1
|
Wan T, Li QC, Qin MY, Wang YL, Zhang FS, Zhang XM, Zhang YC, Zhang PX. Strategies for Treating Traumatic Neuromas with Tissue-Engineered Materials. Biomolecules 2024; 14:484. [PMID: 38672500 PMCID: PMC11048257 DOI: 10.3390/biom14040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroma, a pathological response to peripheral nerve injury, refers to the abnormal growth of nerve tissue characterized by disorganized axonal proliferation. Commonly occurring after nerve injuries, surgeries, or amputations, this condition leads to the formation of painful nodular structures. Traditional treatment options include surgical excision and pharmacological management, aiming to alleviate symptoms. However, these approaches often offer temporary relief without addressing the underlying regenerative challenges, necessitating the exploration of advanced strategies such as tissue-engineered materials for more comprehensive and effective solutions. In this study, we discussed the etiology, molecular mechanisms, and histological morphology of traumatic neuromas after peripheral nerve injury. Subsequently, we summarized and analyzed current nonsurgical and surgical treatment options, along with their advantages and disadvantages. Additionally, we emphasized recent advancements in treating traumatic neuromas with tissue-engineered material strategies. By integrating biomaterials, growth factors, cell-based approaches, and electrical stimulation, tissue engineering offers a comprehensive solution surpassing mere symptomatic relief, striving for the structural and functional restoration of damaged nerves. In conclusion, the utilization of tissue-engineered materials has the potential to significantly reduce the risk of neuroma recurrence after surgical treatment.
Collapse
Affiliation(s)
- Teng Wan
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| | - Qi-Cheng Li
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| | - Ming-Yu Qin
- Suzhou Medical College, Soochow University, Suzhou 215026, China
| | - Yi-Lin Wang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| | - Feng-Shi Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| | - Xiao-Meng Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| | - Yi-Chong Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
- Peking University People’s Hospital Qingdao Hospital, Qingdao 266000, China
| |
Collapse
|
2
|
Yang Y, Qu JY, Guo H, Zhou HY, Ruan X, Peng YC, Shen XF, Xiong J, Wang YL. Electroacupuncture at Sensitized Acupoints Relieves Somatic Referred Pain in Colitis Rats by Inhibiting Sympathetic-Sensory Coupling to Interfere with 5-HT Signaling Pathway. Chin J Integr Med 2024; 30:152-162. [PMID: 38038835 DOI: 10.1007/s11655-023-3565-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVE To investigate whether electroacupuncture (EA) at sensitized acupoints could reduce sympathetic-sensory coupling (SSC) and neurogenic inflammatory response by interfering with 5-hydroxytryptamine (5-HT)ergic neural pathways to relieve colitis and somatic referred pain, and explore the underlying mechanisms. METHODS Rats were treated with 5% dextran sodium sulfate (DSS) solution for 7 days to establish a colitis model. Twelve rats were randomly divided into the control and model groups according to a random number table (n=6). According to the "Research on Rat Acupoint Atlas", sensitized acupoints and non-sensitized acupoints were determined. Rats were randomly divided into the control, model, Zusanli-EA (ST 36), Dachangshu-EA (BL 25), and Xinshu (BL 15) groups (n=6), as well as the control, model, EA, and EA + GR113808 (a 5-HT inhibitor) groups (n=6). The rats in the control group received no treatment. Acupuncture was administered on 2 days after modeling using the stimulation pavameters: 1 mA, 2 Hz, for 30 min, with sparse and dense waves, for 14 consecutive days. GR113808 was injected into the tail vein at 5 mg/kg before EA for 10 min for 7 consecutive days. Mechanical sensitivity was assessed with von Frey filaments. Body weight and disease activity index (DAI) scores of rats were determined. Hematoxylin and eosin staining was performed to observe colon histopathology. SSC was analyzed by immunofluorescence staining. Immunohistochemical staining was performed to detect 5-HT and substance P (SP) expressions. The calcitonin gene-related peptide (CGRP) in skin tissue and tyrosine hydroxylase (TH) protein levels in DRG were detected by Western blot. The levels of hyaluronic acid (HA), bradykinin (BK), prostaglandin I2 (PGI2) in skin tissue, 5-HT, tryptophan hydroxylase 1 (TPH1), serotonin transporters (SERT), 5-HT 3 receptor (5-HT3R), and 5-HT 4 receptor (5-HT4R) in colon tissue were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS BL 25 and ST 36 acupoints were determined as sensitized acupoints, and BL 15 acupoint was used as a non-sensitized acupoint. EA at sensitized acupoints improved the DAI score, increased mechanical withdrawal thresholds, and alleviated colonic pathological damage of rats. EA at sensitized acupoints reduced SSC structures and decreased TH and CGRP expression levels (P<0.05). Furthermore, EA at sensitized acupoints reduced BK, PGI2, 5-HT, 5-HT3R and TPH1 levels, and increased HA, 5-HT4R and SERT levels in colitis rats (P<0.05). GR113808 treatment diminished the protective effect of EA at sensitized acupoints in colitis rats (P<0.05). CONCLUSION EA at sensitized acupoints alleviated DSS-induced somatic referred pain in colitis rats by interfering with 5-HTergic neural pathway, and reducing SSC inflammatory response.
Collapse
Affiliation(s)
- Ying Yang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Jin-Yu Qu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
- Department of Neurology, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Hua Guo
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Hai-Ying Zhou
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Xia Ruan
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Ying-Chun Peng
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
- Department of Neurology, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Xue-Fang Shen
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
- Department of Neurology, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Jin Xiong
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
- Department of Neurology, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Yi-Li Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China.
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China.
| |
Collapse
|
3
|
Tran H, Feng Y, Chao D, Liu QS, Hogan QH, Pan B. Descending mechanism by which medial prefrontal cortex endocannabinoid signaling controls the development of neuropathic pain and neuronal activity of dorsal root ganglion. Pain 2024; 165:102-114. [PMID: 37463226 PMCID: PMC10787817 DOI: 10.1097/j.pain.0000000000002992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 06/05/2023] [Indexed: 07/20/2023]
Abstract
ABSTRACT Although regulation of nociceptive processes in the dorsal horn by deep brain structures has long been established, the role of cortical networks in pain regulation is minimally explored. The medial prefrontal cortex (mPFC) is a key brain area in pain processing that receives ascending nociceptive input and exerts top-down control of pain sensation. We have shown critical changes in mPFC synaptic function during neuropathic pain, controlled by endocannabinoid (eCB) signaling. This study tests whether mPFC eCB signaling modulates neuropathic pain through descending control. Intra-mPFC injection of cannabinoid receptor type 1 (CB1R) agonist WIN-55,212-2 (WIN) in the chronic phase transiently alleviates the pain-like behaviors in spared nerve injury (SNI) rats. By contrast, intra-mPFC injection of CB1R antagonist AM4113 in the early phase of neuropathic pain reduces the development of pain-like behaviors in the chronic phase. Spared nerve injury reduced the mechanical threshold to induce action potential firing of dorsal horn wide-dynamic-range neurons, but this was reversed in rats by WIN in the chronic phase of SNI and by mPFC injection of AM4113 in the early phase of SNI. Elevated dorsal root ganglion neuronal activity after injury was also diminished in rats by mPFC injection of AM4113, potentially by reducing antidromic activity and subsequent neuronal inflammation. These findings suggest that depending on the phase of the pain condition, both blocking and activating CB1 receptors in the mPFC can regulate descending control of pain and affect both dorsal horn neurons and peripheral sensory neurons, contributing to changes in pain sensitivity.
Collapse
Affiliation(s)
- Hai Tran
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Yin Feng
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Dongman Chao
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Qing-song Liu
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Quinn H. Hogan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| |
Collapse
|
4
|
Xian H, Guo H, Liu YY, Zhang JL, Hu WC, Yu MJ, Zhao R, Xie RG, Zhang H, Cong R. Peripheral BDNF Regulates Somatosensory-Sympathetic Coupling in Brachial Plexus Avulsion-Induced Neuropathic Pain. Neurosci Bull 2023; 39:1789-1806. [PMID: 37335428 PMCID: PMC10661543 DOI: 10.1007/s12264-023-01075-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/19/2023] [Indexed: 06/21/2023] Open
Abstract
Brachial plexus avulsion (BPA) is a combined injury involving the central and peripheral nervous systems. Patients with BPA often experience severe neuropathic pain (NP) in the affected limb. NP is insensitive to the existing treatments, which makes it a challenge to researchers and clinicians. Accumulated evidence shows that a BPA-induced pain state is often accompanied by sympathetic nervous dysfunction, which suggests that the excitation state of the sympathetic nervous system is correlated with the existence of NP. However, the mechanism of how somatosensory neural crosstalk with the sympathetic nerve at the peripheral level remains unclear. In this study, through using a novel BPA C7 root avulsion mouse model, we found that the expression of BDNF and its receptor TrκB in the DRGs of the BPA mice increased, and the markers of sympathetic nervous system activity including α1 and α2 adrenergic receptors (α1-AR and α2-AR) also increased after BPA. The phenomenon of superexcitation of the sympathetic nervous system, including hypothermia and edema of the affected extremity, was also observed in BPA mice by using CatWalk gait analysis, an infrared thermometer, and an edema evaluation. Genetic knockdown of BDNF in DRGs not only reversed the mechanical allodynia but also alleviated the hypothermia and edema of the affected extremity in BPA mice. Further, intraperitoneal injection of adrenergic receptor inhibitors decreased neuronal excitability in patch clamp recording and reversed the mechanical allodynia of BPA mice. In another branch experiment, we also found the elevated expression of BDNF, TrκB, TH, α1-AR, and α2-AR in DRG tissues from BPA patients compared with normal human DRGs through western blot and immunohistochemistry. Our results revealed that peripheral BDNF is a key molecule in the regulation of somatosensory-sympathetic coupling in BPA-induced NP. This study also opens a novel analgesic target (BDNF) in the treatment of this pain with fewer complications, which has great potential for clinical transformation.
Collapse
Affiliation(s)
- Hang Xian
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Huan Guo
- Pain and Related Diseases Research Laboratory, Medical College of Shantou University, Shantou, 515041, China
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Yuan-Ying Liu
- School of Life Science and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, China
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Jian-Lei Zhang
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Wen-Chao Hu
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
- The Sixth Regiment, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Ming-Jun Yu
- The Tenth Squadron of the Third Regiment, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Rui Zhao
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China.
| | - Hang Zhang
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| | - Rui Cong
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Dehdashtian A, Timek JH, Svientek SR, Risch MJ, Bratley JV, Riegger AE, Kung TA, Cederna PS, Kemp SWP. Sexually Dimorphic Pattern of Pain Mitigation Following Prophylactic Regenerative Peripheral Nerve Interface (RPNI) in a Rat Neuroma Model. Neurosurgery 2023; 93:1192-1201. [PMID: 37227138 DOI: 10.1227/neu.0000000000002548] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/06/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Treating neuroma pain is a clinical challenge. Identification of sex-specific nociceptive pathways allows a more individualized pain management. The Regenerative Peripheral Nerve Interface (RPNI) consists of a neurotized autologous free muscle using a severed peripheral nerve to provide physiological targets for the regenerating axons. OBJECTIVE To evaluate prophylactic RPNI to prevent neuroma pain in male and female rats. METHODS F344 rats of each sex were assigned to neuroma, prophylactic RPNI, or sham groups. Neuromas and RPNIs were created in both male and female rats. Weekly pain assessments including neuroma site pain and mechanical, cold, and thermal allodynia were performed for 8 weeks. Immunohistochemistry was used to evaluate macrophage infiltration and microglial expansion in the corresponding dorsal root ganglia and spinal cord segments. RESULTS Prophylactic RPNI prevented neuroma pain in both sexes; however, female rats displayed delayed pain attenuation when compared with males. Cold allodynia and thermal allodynia were attenuated exclusively in males. Macrophage infiltration was mitigated in males, whereas females showed a reduced number of spinal cord microglia. CONCLUSION Prophylactic RPNI can prevent neuroma site pain in both sexes. However, attenuation of both cold allodynia and thermal allodynia occurred in males exclusively, potentially because of their sexually dimorphic effect on pathological changes of the central nervous system.
Collapse
Affiliation(s)
- Amir Dehdashtian
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Jagienka H Timek
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Shelby R Svientek
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Mary Jane Risch
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Jared V Bratley
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Anna E Riegger
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Theodore A Kung
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Paul S Cederna
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor , Michigan , USA
| | - Stephen W P Kemp
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor , Michigan , USA
| |
Collapse
|
6
|
Lückemeyer DD, Xie W, Prudente AS, Qualls KA, Tonello R, Strong JA, Berta T, Zhang JM. The Antinociceptive Effect of Sympathetic Block is Mediated by Transforming Growth Factor β in a Mouse Model of Radiculopathy. Neurosci Bull 2023; 39:1363-1374. [PMID: 37165177 PMCID: PMC10465463 DOI: 10.1007/s12264-023-01062-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/06/2023] [Indexed: 05/12/2023] Open
Abstract
Although sympathetic blockade is clinically used to treat pain, the underlying mechanisms remain unclear. We developed a localized microsympathectomy (mSYMPX), by cutting the grey rami entering the spinal nerves near the rodent lumbar dorsal root ganglia (DRG). In a chemotherapy-induced peripheral neuropathy model, mSYMPX attenuated pain behaviors via DRG macrophages and the anti-inflammatory actions of transforming growth factor-β (TGF-β) and its receptor TGF-βR1. Here, we examined the role of TGF-β in sympathetic-mediated radiculopathy produced by local inflammation of the DRG (LID). Mice showed mechanical hypersensitivity and transcriptional and protein upregulation of TGF-β1 and TGF-βR1 three days after LID. Microsympathectomy prevented mechanical hypersensitivity and further upregulated Tgfb1 and Tgfbr1. Intrathecal delivery of TGF-β1 rapidly relieved the LID-induced mechanical hypersensitivity, and TGF-βR1 antagonists rapidly unmasked the mechanical hypersensitivity after LID+mSYMPX. In situ hybridization showed that Tgfb1 was largely expressed in DRG macrophages, and Tgfbr1 in neurons. We suggest that TGF-β signaling is a general underlying mechanism of local sympathetic blockade.
Collapse
Affiliation(s)
- Debora Denardin Lückemeyer
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Arthur Silveira Prudente
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Katherine A Qualls
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Raquel Tonello
- Department of Molecular Pathobiology, Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY, 10010, USA
| | - Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
7
|
Wang C, Wei M, Wu Y, Fan HT, Liang ZK, Liu AR, Xin WJ, Feng X. Epigenetic Up-Regulation of ADAMTS4 in Sympathetic Ganglia is Involved in the Maintenance of Neuropathic Pain Following Nerve Injury. Neurochem Res 2023:10.1007/s11064-023-03896-x. [PMID: 36947308 DOI: 10.1007/s11064-023-03896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/08/2023] [Accepted: 02/17/2023] [Indexed: 03/23/2023]
Abstract
Sympathetic axonal sprouting into dorsal root ganglia is a major phenomenon implicated in neuropathic pain, and sympathetic ganglia blockage may relieve some intractable chronic pain in animal pain models and clinical conditions. These suggest that sympathetic ganglia participated in the maintenance of chronic pain. However, the molecular mechanism underlying sympathetic ganglia-mediated chronic pain is not clear. Here, we found that spared nerve injury treatment upregulated the expression of ADAMTS4 and AP-2α protein and mRNA in the noradrenergic neurons of sympathetic ganglia during neuropathic pain maintenance. Knockdown the ADAMTS4 or AP-2α by injecting specific retro scAAV-TH (Tyrosine Hydroxylase)-shRNA ameliorated the mechanical allodynia induced by spared nerve injury on day 21 and 28. Furthermore, chromatin immunoprecipitation and coimmunoprecipitation assays found that spared nerve injury increased the recruitment of AP-2α to the ADAMTS4 gene promoter, the interaction between AP-2α and histone acetyltransferase p300 and the histone H4 acetylation on day 28. Finally, knockdown the AP-2α reduced the acetylation of H4 on the promoter region of ADAMTS4 gene and suppressed the increase of ADAMTS4 expression induced by spared nerve injury. Together, these results suggested that the enhanced interaction between AP-2α and p300 mediated the epigenetic upregulation of ADAMTS4 in sympathetic ganglia noradrenergic neurons, which contributed to the maintenance of spared nerve injury induced neuropathic pain.
Collapse
Affiliation(s)
- Chen Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Wei
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Wu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hai-Ting Fan
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zheng-Kai Liang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - An-Ran Liu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen-Jun Xin
- Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, 510080, China.
- Zhongshan Medical School, Sun Yat-sen University, Zhongshan Rd. 2, Guangzhou, China.
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Department of Anesthesiology, The First Affiliated Hospital, 58 Zhong Shan Rd 2, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Maeda T, Sekiguchi F, Mitani K, Yamagata R, Tsubota M, Yoshida S, Kawabata A. Opioid modulation of T-type Ca 2+ channel-dependent neuritogenesis/neurite outgrowth through the prostaglandin E 2/EP 4 receptor/protein kinase A pathway in mouse dorsal root ganglion neurons. Biochem Biophys Res Commun 2023; 639:142-149. [PMID: 36493557 DOI: 10.1016/j.bbrc.2022.11.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Irregular regeneration or inappropriate remodeling of the axons of the primary afferent neurons after peripheral nerve trauma could be associated with the development of neuropathic pain. We analyzed the molecular mechanisms for the neuritogenesis and neurite outgrowth caused by prostaglandin E2 (PGE2) in mouse dorsal root ganglion (DRG) neurons, and evaluated their opioid modulation. PGE2 in combination with IBMX, a phosphodiesterase inhibitor, caused neuritogenesis/neurite outgrowth in DRG cells, an effect abolished by a prostanoid EP4, but not EP2, receptor antagonist, and inhibitors of adenylyl cyclase or protein kinase A (PKA). Blockers of T-type Ca2+ channels (T-channels), that are responsible for window currents involving the sustained low-level Ca2+ entry at voltages near the resting membrane potentials and can be functionally upregulated by PKA, inhibited the neuritogenesis/neurite outgrowth caused by PGE2/IBMX or dibutylyl cyclic AMP, a PKA activator, in DRG neurons, an inhibitory effect mimicked by ZnCl2 and ascorbic acid that block Cav3.2, but not Cav3.1 or Cav3.3, T-channels. Morphine and DAMGO, μ-opioid receptor (MOR) agonists, suppressed the neuritogenesis and/or neurite outgrowth induced by PGE2/IBMX in DRG neurons and also DRG neuron-like ND7/23 cells, an effect reversed by naloxone or β-funaltrexamine, a selective MOR antagonist. Our data suggest that the EP4 receptor/PKA/Cav3.2 pathway is involved in the PGE2-induced neuritogenesis/neurite outgrowth in DRG neurons, which can be suppressed by MOR stimulation. We propose that MOR agonists including morphine in the early phase after peripheral nerve trauma might delay the axonal regeneration of the primary afferent neurons but prevent the development of neuropathic pain.
Collapse
Affiliation(s)
- Takashi Maeda
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Kenji Mitani
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Ryosuke Yamagata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Shigeru Yoshida
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan.
| |
Collapse
|
9
|
Xin B, Xie K, Huang B, Yao M. Efficacy of Radiofrequency Thermocoagulation of the Thoracic Sympathetic Nerve versus Chemical Excision in Pain Caused by Raynaud's Disease. J Pain Res 2023; 16:649-658. [PMID: 36908929 PMCID: PMC9997092 DOI: 10.2147/jpr.s398298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/28/2023] [Indexed: 03/07/2023] Open
Abstract
Objective To investigate the effectiveness and safety of computed tomography (CT)-guided radiofrequency thermocoagulation (RFTC) of the thoracic sympathetic nerve versus chemical resection (CTS) for the treatment of pain caused by Raynaud's disease. Methods Patients who underwent CTS or thoracic sympathetic nerve RFTC between March 2012 and March 2021 were enrolled in this retrospective study. There were 28 cases in the alcohol group (Group A) and 44 in the radiofrequency group (Group R). Visual analog scores (VAS) were collected from patients at different time points, as well as preoperative and postoperative finger end perfusion index (PI) and hand temperature (T). The efficiency, postoperative recurrence rate, complications, and improvement in postoperative quality of life were observed in both groups. Results Pain scores at different follow-up times after surgery decreased in both groups compared to the preoperative period (P < 0.05). Postoperative T and PI were higher in both groups than preoperatively all (P < 0.05). The recurrence rate was higher in the R group than in the A group. Postoperative complications were observed in 13.6% and 25% of patients in groups R and A, respectively. Meanwhile, the postoperative quality of life improved in both groups, but the radiofrequency (RF) group was better than the alcohol group in terms of improvement in quality of life (P < 0.05). Conclusion Both CT-guided CTS and RFTC of the thoracic sympathetic nerve provided good treatment outcomes. However, the RF group was superior to the alcohol group in terms of complication rate and quality of life improvement.
Collapse
Affiliation(s)
- Bingyue Xin
- Department of Anesthesiology and Pain Research Center, The First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing University, Jiaxing, People's Republic of China
| | - Keyue Xie
- Department of Anesthesiology and Pain Research Center, The First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing University, Jiaxing, People's Republic of China
| | - Bing Huang
- Department of Anesthesiology and Pain Research Center, The First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing University, Jiaxing, People's Republic of China
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, The First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing University, Jiaxing, People's Republic of China
| |
Collapse
|
10
|
Mai L, Jia S, Liu Q, Chu Y, Liu J, Yang S, Huang F, Fan W. Sympathectomy Ameliorates CFA-Induced Mechanical Allodynia via Modulating Phenotype of Macrophages in Sensory Ganglion in Mice. J Inflamm Res 2022; 15:6263-6274. [DOI: 10.2147/jir.s388322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
|
11
|
Ma X, Chen W, Yang NN, Wang L, Hao XW, Tan CX, Li HP, Liu CZ. Potential mechanisms of acupuncture for neuropathic pain based on somatosensory system. Front Neurosci 2022; 16:940343. [PMID: 36203799 PMCID: PMC9530146 DOI: 10.3389/fnins.2022.940343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Neuropathic pain, caused by a lesion or disease of the somatosensory system, is common and distressing. In view of the high human and economic burden, more effective treatment strategies were urgently needed. Acupuncture has been increasingly used as an adjuvant or complementary therapy for neuropathic pain. Although the therapeutic effects of acupuncture have been demonstrated in various high-quality randomized controlled trials, there is significant heterogeneity in the underlying mechanisms. This review aimed to summarize the potential mechanisms of acupuncture on neuropathic pain based on the somatosensory system, and guided for future both foundational and clinical studies. Here, we argued that acupuncture may have the potential to inhibit neuronal activity caused by neuropathic pain, through reducing the activation of pain-related ion channels and suppressing glial cells (including microglia and astrocytes) to release inflammatory cytokines, chemokines, amongst others. Meanwhile, acupuncture as a non-pharmacologic treatment, may have potential to activate descending pain control system via increasing the level of spinal or brain 5-hydroxytryptamine (5-HT), norepinephrine (NE), and opioid peptides. And the types of endogenously opioid peptides was influenced by electroacupuncture-frequency. The cumulative evidence demonstrated that acupuncture provided an alternative or adjunctive therapy for neuropathic pain.
Collapse
Affiliation(s)
- Xin Ma
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Wen Chen
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Na-Na Yang
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Wang
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Wan Hao
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Chun-Xia Tan
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Hong-Ping Li
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
- Hong-Ping Li,
| | - Cun-Zhi Liu
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Cun-Zhi Liu,
| |
Collapse
|
12
|
Zheng Q, Dong X, Green DP, Dong X. Peripheral mechanisms of chronic pain. MEDICAL REVIEW 2022; 2:251-270. [PMID: 36067122 PMCID: PMC9381002 DOI: 10.1515/mr-2022-0013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Acutely, pain serves to protect us from potentially harmful stimuli, however damage to the somatosensory system can cause maladaptive changes in neurons leading to chronic pain. Although acute pain is fairly well controlled, chronic pain remains difficult to treat. Chronic pain is primarily a neuropathic condition, but studies examining the mechanisms underlying chronic pain are now looking beyond afferent nerve lesions and exploring new receptor targets, immune cells, and the role of the autonomic nervous system in contributing chronic pain conditions. The studies outlined in this review reveal how chronic pain is not only confined to alterations in the nervous system and presents findings on new treatment targets and for this debilitating disease.
Collapse
Affiliation(s)
- Qin Zheng
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xintong Dong
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dustin P. Green
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Howard Hughes Medical Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
13
|
Zheng Z, Ma R, Zhang R, Liu Z, Liu Z, Chen J, Xu Y, Zhou X, Zhao Q, Li Q. Anatomical study and clinical significance of rami communicantes of the lumbar spine. Reg Anesth Pain Med 2022; 47:253-258. [DOI: 10.1136/rapm-2021-103379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/04/2022] [Indexed: 11/04/2022]
Abstract
Background and objectivesRami communicantes (RC) infiltration and radiofrequency lesions are new techniques for the treatment of discogenic low back pain (DLBP). Their efficacy is controversial, and the classification of RC remains unclear. We aimed to explore the differences between RC and reclassify RC according to their anatomical characteristics.MethodsSixteen sides of the lumbar spine from eight adult male embalmed cadavers were dissected. The presence of RC was noted. The morphology, origin, distribution, course, quantity and spatial orientation of RC on the lumbar spine were examined. The length and width of the RC were measured by a caliper.ResultsA total of 213 RC were found in the 8 cadavers in the lumbar region. RC were divided into three types: superficial rami (70, 32.86%), which penetrated the psoas major (PM) and ran above the aponeurosis of the PM; deep rami (125, 58.69%), which ran along the waist of the vertebral body beneath the aponeurosis of the PM; and discal rami, which ran over and adhered to the surface of the intervertebral disc. Superficial rami were divided into two subtypes: oblique rami (45, 21.13%) and parabolic rami (25, 11.74%), which crossed the vertebra and the disc in an oblique and a parabolic course, respectively.ConclusionsRC should play an important role in the innervation of the lumbar spine. Detailed knowledge of RC in the lumbar region may help surgeons improve the efficacy of infiltration and percutaneous radiofrequency as a supplementary treatment for DLBP.
Collapse
|
14
|
Zheng Q, Xie W, Lückemeyer DD, Lay M, Wang XW, Dong X, Limjunyawong N, Ye Y, Zhou FQ, Strong JA, Zhang JM, Dong X. Synchronized cluster firing, a distinct form of sensory neuron activation, drives spontaneous pain. Neuron 2022; 110:209-220.e6. [PMID: 34752775 PMCID: PMC8776619 DOI: 10.1016/j.neuron.2021.10.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/01/2021] [Accepted: 10/13/2021] [Indexed: 01/21/2023]
Abstract
Spontaneous pain refers to pain occurring without external stimuli. It is a primary complaint in chronic pain conditions and remains difficult to treat. Moreover, the mechanisms underlying spontaneous pain remain poorly understood. Here we employed in vivo imaging of dorsal root ganglion (DRG) neurons and discovered a distinct form of abnormal spontaneous activity following peripheral nerve injury: clusters of adjacent DRG neurons firing synchronously and sporadically. The level of cluster firing correlated directly with nerve injury-induced spontaneous pain behaviors. Furthermore, we demonstrated that cluster firing is triggered by activity of sympathetic nerves, which sprout into DRGs after injury, and identified norepinephrine as a key neurotransmitter mediating this unique firing. Chemogenetic and pharmacological manipulations of sympathetic activity and norepinephrine receptors suggest that they are necessary and sufficient for DRG cluster firing and spontaneous pain behavior. Therefore, blocking sympathetically mediated cluster firing may be a new paradigm for treating spontaneous pain.
Collapse
Affiliation(s)
- Qin Zheng
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA
| | - Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Debora D Lückemeyer
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mark Lay
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA
| | - Xue-Wei Wang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA
| | - Xintong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA
| | - Nathachit Limjunyawong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA
| | - Yaqing Ye
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA
| | - Feng-Quan Zhou
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA
| | - Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA.
| |
Collapse
|
15
|
Shen S, Tiwari N, Madar J, Mehta P, Qiao LY. Beta 2-adrenergic receptor mediates noradrenergic action to induce cyclic adenosine monophosphate response element-binding protein phosphorylation in satellite glial cells of dorsal root ganglia to regulate visceral hypersensitivity. Pain 2022; 163:180-192. [PMID: 33941754 PMCID: PMC8556417 DOI: 10.1097/j.pain.0000000000002330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/28/2021] [Indexed: 01/03/2023]
Abstract
ABSTRACT Sympathoneuronal outflow into dorsal root ganglia (DRG) is suggested to be involved in sympathetically maintained chronic pain, which is mediated by norepinephrine (NE) action on DRG cells. This study combined in vitro and in vivo approaches to identify the cell types of DRG that received NE action and examined cell type-specific expression of adrenergic receptors (ARs) in DRG. Using DRG explants, we identified that NE acted on satellite glial cells (SGCs) to induce the phosphorylation of cAMP response element-binding protein (CREB). Using primarily cultured SGCs, we identified that beta (β)2-adrenergic receptor but not alpha (α)adrenergic receptor nor other βAR isoforms mediated NE-induced CREB phosphorylation and CRE-promoted luciferase transcriptional activity. Using fluorescence in situ hybridization and affinity purification of mRNA from specific cell types, we identified that β2AR was expressed by SGCs but not DRG neurons. We further examined β2AR expression and CREB phosphorylation in vivo in a model of colitis in which sympathetic nerve sprouting in DRG was observed. We found that β2AR expression and CREB phosphorylation were increased in SGCs of thoracolumbar DRG on day 7 after colitis induction. Inhibition but not augmentation of β2AR reduced colitis-induced calcitonin gene-related peptide release into the spinal cord dorsal horn and colonic pain responses to colorectal distention. Prolonged activation of β2AR in naive DRG increased calcitonin gene-related peptide expression in DRG neurons. These findings provide molecular basis of sympathetic modulation of sensory activity and chronic pain that involves β2AR-mediated signaling in SGCs of DRG.
Collapse
Affiliation(s)
- Shanwei Shen
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | | | | | | | | |
Collapse
|
16
|
Zhu X, Xie W, Zhang J, Strong JA, Zhang JM. Sympathectomy decreases pain behaviors and nerve regeneration by downregulating monocyte chemokine CCL2 in dorsal root ganglia in the rat tibial nerve crush model. Pain 2022; 163:e106-e120. [PMID: 33941753 PMCID: PMC8556407 DOI: 10.1097/j.pain.0000000000002321] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/15/2021] [Indexed: 01/03/2023]
Abstract
ABSTRACT Peripheral nerve regeneration is associated with pain in several preclinical models of neuropathic pain. Some neuropathic pain conditions and preclinical neuropathic pain behaviors are improved by sympathetic blockade. In this study, we examined the effect of a localized "microsympathectomy," ie, cutting the gray rami containing sympathetic postganglionic axons where they enter the L4 and L5 spinal nerves, which is more analogous to clinically used sympathetic blockade compared with chemical or surgical sympathectomy. We also examined manipulations of CCL2 (monocyte chemoattractant protein 1), a key player in both regeneration and pain. We used rat tibial nerve crush as a neuropathic pain model in which peripheral nerve regeneration can occur successfully. CCL2 in the sensory ganglia was increased by tibial nerve crush and reduced by microsympathectomy. Microsympathectomy and localized siRNA-mediated knockdown of CCL2 in the lumbar dorsal root ganglion had very similar effects: partial improvement of mechanical hypersensitivity and guarding behavior, reduction of regeneration markers growth-associated protein 43 and activating transcription factor 3, and reduction of macrophage density in the sensory ganglia and regenerating nerve. Microsympathectomy reduced functional regeneration as measured by myelinated action potential propagation through the injury site and denervation-induced atrophy of the tibial-innervated gastrocnemius muscle at day 10. Microsympathectomy plus CCL2 knockdown had behavioral effects similar to microsympathectomy alone. The results show that local sympathetic effects on neuropathic pain may be mediated in a large part by the effects on expression of CCL2, which in turn regulates the regeneration process.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Jingdong Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Judith A. Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| |
Collapse
|
17
|
Zhao L, Tao X, Song T. Astaxanthin alleviates neuropathic pain by inhibiting the MAPKs and NF-κB pathways. Eur J Pharmacol 2021; 912:174575. [PMID: 34673033 DOI: 10.1016/j.ejphar.2021.174575] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023]
Abstract
Neuropathic pain is a complex condition that usually lasts a lifetime and has a major negative impact on life after injury. Improving pain management is an important and unmet need. Astaxanthin (AST) is a natural marine medicine with effective antioxidant and anti-inflammatory properties and neuroprotective effects. However, few mechanisms can explain the role of AST in the treatment of neuropathic pain. In the present study, we examined its potential to eliminate spinal nerve ligation (SNL) damage by inhibiting the phosphorylation of extracellular signal-regulated kinase (ERK)1/2, phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor-κB (NF-κB) p65 and the inflammatory response. The results of behavior tests indicated the promising role of AST in analgesic effect in SNL mice. AST decreased the neuronal and non-neuronal activation, the levels of the inflammatory signaling mediators (p-ERK1/2 p-p38 MAPK and NF-κB p65) and inflammatory cytokine expression (interleukin [IL]-1, IL-17, IL-6, and tumor necrosis factor-α [TNF-α]. These results suggest that AST is a promising candidate to reduce nociceptive hypersensitization after SNL.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Pain, The First Affiliated Hospital to China Medical University, Shen Yang, China
| | - Xueshu Tao
- Department of Pain, The First Affiliated Hospital to China Medical University, Shen Yang, China
| | - Tao Song
- Department of Pain, The First Affiliated Hospital to China Medical University, Shen Yang, China.
| |
Collapse
|