1
|
Goh KK, Chen CYA, Wu TH, Chen CH, Lu ML. Crosstalk between Schizophrenia and Metabolic Syndrome: The Role of Oxytocinergic Dysfunction. Int J Mol Sci 2022; 23:ijms23137092. [PMID: 35806096 PMCID: PMC9266532 DOI: 10.3390/ijms23137092] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
The high prevalence of metabolic syndrome in persons with schizophrenia has spurred investigational efforts to study the mechanism beneath its pathophysiology. Early psychosis dysfunction is present across multiple organ systems. On this account, schizophrenia may be a multisystem disorder in which one organ system is predominantly affected and where other organ systems are also concurrently involved. Growing evidence of the overlapping neurobiological profiles of metabolic risk factors and psychiatric symptoms, such as an association with cognitive dysfunction, altered autonomic nervous system regulation, desynchrony in the resting-state default mode network, and shared genetic liability, suggest that metabolic syndrome and schizophrenia are connected via common pathways that are central to schizophrenia pathogenesis, which may be underpinned by oxytocin system dysfunction. Oxytocin, a hormone that involves in the mechanisms of food intake and metabolic homeostasis, may partly explain this piece of the puzzle in the mechanism underlying this association. Given its prosocial and anorexigenic properties, oxytocin has been administered intranasally to investigate its therapeutic potential in schizophrenia and obesity. Although the pathophysiology and mechanisms of oxytocinergic dysfunction in metabolic syndrome and schizophrenia are both complex and it is still too early to draw a conclusion upon, oxytocinergic dysfunction may yield a new mechanistic insight into schizophrenia pathogenesis and treatment.
Collapse
Affiliation(s)
- Kah Kheng Goh
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Cynthia Yi-An Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Tzu-Hua Wu
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence:
| |
Collapse
|
2
|
Ren J, Chen Y, Fang X, Wang D, Wang Y, Yu L, Wu Z, Liu R, Zhang C. Correlation of Orexin-A and brain-derived neurotrophic factor levels in metabolic syndrome and cognitive impairment in schizophrenia treated with clozapine. Neurosci Lett 2022; 782:136695. [PMID: 35618081 DOI: 10.1016/j.neulet.2022.136695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
Orexin-A and brain-derived neurotrophic factor (BDNF) are implicated in regulating metabolic syndrome (MetS) and cognitive impairment of schizophrenia. However, the associations among them remains unclear. Here, we aimed to investigate the relationship between Orexin-A levels, BDNF, MetS, clinical symptom profile, and cognitive function in schizophrenia patients following long-term clozapine treatment. We measured Orexin-A and BDNF levels in 140 schizophrenia patients with and without MetS. We assessed clinical symptoms on the Positive and Negative Syndrome Scale and cognitive function by the assessment of Neuropsychological Status (RBANS), and examined their associations with Orexin-A. Patients with MetS had significantly lower Orexin-A levels and higher coding test, attention span and delayed retention in RBANS (P < 0.05). Correlation analysis showed that Orexin-A was associated with BDNF, TG, HDLC, PANSS active social avoidance and emotional withdrawal significantly. Besides, Orexin-A significantly interacted with BDNF for metabolic and cognitive profiles including waist circumference, delayed retention and list recognition. Logistic regression analysis showed that Orexin-A level (odds ratio [OR]= 0.380, 95% confidence interval [CI]: 0.151-0.952, P = 0.039) and total illness duration (OR = 0.932, 95% CI: 0.875-0.991, P = 0.025) were predictive variables of MetS. However, there was no significant relationship between Orexin-A and cognitive function after adjustment for age, sex and educational levels. Totally, a lower plasma Orexin-A level seems to be related to metabolic parameters more than cognitive profiles. The interaction of Orexin-A with BDNF may be partly responsible for worse MetS and better cognition of elderly schizophrenia, but the causal relationship needs further clarification.
Collapse
Affiliation(s)
- Juanjuan Ren
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Chen
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Fang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Dandan Wang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - YeWei Wang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - LingFang Yu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zenan Wu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruimei Liu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Chang SC, Goh KK, Lu ML. Metabolic disturbances associated with antipsychotic drug treatment in patients with schizophrenia: State-of-the-art and future perspectives. World J Psychiatry 2021; 11:696-710. [PMID: 34733637 PMCID: PMC8546772 DOI: 10.5498/wjp.v11.i10.696] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/16/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic disturbances and obesity are major cardiovascular risk factors in patients with schizophrenia, resulting in a higher mortality rate and shorter life expectancy compared with those in the general population. Although schizophrenia and metabolic disturbances may share certain genetic or pathobiological risks, antipsychotics, particularly those of second generation, may further increase the risk of weight gain and metabolic disturbances in patients with schizophrenia. This review included articles on weight gain and metabolic disturbances related to antipsychotics and their mechanisms, monitoring guidelines, and interventions. Nearly all antipsychotics are associated with weight gain, but the degree of the weight gain varies considerably. Although certain neurotransmitter receptor-binding affinities and hormones are correlated with weight gain and specific metabolic abnormalities, the precise mechanisms underlying antipsychotic-induced weight gain and metabolic disturbances remain unclear. Emerging evidence indicates the role of genetic polymorphisms associated with antipsychotic-induced weight gain and antipsychotic-induced metabolic disturbances. Although many guidelines for screening and monitoring antipsychotic-induced metabolic disturbances have been developed, they are not routinely implemented in clinical care. Numerous studies have also investigated strategies for managing antipsychotic-induced metabolic disturbances. Thus, patients and their caregivers must be educated and motivated to pursue a healthier life through smoking cessation and dietary and physical activity programs. If lifestyle intervention fails, switching to another antipsychotic drug with a lower metabolic risk or adding adjunctive medication to mitigate weight gain should be considered. Antipsychotic medications are essential for schizophrenia treatment, hence clinicians should monitor and manage the resulting weight gain and metabolic disturbances.
Collapse
Affiliation(s)
- Shen-Chieh Chang
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Kah Kheng Goh
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 116, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 116, Taiwan
| |
Collapse
|
4
|
Alvarez-Herrera S, Escamilla R, Medina-Contreras O, Saracco R, Flores Y, Hurtado-Alvarado G, Maldonado-García JL, Becerril-Villanueva E, Pérez-Sánchez G, Pavón L. Immunoendocrine Peripheral Effects Induced by Atypical Antipsychotics. Front Endocrinol (Lausanne) 2020; 11:195. [PMID: 32373066 PMCID: PMC7186385 DOI: 10.3389/fendo.2020.00195] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Atypical antipsychotics (AAP) or second-generation antipsychotics are the clinical option for schizophrenia treatment during acute psychoses, but they are also indicated for maintenance during lifetime, even though they are being used for other psychiatric conditions in clinical practice such as affective disorders and autism spectrum disorder, among others. These drugs are differentiated from typical antipsychotics based on their clinical profile and are a better choice because they cause fewer side effects regarding extrapyramidal symptoms (EPS). Even though they provide clear therapeutic benefits, AAP induce peripheral effects that trigger phenotypic, functional, and systemic changes outside the Central Nervous System (CNS). Metabolic disease is frequently associated with AAP and significantly impacts the patient's quality of life. However, other peripheral changes of clinical relevance are present during AAP treatment, such as alterations in the immune and endocrine systems as well as the intestinal microbiome. These less studied alterations also have a significant impact in the patient's health status. This manuscript aims to revise the peripheral immunological, endocrine, and intestinal microbiome changes induced by AAP consumption recommended in the clinical guidelines for schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Samantha Alvarez-Herrera
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Raúl Escamilla
- Clínica de Esquizofrenia, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Oscar Medina-Contreras
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Ricardo Saracco
- Clínica de Esquizofrenia, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Yvonne Flores
- Clínica de Esquizofrenia, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Gabriela Hurtado-Alvarado
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - José Luis Maldonado-García
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
- *Correspondence: Lenin Pavón
| |
Collapse
|
5
|
Lipid profile disturbances in antipsychotic-naive patients with first-episode non-affective psychosis: A systematic review and meta-analysis. Schizophr Res 2017; 190:18-27. [PMID: 28325572 DOI: 10.1016/j.schres.2017.03.031] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Dyslipidaemia is one of the most prevalent metabolic disturbances observed in schizophrenia patients and has been largely attributed to the effects of poor lifestyle habits and adverse effects of antipsychotic treatment. However, less is known whether patients with first-episode non-affective psychosis (FENP) present subthreshold indices of dyslipidaemia. Therefore, we tested the hypothesis whether subclinical lipid profile alterations occur already in antipsychotic-naïve FENP patients. METHODS In this systematic review and meta-analysis we adhered to the PRISMA guidelines and searched PubMed, CINAHL Complete, Academic Search Complete, ERIC and Health Source: Nursing/Academic Edition from database inception to Dec 12, 2016, for case-control studies measuring the levels of total cholesterol, low- and high-density lipoproteins (LDL and HDL) and triglycerides in patients with FENP and controls. W calculated effect size (ES) estimates as Hedges' g and pooled data using random- or fixed-effects models depending on heterogeneity. Our study was registered in the PROSPERO database (CRD42016051732). RESULTS Out of 2466 records identified, 19 studies representing 1803 participants were finally included in our systematic review and meta-analysis. Pooled analysis revealed that FENP patients had significantly lower levels of total cholesterol [ES=-0.16 (95% CI: -0.27, -0.06), p=0.003], LDL [ES=-0.13 (95% CI: -0.24, -0.01), p=0.034] and HDL [ES=-0.27 (95% CI: -0.49, -0.05), p=0.018] as well as significantly higher levels of triglycerides [ES=0.22 (95% CI: 0.11, 0.32), p<0.001] compared to controls. After removing single studies in sensitivity analysis, ES estimate for LDL levels was insignificant. CONCLUSIONS Antipsychotic-naïve patients with FENP present subclinical dyslipidaemia. Future studies should disentangle whether our findings reflect disease-specific mechanisms.
Collapse
|
6
|
Affiliation(s)
- Mesut Cetin
- Klinik Psikofarmakoloji Bulteni-Bulletin of Clinical Pychopharmacology, Istanbul-Turkey
| |
Collapse
|
7
|
Sarandol A, Sarandol E, Acikgoz HE, Eker SS, Akkaya C, Dirican M. First-episode psychosis is associated with oxidative stress: Effects of short-term antipsychotic treatment. Psychiatry Clin Neurosci 2015; 69:699-707. [PMID: 26172069 DOI: 10.1111/pcn.12333] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 06/12/2015] [Accepted: 07/03/2015] [Indexed: 11/28/2022]
Abstract
AIMS In the present study, our aim was to investigate the oxidative-antioxidative systems in unmedicated first-episode psychosis (FEP) patients at the beginning and after short-term treatment. METHODS This study consisted of 29 patients who experienced an FEP and 25 control subjects. In order to investigate the oxidative status, we determined plasma malondialdehyde (MDA) levels, oxidizability of red blood cells, oxidation and oxidizability of apolipoprotein B-containing lipoproteins (apo B-basal MDA and apo B-ΔMDA). In order to evaluate the antioxidative defense, we measured serum total antioxidative capacity, uric acid, albumin, total bilirubin and vitamin E levels and serum paraoxonase/arylesterase, whole blood glutathione peroxidase (GPx) and red blood cell superoxide dismutase activities before and after 6 weeks of treatment in patients with FEP. RESULTS Plasma MDA and apo B-basal MDA levels and red blood cell superoxide dismutase activity were significantly higher and serum arylesterase and whole blood-GPx activities were lower in the FEP group than those of the healthy control group. There were not any significant changes in the oxidative and antioxidative system parameters (except increased vitamin E levels) after treatment. CONCLUSIONS The results of this study suggest that FEP is accompanied by oxidative stress. However, further studies are needed to clarify the role of oxidative stress in the physiopathologic mechanisms of FEP, so that oxidative and antioxidative system parameters can be used in the management of these patients. In accordance with psychiatric evaluation, for a better management, patients with FEP may require a multidisciplinary approach, including oxidative and antioxidative system parameters.
Collapse
Affiliation(s)
| | - Emre Sarandol
- Clinical Biochemistry, Uludag University Medical Faculty, Bursa, Turkey
| | | | | | | | - Melehat Dirican
- Clinical Biochemistry, Uludag University Medical Faculty, Bursa, Turkey
| |
Collapse
|