1
|
Shafiek MZ, Zaki HF, Mohamed AF. New ways to repurpose salmeterol in an animal model of fibromyalgia. Fundam Clin Pharmacol 2025; 39:e13041. [PMID: 39496328 DOI: 10.1111/fcp.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/20/2024] [Accepted: 10/11/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Fibromyalgia (FM) is a syndrome of pervasive chronic pain accompanied by low mood, sleep disorders, and cognitive decline. The dysfunction of central pain processing systems along with neurotransmitter disturbances are possible contributing mechanisms. Genetic polymorphism of the 𝛽2 adrenergic receptors is reported in FM patients. It is reported that chronic β2 agonists administration is effective for neuropathic pain alleviation. No current information, however, exists on their potential to alleviate nociplastic pain, such as FM. Therefore, the purpose of the current study is to examine salmeterol's potential antiallodynic effects in experimentally produced FM and explore some of the possible contributing mechanisms. METHODS Thirty rats are allocated into three groups (n = 10): a normal group, a reserpine group that received reserpine (1 mg/kg; s.c.) for 3 days, and a reserpine + salmeterol group that received salmeterol (1 mg/kg; i.p.) for 21 consecutive days following last reserpine injection. RESULTS Reserpine administration resulted in behavioral and biochemical changes consistent with FM, including thermal and mechanical hyperalgesia, depressive behavior, and motor incoordination. This is coupled with disturbed spinal monoamine levels, depressed cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling, disturbed mitochondrial function/dynamics, and compromised blood-nerve barrier integrity. Treatment with salmeterol conceivably reversed these effects. CONCLUSION β2 receptor agonists such as salmeterol could be regarded as a promising strategy for the management of FM.
Collapse
Affiliation(s)
- Mena Z Shafiek
- Department of Pharmacology and Toxicology, Faculty of Dentistry, Misr International University, Cairo, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, 46612, Egypt
| |
Collapse
|
2
|
Jenei-Lanzl Z, Straub RH. β2-adrenoceptors kick osteoarthritis - Time to rethink prevention and therapy. Osteoarthritis Cartilage 2024; 32:1522-1529. [PMID: 38945292 DOI: 10.1016/j.joca.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/13/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Although, during the past decades, substantial advances emerged in identifying major local and systemic factors contributing to initiation and progression of osteoarthritis (OA), some neuroendocrine mechanisms are still not understood or even neglected when thinking about novel therapeutic options. One of which is the sympathetic nervous system that exhibits various OA-promoting effects in different tissues of the joint. Interestingly, the β2-adrenoceptor (AR) mediates the majority of these effects as demonstrated by several in vitro, in vivo as well as in clinical studies. This review article does not only summarize studies of the past two decades demonstrating that the β2-AR plays an OA-promoting role in different tissues of the joint but also aims to encourage the reader to think about next-level research to discover novel and innovative preventive and/or therapeutic strategies targeting the β2-AR in OA.
Collapse
Affiliation(s)
- Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany.
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
3
|
Zhu CC, Zheng YL, Gong C, Chen BL, Guo JB. Role of Exercise on Neuropathic Pain in Preclinical Models: Perspectives for Neuroglia. Mol Neurobiol 2024:10.1007/s12035-024-04511-y. [PMID: 39316356 DOI: 10.1007/s12035-024-04511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
The benefits of exercise on neuropathic pain (NP) have been demonstrated in numerous studies. In recent studies, inflammation, neurotrophins, neurotransmitters, and endogenous opioids are considered as the main mechanisms. However, the role of exercise in alleviating NP remains unclear. Neuroglia, widely distributed in both the central and peripheral nervous systems, perform functions such as support, repair, immune response, and maintenance of normal neuronal activity. A large number of studies have shown that neuroglia play an important role in the occurrence and development of NP, and exercise can alleviate NP by regulating neuroglia. This article reviewed the involvement of neuroglia in the development of NP and their role in the exercise treatment of NP, intending to provide a theoretical basis for the exercise treatment strategy of NP.
Collapse
Affiliation(s)
- Chen-Chen Zhu
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | - Chan Gong
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Bing-Lin Chen
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Jia-Bao Guo
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
4
|
Qiao LY. Satellite Glial Cells Bridge Sensory Neuron Crosstalk in Visceral Pain and Cross-Organ Sensitization. J Pharmacol Exp Ther 2024; 390:213-221. [PMID: 38777604 PMCID: PMC11264254 DOI: 10.1124/jpet.123.002061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Following colonic inflammation, the uninjured bladder afferent neurons are also activated. The mechanisms and pathways underlying this sensory neuron cross-activation (from injured neurons to uninjured neurons) are not fully understood. Colonic and bladder afferent neurons reside in the same spinal segments and are separated by satellite glial cells (SGCs) and extracellular matrix in dorsal root ganglia (DRG). SGCs communicate with sensory neurons in a bidirectional fashion. This review summarizes the differentially regulated genes/proteins in the injured and uninjured DRG neurons and explores the role of SGCs in regulation of sensory neuron crosstalk in visceral cross-organ sensitization. The review also highlights the paracrine pathways in mediating neuron-SGC and SGC-neuron coupling with an emphasis on the neurotrophins and purinergic systems. Finally, I discuss the results from recent RNAseq profiling of SGCs to reveal useful molecular markers for characterization, functional study, and therapeutic targets of SGCs. SIGNIFICANCE STATEMENT: Satellite glial cells (SGCs) are the largest glial subtypes in sensory ganglia and play a critical role in mediating sensory neuron crosstalk, an underlying mechanism in colon-bladder cross-sensitization. Identification of novel and unique molecular markers of SGCs can advance the discovery of therapeutic targets in treatment of chronic pain including visceral pain comorbidity.
Collapse
Affiliation(s)
- Liya Y Qiao
- Department of Physiology and Biophysics, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
5
|
Tiwari N, Smith C, Sharma D, Shen S, Mehta P, Qiao LY. Plp1-expresssing perineuronal DRG cells facilitate colonic and somatic chronic mechanical pain involving Piezo2 upregulation in DRG neurons. Cell Rep 2024; 43:114230. [PMID: 38743566 PMCID: PMC11234328 DOI: 10.1016/j.celrep.2024.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/06/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Satellite glial cells (SGCs) of dorsal root ganglia (DRGs) are activated in a variety of chronic pain conditions; however, their mediation roles in pain remain elusive. Here, we take advantage of proteolipid protein (PLP)/creERT-driven recombination in the periphery mainly occurring in SGCs of DRGs to assess the role of SGCs in the regulation of chronic mechanical hypersensitivity and pain-like responses in two organs, the distal colon and hindpaw, to test generality. We show that PLP/creERT-driven hM3Dq activation increases, and PLP/creERT-driven TrkB.T1 deletion attenuates, colon and hindpaw chronic mechanical hypersensitivity, positively associating with calcitonin gene-related peptide (CGRP) expression in DRGs and phospho-cAMP response element-binding protein (CREB) expression in the dorsal horn of the spinal cord. Activation of Plp1+ DRG cells also increases the number of small DRG neurons expressing Piezo2 and acquiring mechanosensitivity and leads to peripheral organ neurogenic inflammation. These findings unravel a role and mechanism of Plp1+ cells, mainly SGCs, in the facilitation of chronic mechanical pain and suggest therapeutic targets for pain mitigation.
Collapse
Affiliation(s)
- Namrata Tiwari
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA
| | - Cristina Smith
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA
| | - Divya Sharma
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA
| | - Shanwei Shen
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA
| | - Parshva Mehta
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA
| | - Liya Y Qiao
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA.
| |
Collapse
|
6
|
Tiwari N, Qiao LY. Sex Differences in Visceral Pain and Comorbidities: Clinical Outcomes, Preclinical Models, and Cellular and Molecular Mechanisms. Cells 2024; 13:834. [PMID: 38786056 PMCID: PMC11119472 DOI: 10.3390/cells13100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Sexual dimorphism of visceral pain has been documented in clinics and experimental animal models. Aside from hormones, emerging evidence suggests the sex-differential intrinsic neural regulation of pain generation and maintenance. According to the International Association for the Study of Pain (IASP) and the American College of Gastroenterology (ACG), up to 25% of the population have visceral pain at any one time, and in the United States 10-15 percent of adults suffer from irritable bowel syndrome (IBS). Here we examine the preclinical and clinical evidence of sex differences in visceral pain focusing on IBS, other forms of bowel dysfunction and IBS-associated comorbidities. We summarize preclinical animal models that provide a means to investigate the underlying molecular mechanisms in the sexual dimorphism of visceral pain. Neurons and nonneuronal cells (glia and immune cells) in the peripheral and central nervous systems, and the communication of gut microbiota and neural systems all contribute to sex-dependent nociception and nociplasticity in visceral painful signal processing. Emotion is another factor in pain perception and appears to have sexual dimorphism.
Collapse
Affiliation(s)
- Namrata Tiwari
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Liya Y. Qiao
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
7
|
Serafini RA, Ramakrishnan A, Shen L, Zachariou V. Desipramine induces anti-inflammatory dorsal root ganglion transcriptional signatures in the murine spared nerve injury model. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100153. [PMID: 38549875 PMCID: PMC10973649 DOI: 10.1016/j.ynpai.2024.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/09/2024]
Abstract
Monoamine-targeting antidepressants serve as frontline medications for chronic pain and associated comorbidities. While persistent anti-allodynic properties of antidepressants generally require weeks of treatment, several groups have demonstrated acute analgesic effects within hours of administration, suggesting a role in non-mesocorticolimbic pain processing regions such as the peripheral nervous system. To further explore this possibility, after four weeks of spared nerve injury or sham surgeries, we systemically administered desipramine or saline for an additional three weeks and performed whole transcriptome RNA sequencing on L3-6 dorsal root ganglia. Along with alterations in molecular pathways associated with neuronal activity, we observed a robust immunomodulatory transcriptional signature in the desipramine treated group. Cell subtype deconvolution predicted that these changes were associated with A- and C-fibers. Of note, differentially expressed genes from the dorsal root ganglia of DMI-treated, injured mice were largely unique compared to those from the nucleus accumbens of the same animals. These observations suggest that, under peripheral nerve injury conditions, desipramine induces specific gene expression changes across various regions of the nociceptive circuitry.
Collapse
Affiliation(s)
- Randal A. Serafini
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Pharmacology, Physiology & Biophysics, Avedisian and Chobanian School of Medicine at Boston University, Boston, MA 02118, United States
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Li Shen
- Department of Pharmacology, Physiology & Biophysics, Avedisian and Chobanian School of Medicine at Boston University, Boston, MA 02118, United States
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Pharmacology, Physiology & Biophysics, Avedisian and Chobanian School of Medicine at Boston University, Boston, MA 02118, United States
| |
Collapse
|
8
|
Xian H, Guo H, Liu YY, Zhang JL, Hu WC, Yu MJ, Zhao R, Xie RG, Zhang H, Cong R. Peripheral BDNF Regulates Somatosensory-Sympathetic Coupling in Brachial Plexus Avulsion-Induced Neuropathic Pain. Neurosci Bull 2023; 39:1789-1806. [PMID: 37335428 PMCID: PMC10661543 DOI: 10.1007/s12264-023-01075-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/19/2023] [Indexed: 06/21/2023] Open
Abstract
Brachial plexus avulsion (BPA) is a combined injury involving the central and peripheral nervous systems. Patients with BPA often experience severe neuropathic pain (NP) in the affected limb. NP is insensitive to the existing treatments, which makes it a challenge to researchers and clinicians. Accumulated evidence shows that a BPA-induced pain state is often accompanied by sympathetic nervous dysfunction, which suggests that the excitation state of the sympathetic nervous system is correlated with the existence of NP. However, the mechanism of how somatosensory neural crosstalk with the sympathetic nerve at the peripheral level remains unclear. In this study, through using a novel BPA C7 root avulsion mouse model, we found that the expression of BDNF and its receptor TrκB in the DRGs of the BPA mice increased, and the markers of sympathetic nervous system activity including α1 and α2 adrenergic receptors (α1-AR and α2-AR) also increased after BPA. The phenomenon of superexcitation of the sympathetic nervous system, including hypothermia and edema of the affected extremity, was also observed in BPA mice by using CatWalk gait analysis, an infrared thermometer, and an edema evaluation. Genetic knockdown of BDNF in DRGs not only reversed the mechanical allodynia but also alleviated the hypothermia and edema of the affected extremity in BPA mice. Further, intraperitoneal injection of adrenergic receptor inhibitors decreased neuronal excitability in patch clamp recording and reversed the mechanical allodynia of BPA mice. In another branch experiment, we also found the elevated expression of BDNF, TrκB, TH, α1-AR, and α2-AR in DRG tissues from BPA patients compared with normal human DRGs through western blot and immunohistochemistry. Our results revealed that peripheral BDNF is a key molecule in the regulation of somatosensory-sympathetic coupling in BPA-induced NP. This study also opens a novel analgesic target (BDNF) in the treatment of this pain with fewer complications, which has great potential for clinical transformation.
Collapse
Affiliation(s)
- Hang Xian
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Huan Guo
- Pain and Related Diseases Research Laboratory, Medical College of Shantou University, Shantou, 515041, China
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Yuan-Ying Liu
- School of Life Science and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, China
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Jian-Lei Zhang
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Wen-Chao Hu
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
- The Sixth Regiment, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Ming-Jun Yu
- The Tenth Squadron of the Third Regiment, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Rui Zhao
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China.
| | - Hang Zhang
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| | - Rui Cong
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
9
|
Montoya-Durango D, Walter MN, Rodriguez W, Wang Y, Chariker JH, Rouchka EC, Maldonado C, Barve S, McClain CJ, Gobejishvili L. Dysregulated Cyclic Nucleotide Metabolism in Alcohol-Associated Steatohepatitis: Implications for Novel Targeted Therapies. BIOLOGY 2023; 12:1321. [PMID: 37887031 PMCID: PMC10604143 DOI: 10.3390/biology12101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Cyclic nucleotides are second messengers, which play significant roles in numerous biological processes. Previous work has shown that cAMP and cGMP signaling regulates various pathways in liver cells, including Kupffer cells, hepatocytes, hepatic stellate cells, and cellular components of hepatic sinusoids. Importantly, it has been shown that cAMP levels and enzymes involved in cAMP homeostasis are affected by alcohol. Although the role of cyclic nucleotide signaling is strongly implicated in several pathological pathways in liver diseases, studies describing the changes in genes regulating cyclic nucleotide metabolism in ALD are lacking. METHODS Male C57B/6 mice were used in an intragastric model of alcohol-associated steatohepatitis (ASH). Liver injury, inflammation, and fibrogenesis were evaluated by measuring plasma levels of injury markers, liver tissue cytokines, and gene expression analyses. Liver transcriptome analysis was performed to examine the effects of alcohol on regulators of cyclic AMP and GMP levels and signaling. cAMP and cGMP levels were measured in mouse livers as well as in livers from healthy human donors and patients with alcohol-associated hepatitis (AH). RESULTS Our results show significant changes in several phosphodiesterases (PDEs) with specificity to degrade cAMP (Pde4a, Pde4d, and Pde8a) and cGMP (Pde5a, Pde6d, and Pde9a), as well as dual-specificity PDEs (Pde1a and Pde10a) in ASH mouse livers. Adenylyl cyclases (ACs) 7 and 9, which are responsible for cAMP generation, were also affected by alcohol. Importantly, adenosine receptor 1, which has been implicated in the pathogenesis of liver diseases, was significantly increased by alcohol. Adrenoceptors 1 and 3 (Adrb), which couple with stimulatory G protein to regulate cAMP and cGMP signaling, were significantly decreased. Additionally, beta arrestin 2, which interacts with cAMP-specific PDE4D to desensitize G-protein-coupled receptor to generate cAMP, was significantly increased by alcohol. Notably, we observed that cAMP levels are much higher than cGMP levels in the livers of humans and mice; however, alcohol affected them differently. Specifically, cGMP levels were higher in patients with AH and ASH mice livers compared with controls. As expected, these changes in liver cyclic nucleotide signaling were associated with increased inflammation, steatosis, apoptosis, and fibrogenesis. CONCLUSIONS These data strongly implicate dysregulated cAMP and cGMP signaling in the pathogenesis of ASH. Future studies to identify changes in these regulators in a cell-specific manner could lead to the development of novel targeted therapies for ASH.
Collapse
Affiliation(s)
- Diego Montoya-Durango
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (D.M.-D.); (M.N.W.); (W.R.); (Y.W.); (C.M.)
| | - Mary Nancy Walter
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (D.M.-D.); (M.N.W.); (W.R.); (Y.W.); (C.M.)
| | - Walter Rodriguez
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (D.M.-D.); (M.N.W.); (W.R.); (Y.W.); (C.M.)
| | - Yali Wang
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (D.M.-D.); (M.N.W.); (W.R.); (Y.W.); (C.M.)
| | - Julia H. Chariker
- Department of Neuroscience Training, University of Louisville, Louisville, KY 40290, USA;
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY 40290, USA;
| | - Eric C. Rouchka
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY 40290, USA;
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| | - Claudio Maldonado
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (D.M.-D.); (M.N.W.); (W.R.); (Y.W.); (C.M.)
| | - Shirish Barve
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (S.B.); (C.J.M.)
- Alcohol Research Center, University of Louisville, Louisville, KY 40290, USA
| | - Craig J. McClain
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (S.B.); (C.J.M.)
- Alcohol Research Center, University of Louisville, Louisville, KY 40290, USA
- Robley Rex VA Medical Center, Louisville, KY 40206, USA
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY 40290, USA
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (D.M.-D.); (M.N.W.); (W.R.); (Y.W.); (C.M.)
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40290, USA; (S.B.); (C.J.M.)
- Alcohol Research Center, University of Louisville, Louisville, KY 40290, USA
| |
Collapse
|
10
|
Cui X, Zhang Z, Xi H, Liu K, Zhu B, Gao X. Sympathetic-Sensory Coupling as a Potential Mechanism for Acupoints Sensitization. J Pain Res 2023; 16:2997-3004. [PMID: 37667684 PMCID: PMC10475306 DOI: 10.2147/jpr.s424841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023] Open
Abstract
A series of studies have demonstrated acupoint sensitization, in which acupoints can be activated in combination with sensory hypersensitivity and functional plasticity during visceral disorders. However, the mechanisms of acupoint sensitization remain unclear. Neuroanatomy evidence showed nociceptors innervated in acupoints contribute to the mechanism of acupoint sensitization. Increasing studies suggested sympathetic nerve plays a key role in modulating sensory transmission by sprouting or coupling with sensory neuron/nociceptor in the peripheral, forming the functional structure of the sympathetic-sensory coupling. Notably, the sensory inputs of the disease-induced sensitized acupoint contribute to the homeostatic regulation and also involve in delivering therapeutic information under acupuncture, hence, the role of sprouted sympathetic in acupoint function should be given attention. We herein reviewed the current knowledge of sympathetic and its sprouting in pain modulation, then discussed and highlighted the potential value of sympathetic-sensory coupling in acupoint functional plasticity.
Collapse
Affiliation(s)
- Xiang Cui
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Ziyi Zhang
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, People’s Republic of China
| | - Hanqing Xi
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Kun Liu
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Bing Zhu
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Xinyan Gao
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| |
Collapse
|
11
|
Madar J, Tiwari N, Smith C, Sharma D, Shen S, Elmahdi A, Qiao LY. Piezo2 regulates colonic mechanical sensitivity in a sex specific manner in mice. Nat Commun 2023; 14:2158. [PMID: 37061508 PMCID: PMC10105732 DOI: 10.1038/s41467-023-37683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/27/2023] [Indexed: 04/17/2023] Open
Abstract
The mechanosensitive ion channel Piezo2 in mucosa and primary afferents transduces colonic mechanical sensation. Here we show that chemogenetic activation or nociceptor-targeted deletion of Piezo2 is sufficient to regulate colonic mechanical sensitivity in a sex dependent manner. Clozapine N-oxide-induced activation of Piezo2;hM3Dq-expressing sensory neurons evokes colonic hypersensitivity in male mice, and causes dyspnea in female mice likely due to effects on lung sensory neurons. Activation of Piezo2-expressing colonic afferent neurons also induces colonic hypersensitivity in male but not female mice. Piezo2 levels in nociceptive neurons are higher in female than in male mice. We also show that Piezo2 conditional deletion from nociceptive neurons increases body weight growth, slows colonic transits, and reduces colonic mechanosensing in female but not male mice. Piezo2 deletion blocks colonic hypersensitivity in male but not female mice. These results suggest that Piezo2 in nociceptive neurons mediates innocuous colonic mechanosensing in female mice and painful sensation in male mice, suggesting a sexual dimorphism of Piezo2 function in the colonic sensory system.
Collapse
Affiliation(s)
- Jonathan Madar
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Namrata Tiwari
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Cristina Smith
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Divya Sharma
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Shanwei Shen
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Alsiddig Elmahdi
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Liya Y Qiao
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
12
|
Electroacupuncture Zusanli (ST36) Relieves Somatic Pain in Colitis Rats by Inhibiting Dorsal Root Ganglion Sympathetic-Sensory Coupling and Neurogenic Inflammation. Neural Plast 2023; 2023:9303419. [PMID: 36910013 PMCID: PMC9998159 DOI: 10.1155/2023/9303419] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/09/2022] [Accepted: 12/09/2022] [Indexed: 03/06/2023] Open
Abstract
Referred somatic pain triggered by hyperalgesia is common in patients with inflammatory bowel disease (IBD). It was reported that sprouting of sympathetic nerve fibers into the dorsal root ganglion (DGR) and neurogenic inflammation were related to neuropathic pain, the excitability of neurons, and afferents. The purpose of the study was to explore the potential and mechanism of electroacupuncture (EA) at Zusanli (ST36) for the intervention of colon inflammation and hyperalgesia. Sprague-Dawley (SD) was randomly divided into four groups, including control, model, EA, and sham-EA. Our results showed EA treatment significantly attenuated dextran sulfate sodium- (DSS-) induced colorectal lesions and inflammatory cytokine secretion, such as TNF-α, IL-1β, PGE2, and IL-6. EA also inhibited mechanical and thermal pain hypersensitivities of colitis rats. Importantly, EA effectively abrogated the promotion effect of DSS on ipsilateral lumbar 6 (L6) DRG sympathetic-sensory coupling, manifested as the sprouting of tyrosine hydroxylase- (TH-) positive sympathetic fibers into sensory neurons and colocalization of and calcitonin gene-related peptide (CGRP). Furthermore, EA at Zusanli (ST36) activated neurogenic inflammation, characterized by decreased expression of substance P (SP), hyaluronic acid (HA), bradykinin (BK), and prostacyclin (PGI2) in colitis rat skin tissues corresponding to the L6 DRG. Mechanically, EA treatment reduced the activation of the TRPV1/CGRP, ERK, and TLR4 signaling pathways in L6 DRG of colitis rats. Taken together, we presumed that EA treatment improved colon inflammation and hyperalgesia, potentially by suppressing the sprouting of sympathetic nerve fibers into the L6 DGR and neurogenic inflammation via deactivating the TRPV1/CGRP, ERK, and TLR4 signaling pathways.
Collapse
|
13
|
Atherton MA, Park S, Horan NL, Nicholson S, Dolan JC, Schmidt BL, Scheff NN. Sympathetic modulation of tumor necrosis factor alpha-induced nociception in the presence of oral squamous cell carcinoma. Pain 2023; 164:27-42. [PMID: 35714327 PMCID: PMC9582047 DOI: 10.1097/j.pain.0000000000002655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/08/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Head and neck squamous cell carcinoma (HNSCC) causes more severe pain and psychological stress than other types of cancer. Despite clinical evidence linking pain, stress, and cancer progression, the underlying relationship between pain and sympathetic neurotransmission in oral cancer is unknown. We found that human HNSCC tumors and mouse tumor tissue are innervated by peripheral sympathetic and sensory nerves. Moreover, β-adrenergic 1 and 2 receptors (β-ARs) are overexpressed in human oral cancer cell lines, and norepinephrine treatment increased β-AR2 protein expression as well as cancer cell proliferation in vitro. We have recently demonstrated that inhibition of tumor necrosis factor alpha (TNFα) signaling reduces oral cancer-induced nociceptive behavior. Norepinephrine-treated cancer cell lines secrete more TNFα which, when applied to tongue-innervating trigeminal neurons, evoked a larger Ca 2+ transient; TNF-TNFR inhibitor blocked the increase in the evoked Ca 2+ transient. Using an orthotopic xenograft oral cancer model, we found that mice demonstrated significantly less orofacial cancer-induced nociceptive behavior during systemic β-adrenergic inhibitory treatment with propranolol. Furthermore, chemical sympathectomy using guanethidine led to a significant reduction in tumor size and nociceptive behavior. We infer from these results that sympathetic signaling modulates oral cancer pain through TNFα secretion and tumorigenesis. Further investigation of the role of neurocancer communication in cancer progression and pain is warranted.
Collapse
Affiliation(s)
- Megan A Atherton
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Stella Park
- Bluestone Center for Clinical Research, DDS Program, College of Dentistry, New York University, New York, NY, United States
| | - Nicole L Horan
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Samuel Nicholson
- Bluestone Center for Clinical Research, DDS Program, College of Dentistry, New York University, New York, NY, United States
| | - John C Dolan
- Bluestone Center for Clinical Research, DDS Program, College of Dentistry, New York University, New York, NY, United States
| | - Brian L Schmidt
- Bluestone Center for Clinical Research, DDS Program, College of Dentistry, New York University, New York, NY, United States
| | - Nicole N Scheff
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Cairns BE. The contribution of autonomic mechanisms to pain in temporomandibular disorders: A narrative review. J Oral Rehabil 2022; 49:1115-1126. [PMID: 36098708 DOI: 10.1111/joor.13370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Temporomandibular disorders (TMD) are diagnosed based on symptom presentation and, like other functional pain disorders, often lack definitive pathology. There is a strong association between elevated stress levels and the severity of TMD-related pain, which suggests that alterations in autonomic tone may contribute to this pain condition. OBJECTIVES This narrative review examines the association between altered autonomic function and pain in TMD. METHODS Relevant articles were identified by searching PubMed and through the reference list of those studies. RESULTS TMD sufferers report an increased incidence of orthostatic hypotension. As in other chronic musculoskeletal pain conditions, TMD is associated with increased sympathetic tone, diminished baroreceptor reflex sensitivity and decreased parasympathetic tone. It remains to be determined whether ongoing pain drives these autonomic changes and/or is exacerbated by them. To examine whether increased sympathetic tone contributes to TMD-related pain through β2 adrenergic receptor activation, clinical trials with the beta blocker propranolol have been undertaken. Although evidence from small studies suggested propranolol reduced TMD-related pain, a larger clinical trial did not find a significant effect of propranolol treatment. This is consistent with human experimental pain studies that were unable to demonstrate an effect of β2 adrenergic receptor activation or inhibition on masticatory muscle pain. In preclinical models of temporomandibular joint arthritis, β2 adrenergic receptor activation appears to contribute to inflammation and nociception, whereas in masticatory muscle, α1 adrenergic receptor activation has been found to induce mechanical sensitization. Some agents used to treat TMD, such as botulinum neurotoxin A, antidepressants and α2 adrenergic receptor agonists, may interact with the autonomic nervous system as part of their analgesic mechanism. CONCLUSION Even if dysautonomia turns out to be a consequence rather than a causative factor of painful TMD, the study of its role has opened up a greater understanding of the pathogenesis of this condition.
Collapse
Affiliation(s)
- Brian E Cairns
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
15
|
Ahmed YM, Orfali R, Hamad DS, Rateb ME, Farouk HO. Sustainable Release of Propranolol Hydrochloride Laden with Biconjugated-Ufasomes Chitosan Hydrogel Attenuates Cisplatin-Induced Sciatic Nerve Damage in In Vitro/In Vivo Evaluation. Pharmaceutics 2022; 14:1536. [PMID: 35893792 PMCID: PMC9394333 DOI: 10.3390/pharmaceutics14081536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Peripheral nerve injuries significantly impact patients' quality of life and poor functional recovery. Chitosan-ufasomes (CTS-UFAs) exhibit biomimetic features, making them a viable choice for developing novel transdermal delivery for neural repair. This study aimed to investigate the role of CTS-UFAs loaded with the propranolol HCl (PRO) as a model drug in enhancing sciatica in cisplatin-induced sciatic nerve damage in rats. Hence, PRO-UFAs were primed, embedding either span 20 or 60 together with oleic acid and cholesterol using a thin-film hydration process based on full factorial design (24). The influence of formulation factors on UFAs' physicochemical characteristics and the optimum formulation selection were investigated using Design-Expert® software. Based on the optimal UFA formulation, PRO-CTS-UFAs were constructed and characterized using transmission electron microscopy, stability studies, and ex vivo permeation. In vivo trials on rats with a sciatic nerve injury tested the efficacy of PRO-CTS-UFA and PRO-UFA transdermal hydrogels, PRO solution, compared to normal rats. Additionally, oxidative stress and specific apoptotic biomarkers were assessed, supported by a sciatic nerve histopathological study. PRO-UFAs and PRO-CTS-UFAs disclosed entrapment efficiency of 82.72 ± 2.33% and 85.32 ± 2.65%, a particle size of 317.22 ± 6.43 and 336.12 ± 4.9 nm, ζ potential of -62.06 ± 0.07 and 65.24 ± 0.10 mV, and accumulatively released 70.95 ± 8.14% and 64.03 ± 1.9% PRO within 6 h, respectively. Moreover, PRO-CTS-UFAs significantly restored sciatic nerve structure, inhibited the cisplatin-dependent increase in peripheral myelin 22 gene expression and MDA levels, and further re-established sciatic nerve GSH and CAT content. Furthermore, they elicited MBP re-expression, BCL-2 mild expression, and inhibited TNF-α expression. Briefly, our findings proposed that CTS-UFAs are promising to enhance PRO transdermal delivery to manage sciatic nerve damage.
Collapse
Affiliation(s)
- Yasmin M. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt;
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Doaa S. Hamad
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt; (D.S.H.); (H.O.F.)
| | - Mostafa E. Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Hanan O. Farouk
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt; (D.S.H.); (H.O.F.)
| |
Collapse
|
16
|
Wen J, Xu Y, Yu Z, Zhou Y, Wang W, Yang J, Wang Y, Bai Q, Li Z. The cAMP Response Element- Binding Protein/Brain-Derived Neurotrophic Factor Pathway in Anterior Cingulate Cortex Regulates Neuropathic Pain and Anxiodepression Like Behaviors in Rats. Front Mol Neurosci 2022; 15:831151. [PMID: 35401106 PMCID: PMC8987281 DOI: 10.3389/fnmol.2022.831151] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/17/2022] [Indexed: 01/24/2023] Open
Abstract
Neuropathic pain is often accompanied by anxiety and depression-like manifestations. Many studies have shown that alterations in synaptic plasticity in the anterior cingulate cortex (ACC) play a critical role, but the specific underlying mechanisms remain unclear. Previously, we showed that cAMP response element-binding protein (CREB) in the dorsal root ganglion (DRG) acts as a transcription factor contributing to neuropathic pain development. At the same time, brain-derived neurotrophic factor (BDNF), as important targets of CREB, is intricate in neuronal growth, differentiation, as well as the establishment of synaptic plasticity. Here, we found that peripheral nerve injury activated the spinal cord and ACC, and silencing the ACC resulted in significant relief of pain sensitivity, anxiety, and depression in SNI rats. In parallel, the CREB/BDNF pathway was activated in the spinal cord and ACC. Central specific knockdown and peripheral non-specific inhibition of CREB reversed pain sensitivity and anxiodepression induced by peripheral nerve injury. Consequently, we identified cingulate CREB/BDNF as an assuring therapeutic method for treating neuropathic pain as well as related anxiodepression.
Collapse
Affiliation(s)
- Jing Wen
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaowei Xu
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhixiang Yu
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifan Zhou
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenting Wang
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjie Yang
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiming Wang
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Bai
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Qian Bai,
| | - Zhisong Li
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Zhisong Li,
| |
Collapse
|