1
|
Bhujbal S, Rupenthal ID, Steven P, Agarwal P. Inflammation in Dry Eye Disease-Pathogenesis, Preclinical Animal Models, and Treatments. J Ocul Pharmacol Ther 2024; 40:638-658. [PMID: 39358844 DOI: 10.1089/jop.2024.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Dry eye disease (DED) is a rapidly growing ocular surface disease with a significant socioeconomic impact that affects the patients' visual function and, thus, their quality of life. It is distinguished by a loss of tear film homeostasis, leading to tear film instability, hyperosmolarity, ocular surface inflammation, and neurosensory abnormalities, with all of these playing etiological roles in the propagation of the vicious DED circle. While current treatments primarily focus on reducing tear film instability and hyperosmolarity, increasingly more attention is being placed on tackling the underlying inflammation that propagates and potentiates these factors. As such, preclinical models are crucial to further elucidate the DED pathophysiology and develop novel therapeutic strategies. This review outlines the role of inflammation in DED, highlighting related signs and diagnostic tools before focusing on relevant preclinical animal models and potential therapeutic strategies to tackle DED-associated inflammation.
Collapse
Affiliation(s)
- Santosh Bhujbal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Philipp Steven
- Clinic I for Internal Medicine and Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Priyanka Agarwal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Wang G, Zhu Y, Liu Y, Yang M, Zeng L. Mesenchymal Stem Cells-Derived Exosomal miR-223-3p Alleviates Ocular Surface Damage and Inflammation by Downregulating Fbxw7 in Dry Eye Models. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 39352716 PMCID: PMC11451833 DOI: 10.1167/iovs.65.12.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Purpose Our previous study indicated that exosomes derived from mouse adipose-derived mesenchymal stem cells (mADSC-Exos) alleviated the benzalkonium chloride (BAC)-induced mouse dry eye model. However, the specific active molecules in mADSC-Exos that contribute to anti-dry eye therapy remain unidentified. In this study, we aimed to investigate the efficacy and mechanisms of miR-223-3p derived from mADSC-Exos in dry eye models. Methods Enzyme-linked immunosorbent assay (ELISA) experiments were conducted to determine miR-223-3p derived from mADSC-Exos that exerted anti-inflammatory effects on hyperosmolarity-induced mouse corneal epithelial cells (MCECs). The therapeutic efficacy of miR-223-3p was evaluated in mice with dry eye induced by either BAC or scopolamine (Scop). Mice were randomly assigned to 5 groups: sham, model, miR-223-3p overexpression, miR-223-3p knockdown, and 0.1% pranoprofen (positive group). Post-treatment, the severity of dry eye symptoms, and the pro-inflammatory cytokine levels were assessed. The effect of miR-223-3p on silencing the target gene was verified using ELISA and dual luciferase reporter assays. Results The mADSC-Exos that knocked out miR-223-3p did not reduce interleukin (IL)-6 content. Supplementing with miR-223-3p could restore the reduction of IL-6. The miR-223-3p effectively ameliorated ocular surface damage and decreased pro-inflammatory cytokines or chemokines in both BAC- and Scop-induced mouse dry eye models. Furthermore, miR-223-3p inhibited cell apoptosis. F-box and WD repeat domain-containing 7 (Fbxw7) was the potential direct target of miR-223-3p. The miR-223-3p suppressed the 3'-untranslated region of Fbxw7. The Fbxw7 knockdown suppressed hyperosmolarity-induced inflammation in MCECs. Conclusions The mADSC-derived exosomal miR-223-3p mitigates ocular surface damage and inflammation, indicating its potential as a promising treatment option for dry eye.
Collapse
Affiliation(s)
- Guifang Wang
- Ophthalmology Department, Loudi Central Hospital, Loudi, Hunan, China
| | - Yujie Zhu
- Ophthalmology Department, Loudi Central Hospital, Loudi, Hunan, China
| | - Yuzhen Liu
- Ophthalmology Department, Loudi Central Hospital, Loudi, Hunan, China
| | - Mulin Yang
- Ophthalmology Department, Loudi Central Hospital, Loudi, Hunan, China
| | - Li Zeng
- Ophthalmology Department, Loudi Central Hospital, Loudi, Hunan, China
| |
Collapse
|
3
|
Hsieh HH, Chang YA, Chan S, Lin ZQ, Lin CT, Hu FR, Hung KF, Sun YC. Characterizing the Robustness of Distinct Clinical Assessments in Identifying Dry Eye Condition of Animal Models. Curr Eye Res 2024; 49:565-573. [PMID: 38299568 DOI: 10.1080/02713683.2024.2310614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
PURPOSE The study aims to characterize the robustness of distinct clinical assessments in identifying the underlying conditions of dry eye disease (DED), with a specific emphasis on the involvement of conjunctival goblet cells. METHODS Seven rabbits receiving surgical removal of the lacrimal and Harderian glands were divided into two groups, one with ablation of conjunctival goblet cells by topical soaking of trichloroacetic acid (TCA) to the bulbar conjunctiva (n = 3) and one without (n = 4), and the conditions of DED were assessed weekly using Schirmer test, tear breakup time (TBUT), tear osmolarity, and National Eye Institute (NEI) fluorescein staining grading. After 8 weeks, the rabbits were sacrificed, and the eyes were enucleated for histopathological examination. RESULTS Histopathological analysis revealed corneal epithelial thinning in both groups. While TCA soaking significantly decreased the density of conjunctival goblet cells, DED rabbits without TCA also showed a partial reduction in goblet cell density, potentially attributable to dacryoadenectomy. Both groups showed significant decreases in Schirmer test and TBUT, as well as an increase in tear osmolarity. In DED rabbits with TCA soaking, tear osmolarity increased markedly, suggesting that tear osmolarity is highly sensitive to loss and/or dysfunction of conjunctival goblet cells. Fluorescein staining was gradually and similarly increased in both groups, suggesting that fluorescein staining may not reveal an early disruption of the tear film until the prolonged progression of DED. CONCLUSION The Schirmer test, TBUT, tear osmolarity, and NEI fluorescein grading are distinct, yet complementary, clinical assessments for the evaluation of DED. By performing these assessments in definitive DED rabbit models, both with and without ablation of conjunctival goblet cells, the role of these cells in the homeostasis of tear osmolarity is highlighted. Characterizing the robustness of these assessments in identifying the underlying conditions of DED will guide a more appropriate management for patients with DED.
Collapse
Affiliation(s)
- Hsiu-Hui Hsieh
- Department of Ophthalmology, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
- School of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Yu-An Chang
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Szemin Chan
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Zhi-Qian Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Tien Lin
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Fung-Rong Hu
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Feng Hung
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chen Sun
- Department of Ophthalmology, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
- School of Medicine, Tzu-Chi University, Hualien, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Hadipour Jahromy M, Qomi M, Fazelipour S, Sami N, Faali F, Karimi M, Adhami Moghadam F. Evaluation of curcumin-based ophthalmic nano-emulsion on atropine-induced dry eye in mice. Heliyon 2024; 10:e29009. [PMID: 38601632 PMCID: PMC11004198 DOI: 10.1016/j.heliyon.2024.e29009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Background One of the most efficient treatments for dry eye syndrome (DES) is to use nanocarriers as a potential delivery system. We aim to evaluate curcumin in a nano emulsion formulation. Methods A new formulation containing 5.5% curcuminoid was used. DLS, Zeta potential, TEM, and HPLC tests were performed to determine the size and morphology. First, 30 mice were selected as atropine-induced dry eye models. Next, 25 mice in 5 groups were treated with the nano emulsion at different doses, and corneal tissues were separated for evaluation. Results The DLS test results were indicative of the particles' stability. Nano curcumin appeared to be thoroughly effective in all groups, with the highest dose showing the most similarity to the healthy control group. Conclusions Curcumin-based nano emulsion eye drop is a promising candidate for DES management. However, further investigation is required to evaluate the possible risks in humans.
Collapse
Affiliation(s)
- Mahsa Hadipour Jahromy
- Herbal Pharmacology Research Center, School of Medicine, Dept of Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahnaz Qomi
- Active Pharmaceutical Ingredients Research Center (APIRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Simin Fazelipour
- School of Medicine, Dept of Histology & Anatomy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nafiseh Sami
- School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Faali
- School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Karimi
- Department of Nanotechnology, School of Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farhad Adhami Moghadam
- School of Medicine, Dept of Ophthalmology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Duan H, Yan W. Visual fatigue a comprehensive review of mechanisms of occurrence, animal model design and nutritional intervention strategies. Crit Rev Food Sci Nutr 2023:1-25. [PMID: 38153314 DOI: 10.1080/10408398.2023.2298789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
When the eyes work intensively, it is easy to have eye discomfort such as blurred vision, soreness, dryness, and tearing, that is, visual fatigue. Visual fatigue not only affects work and study efficiency, but long-term visual fatigue can also easily affect physical and mental health. In recent years, with the popularization of electronic products, although it has brought convenience to the office and study, it has also caused more frequent visual fatigue among people who use electronic devices. Moreover, studies have reported that the number of people with visual fatigue is showing a trend of increasing year by year. The range of people involved is also extensive, especially students, people who have been engaged in computer work and fine instruments (such as microscopes) for a long time, and older adults with aging eye function. More and more studies have proposed that supplementation with the proper nutrients can effectively relieve visual fatigue and promote eye health. This review discusses the physiological mechanisms of visual fatigue and the design ideas of animal experiments from the perspective of modern nutritional science. Functional food ingredients with the ability to alleviate visual fatigue are discussed in detail.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| |
Collapse
|
6
|
Loiseau A, Raîche-Marcoux G, Maranda C, Bertrand N, Boisselier E. Animal Models in Eye Research: Focus on Corneal Pathologies. Int J Mol Sci 2023; 24:16661. [PMID: 38068983 PMCID: PMC10706114 DOI: 10.3390/ijms242316661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/27/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
The eye is a complex sensory organ that enables visual perception of the world. The dysfunction of any of these tissues can impair vision. Conduction studies on laboratory animals are essential to ensure the safety of therapeutic products directly applied or injected into the eye to treat ocular diseases before eventually proceeding to clinical trials. Among these tissues, the cornea has unique homeostatic and regenerative mechanisms for maintaining transparency and refraction of external light, which are essential for vision. However, being the outermost tissue of the eye and directly exposed to the external environment, the cornea is particularly susceptible to injury and diseases. This review highlights the evidence for selecting appropriate animals to better understand and treat corneal diseases, which rank as the fifth leading cause of blindness worldwide. The development of reliable and human-relevant animal models is, therefore, a valuable research tool for understanding and translating fundamental mechanistic findings, as well as for assessing therapeutic potential in humans. First, this review emphasizes the unique characteristics of animal models used in ocular research. Subsequently, it discusses current animal models associated with human corneal pathologies, their utility in understanding ocular disease mechanisms, and their role as translational models for patients.
Collapse
Affiliation(s)
- Alexis Loiseau
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| | - Gabrielle Raîche-Marcoux
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| | - Cloé Maranda
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| | - Nicolas Bertrand
- Faculty of Pharmacy, CHU de Quebec Research Center, Université Laval, Québec, QC G1V 4G2, Canada;
| | - Elodie Boisselier
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| |
Collapse
|
7
|
Bonneau N, Potey A, Vitoux MA, Magny R, Guerin C, Baudouin C, Peyrin JM, Brignole-Baudouin F, Réaux-Le Goazigo A. Corneal neuroepithelial compartmentalized microfluidic chip model for evaluation of toxicity-induced dry eye. Ocul Surf 2023; 30:307-319. [PMID: 37984561 DOI: 10.1016/j.jtos.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Part of the lacrimal functional unit, the cornea protects the ocular surface from numerous environmental aggressions and xenobiotics. Toxicological evaluation of compounds remains a challenge due to complex interactions between corneal nerve endings and epithelial cells. To this day, models do not integrate the physiological specificity of corneal nerve endings and are insufficient for the detection of low toxic effects essential to anticipate Toxicity-Induced Dry Eye (TIDE). Using high-content imaging tool, we here characterize toxicity-induced cellular alterations using primary cultures of mouse trigeminal sensory neurons and corneal epithelial cells in a compartmentalized microfluidic chip. We validate this model through the analysis of benzalkonium chloride (BAC) toxicity, a well-known preservative in eyedrops, after a single (6h) or repeated (twice a day for 15 min over 5 days) topical 5.10-4% BAC applications on the corneal epithelial cells and nerve terminals. In combination with high-content image analysis, this advanced microfluidic protocol reveal specific and tiny changes in the epithelial cells and axonal network as well as in trigeminal cells, not directly exposed to BAC, with ATF3/6 stress markers and phospho-p44/42 cell activation marker. Altogether, this corneal neuroepithelial chip enables the evaluation of toxic effects of ocular xenobiotics, distinguishing the impact on corneal sensory innervation and epithelial cells. The combination of compartmentalized co-culture/high-content imaging/multiparameter analysis opens the way for the systematic analysis of toxicants but also neuroprotective compounds.
Collapse
Affiliation(s)
- Noémie Bonneau
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France; HORUS PHARMA, F-06200 Nice, France
| | - Anaïs Potey
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Michael-Adrien Vitoux
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Romain Magny
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France; UMR CNRS 8038 CiTCoM, Chimie Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie, Paris, France
| | | | - Christophe Baudouin
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, IHU FOReSIGHT, 28 rue de Charenton, F-75012, Paris, France; Université Versailles-Saint-Quentin-en-Yvelines, Hôpital Ambroise Paré, APHP, F-92100, Boulogne-Billancourt, France
| | - Jean-Michel Peyrin
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Université, 4 Place Jussieu, F-75005, Paris, France.
| | - Françoise Brignole-Baudouin
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, IHU FOReSIGHT, 28 rue de Charenton, F-75012, Paris, France; Université Paris Cité, Faculté de Pharmacie de Paris, F-75006, Paris, France.
| | - Annabelle Réaux-Le Goazigo
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.
| |
Collapse
|
8
|
Zhang J, Lin H, Li F, Wu K, Yang S, Zhou S. Involvement of endoplasmic reticulum stress in trigeminal ganglion corneal neuron injury in dry eye disease. Front Mol Neurosci 2023; 16:1083850. [PMID: 37033374 PMCID: PMC10080667 DOI: 10.3389/fnmol.2023.1083850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Dry eye disease (DED) is a multifactorial disease with a high prevalence worldwide. Uncomfortable corneal sensations severely affect daily life in DED patients. Hence, corneal neuron injury is a vital pathogenesis in DED. Notably, endoplasmic reticulum stress (ERS) plays a role in peripheral neuron injury. However, the role of ERS in DED corneal neuron injury is still far from being clear. In this study, we established an environmental DED (eDED) model in vivo and a hyperosmotic DED model in vitro. Subsequently, trigeminal ganglion (TG) corneal neurons were retrograde labeled by WGA-Alexa Fluor 555, and fluorescence-activated cell sorting was used to collect targeted corneal neurons for RNA sequencing in mice. Our results revealed that TG corneal neuron injury but not apoptosis in DED. ERS-related genes and proteins were upregulated in TG corneal neurons of the eDED mice. ERS inhibition alleviated TG corneal neuron's ERS-related injury. Therefore, ERS-induced TG corneal neuron injury may be an important pathomechanism and provide a promising therapeutic approach to DED.
Collapse
Affiliation(s)
- Jinyu Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Hongbin Lin
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Fengxian Li
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Kaili Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shuangjian Yang
- Guangdong Institute for Vision and Eye Research, Guangzhou, China
| | - Shiyou Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
9
|
Chaudhari P, Satarker S, Thomas R, Theruveethi N, Ghate V, Nampoothiri M, Lewis SA. Rodent models for dry eye syndrome: Standardization using benzalkonium chloride and scopolamine hydrobromide. Life Sci 2023; 317:121463. [PMID: 36731648 DOI: 10.1016/j.lfs.2023.121463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/15/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Dry eye disease is a highly prevalent ocular condition that significantly affects the quality of life and presents a major challenge in ophthalmology. Animal models play a crucial role in investigating the pathophysiology and developing effective treatments. The goal of this study was to compare and standardize two dry eye disease rodent models and explore their recovery aspects. We have standardized benzalkonium chloride and scopolamine-induced dry eye disease models which represents two different classes of the dry eye i.e., evaporative dry eye and aqueous deficient dry eye, respectively. After the development of dry eye conditions, a self-recovery period of seven days was granted to assess the reversal of the induced changes. The dry eye condition was assessed by measuring tear volume, corneal slit lamp imaging, and histological examination of the cornea, the lacrimal and the harderian gland. The study indicated the development of chronic inflammation of the cornea and lacrimal gland in the case of benzalkonium after five days of the treatment, while the scopolamine treated group showed chronic inflammation of the lacrimal gland after five days and corneal inflammation after seven days of administration. The recovery study suggested that after discontinuation of inducing agent, the dry eye symptoms were still persistent suggesting the utility of the model in evaluating dry eye treatments. The study highlights the comparative changes in both models along with recovery which can serve as a base for drug discovery and development against dry eye disease.
Collapse
Affiliation(s)
- Pinal Chaudhari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Rinu Thomas
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| | - Nagarajan Theruveethi
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
10
|
Ali M, Shah D, Coursey TG, Lee SM, Balasubramaniam A, Yadavalli T, Edward D, Son KN, Shukla D, Aakalu VK. Modulation of ocular surface desiccation in a murine model by histatin-5 application. Ocul Surf 2023; 27:30-37. [PMID: 36513277 PMCID: PMC10355159 DOI: 10.1016/j.jtos.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE To determine the efficacy of Histatin-5 (Hst5) peptide treatment in ameliorating dry eye disease (DED) phenotype in an in-vivo mouse model of scopolamine and desiccating stress (SDS) dry eye. METHODS SDS was induced in female C57BL/6 mice by subcutaneous injections of scopolamine hydrobromide and exposure to low relative humidity and forced air draft for five days. Mouse eyes were topically treated with synthetic Hst5 peptide or balanced salt solution (BSS) twice a day for four days. Control mice were not exposed to SDS induction and did not receive any treatments. Oregon green dextran (OGD) staining was used to evaluate corneal permeability. Histologically, staining with periodic acid schiff (PAS), immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), were used to quantify the number of goblet cells (GC), CD45+ immune cells and apoptotic cells respectively in formalin fixed paraffin embedded (FFPE) mouse whole eye sections. RESULTS Compared to treatment with BSS, Hst5 treatment significantly lowered corneal epithelial permeability, prevented conjunctival epithelial GC loss, decreased conjunctival CD45+ immune cell infiltration and reduced conjunctival epithelial cell apoptosis. CONCLUSIONS Hst5 peptide topical treatment significantly improves the clinical parameters observed in SDS experimental model of DED. This is the first report of the efficacy of Hst5 treatment of dry eye phenotype, and potential novel treatment for DED in the clinic. Hst5 represents a new class of efficacious therapeutic agents, demonstrating pro-epithelial and anti-inflammatory activities at the ocular surface.
Collapse
Affiliation(s)
- Marwan Ali
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Dhara Shah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | | | - Sang Min Lee
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Arun Balasubramaniam
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Deepak Edward
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Kyung-No Son
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Vinay Kumar Aakalu
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
11
|
"Animal models of dry eye: Their strengths and limitations for studying human dry eye disease": Erratum. J Chin Med Assoc 2022; 85:1106. [PMID: 36343276 DOI: 10.1097/jcma.0000000000000811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
12
|
Jeon HS, Kang B, Li X, Song JS. Differences in vulnerability to desiccating stress between corneal and conjunctival epithelium in rabbit models of short-term ocular surface exposure. Sci Rep 2022; 12:16941. [PMID: 36209216 PMCID: PMC9547869 DOI: 10.1038/s41598-022-21478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/27/2022] [Indexed: 12/29/2022] Open
Abstract
We evaluate the difference in vulnerability to desiccating stress (DS) between the corneal and conjunctival epithelia to understand different ocular surface staining patterns in dry eye patients. We generated a rabbit model of short-term exposure keratopathy. To induce DS in the ocular surface, rabbit right eyelids were opened for 30 min, with blinking once/minute. Corneal staining scores increased from 3-min post-DS exposure, while conjunctival staining increased from 20-min post-DS. At 20 min, the tear MUC5AC level doubled as compared to pre-DS (p = 0.007). In Western blot analysis, conjunctival AQP5, MUC5AC, and CFTR expression increased significantly in response to DS, compared to control (p = 0.039, 0.002, 0.039, respectively). Immunohistochemistry for CD31 and LYVE-1 were performed. CD31-positive cells and lymphatic space surrounded by LYVE-1-positive cells increased significantly in conjunctival tissue post-DS, compared to control (p = 0.0006, p < 0.0001, respectively). Surface damage was worse in the corneal than in the conjunctival epithelium after DS, by scanning electron microscopy. This study showed that the cornea and conjunctival epithelium show differences in vulnerability to DS. Increased blood vessels and dilated lymphatics, accompanied by increased conjunctival epithelial AQP5, MUC5AC, and CFTR expression, underlie the protective mechanism of the conjunctiva to desiccating stress.
Collapse
Affiliation(s)
- Hyun Sun Jeon
- grid.222754.40000 0001 0840 2678Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea ,grid.31501.360000 0004 0470 5905Department of Ophthalmology, Seoul National University College of Medicine, Seoul, South Korea
| | - Boram Kang
- grid.222754.40000 0001 0840 2678Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Xuemin Li
- grid.222754.40000 0001 0840 2678Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Jong Suk Song
- grid.222754.40000 0001 0840 2678Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Rodboon T, Souza GR, Mutirangura A, Ferreira JN. Magnetic bioassembly platforms for establishing craniofacial exocrine gland organoids as aging in vitro models. PLoS One 2022; 17:e0272644. [PMID: 35930565 PMCID: PMC9355193 DOI: 10.1371/journal.pone.0272644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
A multitude of aging-related factors and systemic conditions can cause lacrimal gland (LG) or salivary gland (SG) hypofunction leading to degenerative dry eye disease (DED) or dry mouth syndrome, respectively. Currently, there are no effective regenerative therapies that can fully reverse such gland hypofunction due to the lack of reproducible in vitro aging models or organoids required to develop novel treatments for multi-omic profiling. Previously, our research group successful developed three-dimensional (3D) bioassembly nanotechnologies towards the generation of functional exocrine gland organoids via magnetic 3D bioprinting platforms (M3DB). To meet the needs of our aging Asian societies, a next step was taken to design consistent M3DB protocols to engineer LG and SG organoid models with aging molecular and pathological features. Herein, a feasible step-by-step protocol was provided for producing both LG and SG organoids using M3DB platforms. Such protocol provided reproducible outcomes with final organoid products resembling LG or SG native parenchymal epithelial tissues. Both acinar and ductal epithelial compartments were prominent (21 ± 4.32% versus 42 ± 6.72%, respectively), and could be clearly identified in these organoids. Meanwhile, these can be further developed into aging signature models by inducing cellular senescence via chemical mutagenesis. The generation of senescence-like organoids will be our ultimate milestone aiming towards high throughput applications for drug screening and discovery, and for gene therapy investigations to reverse aging.
Collapse
Affiliation(s)
- Teerapat Rodboon
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Glauco R Souza
- University of Texas Health Sciences Center at Houston, Houston, TX, United States of America
- Nano3D Biosciences Inc., Houston, TX, United States of America
- Greiner Bio-One North America Inc., Monroe, NC, United States of America
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
Kim M, Kim SY, Jeon JW, Lee HK. Impact of Lacrimal Gland Extraction on the Contralateral Eye in an Animal Model for Dry Eye Disease. KOREAN JOURNAL OF OPHTHALMOLOGY 2022; 36:318-325. [PMID: 35766050 PMCID: PMC9388895 DOI: 10.3341/kjo.2022.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/21/2022] [Indexed: 12/01/2022] Open
Abstract
Purpose Although there is still no consensus on the best animal model for dry eye disease research, a model based on lacrimal gland extraction (LGE) model is widely used. In this study, we aimed to investigate the histopathological changes taking place on the contralateral eye after unilateral LGE to determine whether it is useful as a control. Methods Seven-week-old male C57BL/6 mice were divided into naive control, environmental chamber model, and LGE groups. Corneal fluorescein staining was scored to quantify the severity of damage. Morphological changes in the cornea, conjunctiva, and lacrimal gland (LG) were determined by hematoxylin and eosin staining and compared to those on naive control animals. Results Compared to naive subjects, the unilateral LGE model showed enhanced corneal erosion scores and loss of conjunctival goblet cells, not only on the ipsilateral but also on the contralateral side. These changes in the ocular surface became more pronounced in a time-dependent manner. Furthermore, loss of LG acinar cells and leukocyte infiltration were detected in the contralateral LGs of the LGE model. Conclusions Considering the changes observed in the ocular surface and LGs, the contralateral side of the LGE model may not offer proper control conditions for the experimental comparison of the effects of dry eye disease in vivo. There may be regulatory feedback or crosstalk system between both eyes activated in response to LGE.
Collapse
Affiliation(s)
- Minha Kim
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - So Young Kim
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Korea.,Institute of Biomedical Research, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Won Jeon
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung Keun Lee
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea.,Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Wang HH, Chen WY, Huang YH, Hsu SM, Tsao YP, Hsu YH, Chang MS. Interleukin-20 is involved in dry eye disease and is a potential therapeutic target. J Biomed Sci 2022; 29:36. [PMID: 35681232 PMCID: PMC9178884 DOI: 10.1186/s12929-022-00821-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background Dry eye disease (DED) is a common disease in ophthalmology, affecting millions of people worldwide. Recent studies have shown that inflammation is the core mechanism of DED. IL-20 is a proinflammatory cytokine involved in various inflammatory diseases. Therefore, we aimed to explore the role of this cytokine in the pathogenesis of DED and evaluate the therapeutic potential of the anti-IL-20 monoclonal antibody (mAb) 7E for DED treatment. Methods Clinical tear samples from patients with DED and non-DED controls were collected and their IL-20 protein levels were determined. We established three DED animal models to explore the role of IL-20 and the efficacy of IL-20 antibody in DED. Benzalkonium chloride (BAC)-induced over-evaporative DED, extra-orbital lacrimal gland excision (LGE)-induced aqueous tear-deficient DED, and desiccating stress (DS)-induced combined over-evaporative and aqueous tear-deficient DED animal models were established to investigate the role of IL-20. The anti-IL-20 antibody 7E was established to neutralize IL-20 activity. The effects of IL-20 or 7E on human corneal epithelial cells and macrophages under hyperosmotic stress were analyzed. 7E was topically applied to eyes to evaluate the therapeutic effects in the DED animal models. Results IL-20 was significantly upregulated in the tears of patients with DED and in the tears and corneas of DED animal models. Under hyperosmotic stress, IL-20 expression was induced via NFAT5 activation in corneal epithelial cells. 7E suppressed hyperosmotic stress-induced activation of macrophages. IL-20 induced cell death in corneal epithelial cells and 7E protected cells from hyperosmotic stress-induced cell death. Blocking IL-20 signaling with 7E protected mice from BAC-induced, LGE-induced, and DS-induced DED by reducing DED symptoms and inhibiting inflammatory responses, macrophage infiltration, apoptosis, and Th17 populations in the conjunctiva and draining lymph nodes. Conclusions Our results demonstrated the functions of IL-20 in DED and presented a potential therapeutic option for this condition. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00821-2.
Collapse
Affiliation(s)
- Hsiao-Hsuan Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yu Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Hsun Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Min Hsu
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yeou-Ping Tsao
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ming-Shi Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
16
|
A new non-human primate model of desiccating stress-induced dry eye disease. Sci Rep 2022; 12:7957. [PMID: 35562371 PMCID: PMC9106732 DOI: 10.1038/s41598-022-12009-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Dry eye disease (DED), a multifactorial ocular surface disease, is estimated to affect up to 34% of individuals over 50 years old. Although numerous animal models, including rodents and rabbits, have been developed to mimic the pathophysiologic mechanisms involved in dry eye, there is a lack of non-human primate (NHP) models, critical for translational drug studies. Here, we developed a novel desiccating stress-induced dry eye disease model using Rhesus macaque monkeys. The monkeys were housed in a controlled environment room for 21 to 36 days under humidity, temperature, and airflow regulation. Following desiccating stress, NHPs demonstrated clinical symptoms similar to those of humans, as shown by increased corneal fluorescein staining (CFS) and decreased tear-film breakup time (TFBUT). Moreover, corticosteroid treatment significantly reduced CFS scoring, restored TFBUT, and prevented upregulation of tear proinflammatory cytokines as observed in dry eye patients following steroid treatment. The close resemblance of clinical symptoms and treatment responses to those of human DED patients provides great translational value to the NHP model, which could serve as a clinically relevant animal model to study the efficacy of new potential treatments for DED.
Collapse
|
17
|
Chen X, Zhang C, Tian L, Wu L, Jie Y, Wang N, Liu R, Wang L. In situ metabolic profile and spatial distribution of ocular tissues: New insights into dry eye disease. Ocul Surf 2022; 24:51-63. [PMID: 34990847 DOI: 10.1016/j.jtos.2021.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/21/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Dry eye disease (DED) is a chronic multifactorial disorder affecting millions of people, yet the pathogenesis mechanisms still remain unclear. Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) is a novel in situ visualization approach combined high-throughput mass spectrometry and molecular imaging. We aimed to explore the in situ ocular metabolic changes via MALDI-MSI to accelerate the recognition of DED pathogenesis. METHODS Experimental dry eye was established in Wistar rats by subcutaneous injection of scopolamine. The induction of DED was assessed by tear film breakup time, sodium fluorescein, histopathological staining and cell apoptosis. MALDI-MSI was applied to explore in situ ocular metabolomic in DED rats, and histopathological staining from same sections were used for side-by-side comparison with MALDI to annotate different tissue structures in the eye. RESULTS Considering the complexity of ocular tissue, we visualized the metabolites in specific ocular regions (central cornea, peripheral cornea, fornix conjunctiva, eyelid conjunctiva and aqueous humor), and identified metabolites related to DED, with information of relative abundance and spatial signatures. In addition, integrative pathway analysis illustrated that, several metabolic pathways such as glycerophospholipid, sphingolipid phenylalanine, and metabolism of glycine, serine and threonine were significantly altered in certain regions in the dry eye tissue. Moreover, we discussed how the metabolic pathways with spatiotemporal signatures might be involved in the DED process. CONCLUSIONS Our data exploit the advantages of in situ analysis of MALDI-MSI to accurately analyze the region-specific metabolic behaviors in DED, and provide new clues to uncover DED pathogenesis.
Collapse
Affiliation(s)
- Xiaoniao Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China; Senior Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China.
| | - Chuyue Zhang
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Lei Tian
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lingling Wu
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ran Liu
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Liqiang Wang
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China; Senior Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
18
|
Rahman MM, Kim DH, Park CK, Kim YH. Experimental Models, Induction Protocols, and Measured Parameters in Dry Eye Disease: Focusing on Practical Implications for Experimental Research. Int J Mol Sci 2021; 22:12102. [PMID: 34830010 PMCID: PMC8622350 DOI: 10.3390/ijms222212102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022] Open
Abstract
Dry eye disease (DED) is one of the major ophthalmological healthcare challenges worldwide. DED is a multifactorial disease characterized by a loss of homeostasis of the tear film, and its main pathogenesis is chronic ocular surface inflammation related with various cellular and molecular signaling cascades. The animal model is a reliable and effective tool for understanding the various pathological mechanisms and molecular cascades in DED. Considerable experimental research has focused on developing new strategies for the prevention and treatment of DED. Several experimental models of DED have been developed, and different animal species such as rats, mice, rabbits, dogs, and primates have been used for these models. Although the basic mechanisms of DED in animals are nearly identical to those in humans, proper knowledge about the induction of animal models is necessary to obtain better and more reliable results. Various experimental models (in vitro and in vivo DED models) were briefly discussed in this review, along with pathologic features, analytical approaches, and common measurements, which will help investigators to use the appropriate cell lines, animal, methods, and evaluation parameters depending on their study design.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea
| | - Dong Hyun Kim
- Gil Medical Center, Department of Ophthalmology, Gachon University College of Medicine, Incheon 21565, Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea
| |
Collapse
|