1
|
Avery TD, Li J, Turner DJL, Rasheed MSU, Cherry FR, Stachura DL, Rivera-Escalera F, Ruiz DM, Lacagnina MJ, Gaffney CM, Aguilar C, Yu J, Wang Y, Xie H, Liang D, Shepherd AJ, Abell AD, Grace PM. Site-specific drug release of monomethyl fumarate to treat oxidative stress disorders. Nat Biotechnol 2024:10.1038/s41587-024-02460-4. [PMID: 39496929 DOI: 10.1038/s41587-024-02460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/02/2024] [Indexed: 11/06/2024]
Abstract
Treatment of diseases of oxidative stress through activation of the antioxidant nuclear factor E2-related factor 2 (NRF2) is limited by systemic side effects. We chemically functionalize the NRF2 activator monomethyl fumarate to require Baeyer-Villiger oxidation for release of the active drug at sites of oxidative stress. This prodrug reverses chronic pain in mice with reduced side effects and could be applied to other disorders of oxidative stress.
Collapse
Affiliation(s)
- Thomas D Avery
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia, Australia
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jiahe Li
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dion J L Turner
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia, Australia
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mohd S U Rasheed
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fisher R Cherry
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Damian L Stachura
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia, Australia
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, Australia
| | - Fátima Rivera-Escalera
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David M Ruiz
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Lacagnina
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caitlyn M Gaffney
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clarissa Aguilar
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia, Australia
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, Australia
| | - Yang Wang
- Department of Pharmaceutical Science, Texas Southern University, Houston, TX, USA
| | - Huan Xie
- Department of Pharmaceutical Science, Texas Southern University, Houston, TX, USA
| | - Dong Liang
- Department of Pharmaceutical Science, Texas Southern University, Houston, TX, USA
| | - Andrew J Shepherd
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia, Australia.
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia, Australia.
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Pierzchała K, Pięta J, Pięta M, Rola M, Zielonka J, Sikora A, Marcinek A, Michalski R. Boronate-Based Oxidant-Responsive Derivatives of Acetaminophen as Proinhibitors of Myeloperoxidase. Chem Res Toxicol 2023; 36:1398-1408. [PMID: 37534491 PMCID: PMC10445283 DOI: 10.1021/acs.chemrestox.3c00140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 08/04/2023]
Abstract
Myeloperoxidase (MPO) is an important component of the human innate immune system and the main source of a strong oxidizing and chlorinating species, hypochlorous acid (HOCl). Inadvertent, misplaced, or excessive generation of HOCl by MPO is associated with multiple human inflammatory diseases. Therefore, there is a considerable interest in the development of MPO inhibitors. Here, we report the synthesis and characterization of a boronobenzyl derivative of acetaminophen (AMBB), which can function as a proinhibitor of MPO and release acetaminophen, the inhibitor of chlorination cycle of MPO, in the presence of inflammatory oxidants, i.e., hydrogen peroxide, hypochlorous acid, or peroxynitrite. We demonstrate that the AMBB proinhibitor undergoes conversion to acetaminophen by all three oxidants, with the involvement of the primary phenolic product intermediate, with relatively long half-life at pH 7.4. The determined rate constants of the reaction of the AMBB proinhibitor with hydrogen peroxide, hypochlorous acid, or peroxynitrite are equal to 1.67, 1.6 × 104, and 1.0 × 106 M-1 s-1, respectively. AMBB showed lower MPO inhibitory activity (IC50 > 0.3 mM) than acetaminophen (IC50 = 0.14 mM) toward MPO-dependent HOCl generation. Finally, based on the determined reaction kinetics and the observed inhibitory effects of two plasma components, uric acid and albumin, on the extent of AMBB oxidation by ONOO- and HOCl, we conclude that ONOO- is the most likely potential activator of AMBB in human plasma.
Collapse
Affiliation(s)
- Karolina Pierzchała
- Institute
of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jakub Pięta
- Institute
of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Marlena Pięta
- Institute
of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Monika Rola
- Institute
of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jacek Zielonka
- Department
of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Adam Sikora
- Institute
of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Andrzej Marcinek
- Institute
of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Radosław Michalski
- Institute
of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
3
|
Long J, Liu H, Qiu Z, Xiao Z, Lu Z. Glabridin Therapy Reduces Chronic Allodynia, Spinal Microgliosis, and Dendritic Spine Generation by Inhibiting Fractalkine-CX3CR1 Signaling in a Mouse Model of Tibial Fractures. Brain Sci 2023; 13:brainsci13050739. [PMID: 37239211 DOI: 10.3390/brainsci13050739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Patients undergoing bone fractures frequently suffer from irritating chronic pain after orthopedic repairs. Chemokine-mediated interactions between neurons and microglia are important steps for neuroinflammation and excitatory synaptic plasticity during the spinal transmission of pathological pain. Recently, glabridin, the main bioactive component of licorice, has been shown to exhibit anti-nociceptive and neuroprotective properties for inflammatory pain. This present study evaluated the therapeutic potential of glabridin and its analgesic mechanisms using a mouse model of tibial fracture-associated chronic pain. Repetitive injections of glabridin were delivered spinally daily for 4 continuous days from days 3 to 6 after the fractures. Herein, we discovered that repeated administrations of glabridin (10 and 50 μg, but not 1 μg) could prevent prolonged cold allodynia and mechanical allodynia following bone fractures. A single intrathecal intervention with glabridin (50 μg) relieved an existing chronic allodynia two weeks following the fracture surgeries. Systemic therapies with glabridin (intraperitoneal; 50 mg kg-1) were protective against long-lasting allodynia caused by fractures. Furthermore, glabridin restricted the fracture-caused spinal overexpressions of the chemokine fractalkine and its receptor CX3CR1, as well as the elevated number of microglial cells and dendritic spines. Strikingly, glabridin induced the inhibition of pain behaviors, microgliosis, and spine generation, which were abolished with the co-administration of exogenous fractalkine. Meanwhile, the exogenous fractalkine-evoked acute pain was compensated after microglia inhibition. Additionally, spinal neutralization of fractalkine/CX3CR1 signaling alleviated the intensity of postoperative allodynia after tibial fractures. These key findings identify that glabridin therapies confer protection against inducing and sustaining fracture-elicited chronic allodynia by suppressing fractalkine/CX3CR1-dependent spinal microgliosis and spine morphogenesis, suggesting that glabridin is a promising candidate in the translational development of chronic fracture pain control.
Collapse
Affiliation(s)
- Juan Long
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou 325000, China
| | - Hongbing Liu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou 325000, China
| | - Zhimin Qiu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou 325000, China
| | - Zhong Xiao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou 325000, China
- Intensive Care Unit, Shaoxing People's Hospital, Shaoxing 312000, China
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou 325000, China
| |
Collapse
|
4
|
Blocking SphK/S1P/S1PR1 axis signaling pathway alleviates remifentanil-induced hyperalgesia in rats. Neurosci Lett 2023; 801:137131. [PMID: 36801239 DOI: 10.1016/j.neulet.2023.137131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/28/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Recent research shows a correlation between altered sphingolipid metabolism and nociceptive processing. Activation of the sphingosine-1-phosphate receptor 1 subtype (S1PR1) by its ligand, sphingosine-1-phosphate (S1P), causes neuropathic pain. However, its role in remifentanil-induced hyperalgesia (RIH) has not been investigated. The purpose of this research was to establish if the SphK/S1P/S1PR1 axis mediated remifentanil-induced hyperalgesia and identify its potential targets. This study examined the protein expression of ceramide, sphingosine kinases (SphK), S1P, and S1PR1 in the spinal cord of rats treated with remifentanil (1.0 μg/kg/min for 60 min). Prior to receiving remifentanil, rats were injected with SK-1 (a SphK inhibitor); LT1002 (a S1P monoclonal antibody); CYM-5442, FTY720, and TASP0277308(the S1PR1 antagonists); CYM-5478 (a S1PR2 agonist); CAY10444 (a S1PR3 antagonist); Ac-YVAD-CMK (a caspase-1 antagonist); MCC950 (the NOD-like receptor protein 3 (NLRP3) inflammasome antagonist); and N-tert-Butyl-α-phenylnitrone (PBN, a reactive oxygen species (ROS) scavenger). Mechanical and thermal hyperalgesia were evaluated at baseline (24 h prior to remifentanil infusion) and 2, 6, 12, and 24 h following remifentanil administration. The expression of the NLRP3-related protein (NLRP3, caspase-1), pro-inflammatory cytokines (interleukin-1β(IL-1β), IL-18), and ROS was found in the spinal dorsal horns. In the meantime, immunofluorescence was used to ascertain if S1PR1 co-localizes with astrocytes. Remifentanil infusion induced considerable hyperalgesia in addition to increased ceramide, SphK, S1P, and S1PR1, NLRP3-related protein (NLRP3, Caspase-1, IL-1β, IL-18) and ROS expression, and S1PR1 localized astrocytes. By blocking the SphK/S1P/S1PR1 axis, remifentanil-induced hyperalgesia was reduced, as was the expression of NLRP3, caspase-1, pro-inflammatory cytokines (IL-1β, IL-18) and ROS in the spinal cord. In addition, we observed that suppressing NLRP3 or ROS signal attenuated the mechanical and thermal hyperalgesia induced by remifentanil. Our findings indicate that the SphK/SIP/S1PR1 axis regulates the expression of NLRP3, Caspase-1, IL-1β, IL-18 and ROS in the spinal dorsal horn to mediate remifentanil-induced hyperalgesia. These findings may contribute to pain and SphK/S1P/S1PR1 axis research positively, and inform the future study of this commonly used analgesic.
Collapse
|
5
|
Salvemini D, Doyle TM. Targeting neuroinflammation in neuropathic pain and opioid use. J Exp Med 2023; 220:e20221244. [PMID: 36562735 PMCID: PMC9793426 DOI: 10.1084/jem.20221244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neuropathic pain arises from injuries to the nervous system. It affects 20% of the adult US population and poses a major socioeconomic burden yet remains exceedingly difficult to treat. Current therapeutic approaches have limited efficacy and a large side effect profile that impedes their ability to treat neuropathic pain effectively. Preclinical research over the last 30 yr has established the critical role that pro-inflammatory neuro-immune cell interactions have in the development and maintenance of neuropathic pain arising from various etiologies. Pro-inflammatory neuro-immune cell interactions also underlie the development of adverse side effects of opioids and the loss of their efficacy to treat pain. Evidence from work in our lab and others in preclinical animal models have shown that signaling from the bioactive sphingolipid, sphingosine-1-phosphate (S1P), through the S1P receptor subtype 1 (S1PR1) modulates neuro-immune cell interactions. Here, we discuss how targeting S1P/S1PR1 signaling with S1PR1 antagonists already Food and Drug Administration-approved or in clinical trials for multiple sclerosis can provide a viable pharmacotherapeutic approach to reduce neuro-immune cell inflammatory signaling and potentially treat patients suffering neuropathic pain and the adverse effects of opioids.
Collapse
Affiliation(s)
- Daniela Salvemini
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, Saint Louis, MO, USA
- Institute for Translational Neuroscience, Saint Louis University, Saint Louis, MO, USA
| | - Timothy M. Doyle
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, Saint Louis, MO, USA
- Institute for Translational Neuroscience, Saint Louis University, Saint Louis, MO, USA
| |
Collapse
|
6
|
Squillace S, Niehoff ML, Doyle TM, Green M, Esposito E, Cuzzocrea S, Arnatt CK, Spiegel S, Farr SA, Salvemini D. Sphingosine-1-phosphate receptor 1 activation in the central nervous system drives cisplatin-induced cognitive impairment. J Clin Invest 2022; 132:157738. [PMID: 36047496 PMCID: PMC9433103 DOI: 10.1172/jci157738] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/12/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer-related cognitive impairment (CRCI) is a major neurotoxicity affecting more than 50% of cancer survivors. The underpinning mechanisms are mostly unknown, and there are no FDA-approved interventions. Sphingolipidomic analysis of mouse prefrontal cortex and hippocampus, key sites of cognitive function, revealed that cisplatin increased levels of the potent signaling molecule sphingosine-1-phosphate (S1P) and led to cognitive impairment. At the biochemical level, S1P induced mitochondrial dysfunction, activation of NOD-, LRR-, and pyrin domain–containing protein 3 inflammasomes, and increased IL-1β formation. These events were attenuated by systemic administration of the functional S1P receptor 1 (S1PR1) antagonist FTY720, which also attenuated cognitive impairment without adversely affecting locomotor activity. Similar attenuation was observed with ozanimod, another FDA-approved functional S1PR1 antagonist. Mice with astrocyte-specific deletion of S1pr1 lost their ability to respond to FTY720, implicating involvement of astrocytic S1PR1. Remarkably, our pharmacological and genetic approaches, coupled with computational modeling studies, revealed that cisplatin increased S1P production by activating TLR4. Collectively, our results identify the molecular mechanisms engaged by the S1P/S1PR1 axis in CRCI and establish S1PR1 antagonism as an approach to target CRCI with therapeutics that have fast-track clinical application.
Collapse
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology, and.,The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Michael L Niehoff
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA.,Department of Internal Medicine-Geriatrics, Saint Louis School of Medicine, St. Louis, Missouri, USA
| | - Timothy M Doyle
- Department of Pharmacology and Physiology, and.,The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Michael Green
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA.,Department of Chemistry, Saint Louis University, St. Louis, Missouri, USA
| | - Emanuela Esposito
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy
| | - Christopher K Arnatt
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA.,Department of Chemistry, Saint Louis University, St. Louis, Missouri, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, Richmond, Virginia, USA
| | - Susan A Farr
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA.,Department of Internal Medicine-Geriatrics, Saint Louis School of Medicine, St. Louis, Missouri, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, and.,The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Zhang H, Li N, Li Z, Li Y, Yu Y, Zhang L. The Involvement of Caspases in Neuroinflammation and Neuronal Apoptosis in Chronic Pain and Potential Therapeutic Targets. Front Pharmacol 2022; 13:898574. [PMID: 35592413 PMCID: PMC9110832 DOI: 10.3389/fphar.2022.898574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 12/26/2022] Open
Abstract
Chronic pain is a common, complex and unpleasant sensation following nerve injury, tissue trauma, inflammatory diseases, infection and cancer. It affects up to 25% of adults and is increasingly recognized as the leading cause of distress, disability and disease burden globally. Chronic pain is often refractory to most current analgesics, thus emphasizing the requirement for improved therapeutic medications. It is of great importance to elucidate the specific pathogenesis of chronic pain with different etiologies. Recent progress has advanced our understanding in the contribution of neuroinflammation and glial cells (microglia and astrocyte) activation in the plasticity of excitatory nociceptive synapses and the development of chronic pain phenotypes. Oxidative stress-associated neuronal apoptosis is also identified to be a pivotal step for central pain sensitization. The family of cysteine aspartate specific proteases (Caspases) has been well known to be key signaling molecules for inflammation and apoptosis in several neurological conditions. Recent studies have highlighted the unconventional and emerging role of caspases in microgliosis, astrocytes morphogenesis, chemokines release, cytokines secretion and neuronal apoptosis in initiating and maintaining synaptogenesis, synaptic strength and signal transduction in persistent pain hypersensitivity, suggesting the possibility of targeting caspases pathway for prevention and treatment of chronic pain. In this review, we will discuss and summarize the advances in the distinctive properties of caspases family in the pathophysiology of chronic pain, especially in neuropathic pain, inflammatory pain, cancer pain and musculoskeletal pain, with the aim to find the promising therapeutic candidates for the resolution of chronic pain to better manage patients undergoing chronic pain in clinics.
Collapse
Affiliation(s)
- Haoyue Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.,The Graduate School, Tianjin Medical University, Tianjin, China
| | - Nan Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.,The Graduate School, Tianjin Medical University, Tianjin, China
| | - Ziping Li
- The Graduate School, Tianjin Medical University, Tianjin, China.,Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|