapse
Affiliation(s)
- Andi Wangzhou
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Candler Paige
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Sanjay V Neerukonda
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Dhananjay K Naik
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Moeno Kume
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Eric T David
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Pradipta R Ray
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA.
| | - Theodore J Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA.
| |
Collapse
|
18
|
Xu M, Wu R, Zhang L, Zhu HY, Xu GY, Qian W, Zhang PA. Decreased MiR-485-5p Contributes to Inflammatory Pain Through Post-Transcriptional Upregulation of ASIC1 in Rat Dorsal Root Ganglion. J Pain Res 2020; 13:3013-3022. [PMID: 33239909 PMCID: PMC7682601 DOI: 10.2147/jpr.s279902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/22/2020] [Indexed: 12/31/2022] Open
Abstract
Background Inflammatory pain is the most common type of pain treated clinically. However, the currently available treatments for inflammatory pain have limited effects and can cause severe side effects. The aim of this study is to describe the effect of miRNA-485-5p on osteoarthritis-related inflammatory pain. Methods Paw withdrawal threshold (PWT) of rats was measured by von Frey filaments. The expressions of miRNA-485-5p and acid-sensing ion channel 1 (ASIC1) in the dorsal root ganglion (DRG) were measured with real-time quantitative PCR and Western blotting analysis. Fluorescent in situ hybridization and fluorescent immunohistochemistry were employed to detect expression of miRNA-485-5p, acid-sensing ion channelASIC1 and co-location of miRNA-485-5p with ASIC1. Results The PWT of rats was significantly reduced after complete Freund's adjuvant (CFA) injection. The miRNA-485-5p expression level clearly decreased while the ASIC1 expression level was upregulated in the L4-6 dorsal root ganglion (DRG) of CFA rats. MiRNA-485-5p and ASIC1 were co-expressed in the same DRG cells of CFA rats. Amiloride, an inhibitor of ASIC1, clearly increased the PWT of CFA rats. Further, miRNA-485-5p agomir reversed the upregulation of ASICI1 and alleviated CFA-induced mechanical hypersensitivity of CFA rats. Conclusion These results suggest that reduced expression of miRNA-485-5p contributes to inflammatory pain through upregulating ASIC1 expression, implying a promising strategy for pain therapy.
Collapse
Affiliation(s)
- Meijie Xu
- Department of Respiratory and Critical Care Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, People's Republic of China
| | - Rui Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, People's Republic of China.,Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, People's Republic of China
| | - Hong-Yan Zhu
- Department of Respiratory and Critical Care Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, People's Republic of China
| | - Guang-Yin Xu
- Department of Respiratory and Critical Care Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, People's Republic of China.,Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China
| | - Wenxia Qian
- Department of Respiratory and Critical Care Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, People's Republic of China
| | - Ping-An Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, People's Republic of China.,Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
19
|
Li Z, Peng X, Jia X, Su P, Liu D, Tu Y, Xu Q, Gao F. Spinal heat shock protein 27 participates in PDGFRβ-mediated morphine tolerance through PI3K/Akt and p38 MAPK signalling pathways. Br J Pharmacol 2020; 177:5046-5062. [PMID: 32559815 PMCID: PMC7589020 DOI: 10.1111/bph.15169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The development of antinociceptive morphine tolerance is a clinically intractable problem. Earlier work has demonstrated the pivotal roles of PDGF and its receptor PDGFRβ in morphine tolerance. Here, we have investigated the role of spinal heat shock protein 27 (HSP27) in morphine tolerance and its relationship with PDGFRβ activation. EXPERIMENTAL APPROACH Rats were treated with morphine for 9 days, and its anti-nociceptive effect against thermal pain was evaluated by a tail-flick latency test. Western blot, real-time PCR, immunofluorescent staining, and various antagonists, agonists, and siRNA lentiviral vectors elucidated the roles of HSP27, PDGFRβ, and related signalling pathways in morphine tolerance. KEY RESULTS Chronic morphine administration increased expression and phosphorylation of HSP27 in the spinal cord. Down-regulating HSP27 attenuated the development of morphine tolerance. PDGFRβ antagonism inhibited HSP27 activation and attenuated and reversed morphine tolerance. PDGFRβ induction increased HSP27 expression and activation and partly decreased morphine analgesia. PDGFRβ inhibition reduced Akt and p38 MAPK activity in morphine tolerance. PI3K and p38 inhibitors reversed morphine tolerance and suppressed morphine-induced HSP27 phosphorylation. CONCLUSION AND IMPLICATIONS This study demonstrated for the first time that spinal HSP27 participates in PDGFRβ-mediated morphine tolerance via the PI3K/Akt and p38 MAPK signalling pathways. These findings suggest a potential clinical strategy for prolonging the antinociceptive effects of opioids during long-term pain control.
Collapse
Affiliation(s)
- Zheng Li
- Department of Anesthesiology, Tongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoling Peng
- Department of Anesthesiology, Tongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoqian Jia
- Department of Anesthesiology, Tongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Peng Su
- Department of Anesthesiology, Sichuan Academy of Medical SciencesSichuan Provincial People's HospitalChengduChina
| | - Daiqiang Liu
- Department of Anesthesiology, Tongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Ye Tu
- Department of Anesthesiology, Tongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Qiaoqiao Xu
- Department of Anesthesiology, Tongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Feng Gao
- Department of Anesthesiology, Tongji HospitalHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
20
|
Behroozi Z, Ramezani F, Janzadeh A, Rahimi B, Nasirinezhad F. Platelet-rich plasma in umbilical cord blood reduces neuropathic pain in spinal cord injury by altering the expression of ATP receptors. Physiol Behav 2020; 228:113186. [PMID: 32980385 DOI: 10.1016/j.physbeh.2020.113186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Neuropathic pain following injury or dysfunction of the peripheral or CNS is one of the most important medical challenges to treat. Humane platelet-rich plasma (HPRP), which is a rich source of growth factors, may be able to treat and reduce pain caused by spinal cord injury (SCI). In this study, the effect of HPRP on neuropathic pain caused by SCI was investigated. METHODS Sixty adult male Wistar rats were randomly divided into 6 groups: control, sham, SCI, vehicle (SCI+platelet-poor plasma), SCI+ PRP2day (injection 48 hrs after SCI) and SCI+PRP14day (injection 14 days after SCI). SCI was induced at the T12-T13 level. Behavioral tests were conducted weekly after injury for six weeks. Allodynia and hyperalgesia were assessed using acetone drops, plantar test and von Frey filament. Cavity size and the number of fibroblasts were determined by H&E stain, and the expression of mTOR, p-mTOR, P2×3R and P2Y4R were determined using the western blot technique. Data were analyzed using PRISM & SPSS software. RESULTS PRP injection showed a higher pain threshold in mechanical allodynia (p<0.0001), cold allodynia (p<0.0001) and thermal hyperalgesia (p<0.0001) than those in the spinal. Animals treated with PRP also reduced cavity size, fibroblast number, p-mTOR/mTOR ratio, and P2×3R expression, and increased P2Y4R expression. The difference between the two groups was not statistically significant. CONCLUSIONS The results showed that PRP reduced SCI-induced allodynia and hyperalgesia by regulating ATP signaling. Using HPRP can open a new window in the treatment of pain caused by damage to the nervous system.
Collapse
Affiliation(s)
- Zahra Behroozi
- Student research committee, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Rahimi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farinaz Nasirinezhad
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Mecklenburg J, Zou Y, Wangzhou A, Garcia D, Lai Z, Tumanov AV, Dussor G, Price TJ, Akopian AN. Transcriptomic sex differences in sensory neuronal populations of mice. Sci Rep 2020; 10:15278. [PMID: 32943709 PMCID: PMC7499251 DOI: 10.1038/s41598-020-72285-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Many chronic pain conditions show sex differences in their epidemiology. This could be attributed to sex-dependent differential expression of genes (DEGs) involved in nociceptive pathways, including sensory neurons. This study aimed to identify sex-dependent DEGs in estrous female versus male sensory neurons, which were prepared by using different approaches and ganglion types. RNA-seq on non-purified sensory neuronal preparations, such as whole dorsal root ganglion (DRG) and hindpaw tissues, revealed only a few sex-dependent DEGs. Sensory neuron purification increased numbers of sex-dependent DEGs. These DEG sets were substantially influenced by preparation approaches and ganglion types [DRG vs trigeminal ganglia (TG)]. Percoll-gradient enriched DRG and TG neuronal fractions produced distinct sex-dependent DEG groups. We next isolated a subset of sensory neurons by sorting DRG neurons back-labeled from paw and thigh muscle. These neurons have a unique sex-dependent DEG set, yet there is similarity in biological processes linked to these different groups of sex-dependent DEGs. Female-predominant DEGs in sensory neurons relate to inflammatory, synaptic transmission and extracellular matrix reorganization processes that could exacerbate neuro-inflammation severity, especially in TG. Male-selective DEGs were linked to oxidative phosphorylation and protein/molecule metabolism and production. Our findings catalog preparation-dependent sex differences in neuronal gene expressions in sensory ganglia.
Collapse
Affiliation(s)
- Jennifer Mecklenburg
- Department of Endodontics, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, USA
| | - Andi Wangzhou
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas School of Behavioral and Brain Sciences, Richardson, TX, 75080, USA
| | - Dawn Garcia
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
| | - Alexei V Tumanov
- Departments of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
| | - Gregory Dussor
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas School of Behavioral and Brain Sciences, Richardson, TX, 75080, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas School of Behavioral and Brain Sciences, Richardson, TX, 75080, USA
| | - Armen N Akopian
- Department of Endodontics, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA.
- Department of Pharmacology, The School of Dentistry, University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
22
|
Zhang YX, Yang M, Liang F, Li SQ, Yang JS, Huo FQ, Yan CX. The pronociceptive role of 5-HT 6 receptors in ventrolateral orbital cortex in a rat formalin test model. Neurochem Int 2019; 131:104562. [PMID: 31580911 DOI: 10.1016/j.neuint.2019.104562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/16/2019] [Accepted: 09/30/2019] [Indexed: 01/23/2023]
Abstract
Recent studies have shown the 5-HT6 receptors are expressed in regions which are important in pain processing such as the cortex, amygdala, thalamus, PAG, spinal cord and dorsal root ganglia (DRG), suggesting a putative role of 5-HT6 receptors in pain modulation. The ventrolateral orbital cortex (VLO) is part of an endogenous analgesic system, consisting of the spinal cord - thalamic nucleus submedius (Sm) - VLO - periaqueductal gray (PAG) - spinal cord loop. The present study assessed the possible role of 5-HT6 receptors in the VLO in formalin-induced inflammatory pain model. Firstly we found that microinjection of selective 5-HT6 receptor agonists EMD-386088 (5 μg in 0.5 μl) and WAY-208466 (8 μg in 0.5 μl) both augmented 5% formalin-induced nociceptive behavior. Microinjection of selective 5-HT6 receptor antagonist SB-258585 (1,2 and 4 μg in 0.5 μl) significantly reduced formalin-induced flinching. Besides, the pronociceptive effects of EMD-386088 and WAY-208466 were dramatically reduced by SB-258585, implicating 5-HT6 receptor mechanisms in mediating these responses. In addition, the pronociceptive effect of EMD-386088 was also prevented by the adenylate cyclase (AC) inhibitor SQ-22536 (2 nmol in 0.5 μl) and the protein kinase A (PKA) inhibitor H89 (10 nmol in 0.5 μl), respectively. We further confirmed the above results with quantification of spinal c-fos expression. Taken together, our results suggested that 5-HT6 receptors play a pronociceptive role in the VLO in the rat formalin test due to its activation of AC - PKA pathway. Therefore, cerebral cortical 5-HT6 receptors could be a new target to develop analgesic drugs.
Collapse
Affiliation(s)
- Yu-Xiang Zhang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Mei Yang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Feng Liang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Shao-Qing Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Jing-Si Yang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Fu-Quan Huo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| | - Chun-Xia Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China.
| |
Collapse
|