1
|
Kather S, Kacza J, Pfannkuche H, Böttcher D, Sung CH, Steiner JM, Gäbel G, Dengler F, Heilmann RM. Expression of the cobalamin transporters cubam and MRP1 in the canine ileum-Upregulation in chronic inflammatory enteropathy. PLoS One 2024; 19:e0296024. [PMID: 38206981 PMCID: PMC10783779 DOI: 10.1371/journal.pone.0296024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Chronic inflammatory enteropathy (CIE) in dogs, a spontaneous model of human inflammatory bowel disease (IBD), is associated with a high rate of cobalamin deficiency. The etiology of hypocobalaminemia in human IBD and canine CIE remains unknown, and compromised intestinal uptake of cobalamin resulting from ileal cobalamin receptor deficiency has been proposed as a possible cause. Here, we evaluated the intestinal expression of the cobalamin receptor subunits, amnionless (AMN) and cubilin (CUBN), and the basolateral efflux transporter multi-drug resistance protein 1 (MRP1) in 22 dogs with CIE in comparison to healthy dogs. Epithelial CUBN and AMN levels were quantified by confocal laser scanning microscopy using immunohistochemistry in endoscopic ileal biopsies from dogs with (i) CIE and normocobalaminemia, (ii) CIE and suboptimal serum cobalamin status, (iii) CIE and severe hypocobalaminemia, and (iv) healthy controls. CUBN and MRP1 expression was quantified by RT-qPCR. Receptor expression was evaluated for correlation with clinical patient data. Ileal mucosal protein levels of AMN and CUBN as well as mRNA levels of CUBN and MRP1 were significantly increased in dogs with CIE compared to healthy controls. Ileal cobalamin receptor expression was positively correlated with age, clinical disease activity index (CCECAI) score, and lacteal dilation in the ileum, inversely correlated with serum folate concentrations, but was not associated with serum cobalamin concentrations. Cobalamin receptor downregulation does not appear to be the primary cause of hypocobalaminemia in canine CIE. In dogs of older age with severe clinical signs and/or microscopic intestinal lesions, intestinal cobalamin receptor upregulation is proposed as a mechanism to compensate for CIE-associated hypocobalaminemia. These results support oral supplementation strategies in hypocobalaminemic CIE patients.
Collapse
Affiliation(s)
- Stefanie Kather
- Small Animal Clinic, Veterinary Teaching Hospital, College of Veterinary Medicine, University of Leipzig, Leipzig, SN, Germany
- Institute of Veterinary Physiology, College of Veterinary Medicine, University of Leipzig, Leipzig, SN, Germany
| | - Johannes Kacza
- BioImaging Core Facility, College of Veterinary Medicine, Saxon Incubator for Clinical Translation, University of Leipzig, Leipzig, SN, Germany
| | - Helga Pfannkuche
- Institute of Veterinary Physiology, College of Veterinary Medicine, University of Leipzig, Leipzig, SN, Germany
| | - Denny Böttcher
- Institute of Veterinary Pathology, College of Veterinary Medicine, University of Leipzig, Leipzig, SN, Germany
| | - Chi-Hsuan Sung
- Gastrointestinal Laboratory, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | - Joerg M. Steiner
- Gastrointestinal Laboratory, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | - Gotthold Gäbel
- Institute of Veterinary Physiology, College of Veterinary Medicine, University of Leipzig, Leipzig, SN, Germany
| | - Franziska Dengler
- Institute of Veterinary Physiology, College of Veterinary Medicine, University of Leipzig, Leipzig, SN, Germany
- Institute for Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Romy M. Heilmann
- Small Animal Clinic, Veterinary Teaching Hospital, College of Veterinary Medicine, University of Leipzig, Leipzig, SN, Germany
| |
Collapse
|
2
|
Transcriptome and 16S rRNA Analyses Reveal That Hypoxic Stress Affects the Antioxidant Capacity of Largemouth Bass ( Micropterus salmoides), Resulting in Intestinal Tissue Damage and Structural Changes in Microflora. Antioxidants (Basel) 2022; 12:antiox12010001. [PMID: 36670863 PMCID: PMC9854696 DOI: 10.3390/antiox12010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Dissolved oxygen (DO) is a key factor affecting the health of aquatic organisms in an intensive aquaculture environment. In this study, largemouth bass (Micropterus salmoides) were subjected to acute hypoxic stress for 96 h (DO: 1.00 mg/L) followed by recovery under sufficient DO conditions (DO: 7.50 mg/L) for 96 h. Serum biochemical indices, intestinal histomorphology, the transcriptome, and intestinal microbiota were compared between hypoxia-treated fish and those in a control group. The results showed that hypoxia caused oxidative stress, exfoliation of the intestinal villus epithelium and villus rupture, and increased cell apoptosis. Transcriptome analyses revealed that antioxidant-, inflammation-, and apoptosis-related pathways were activated, and that the MAPK signaling pathway played an important role under hypoxic stress. In addition, 16S rRNA sequencing analyses revealed that hypoxic stress significantly decreased bacterial richness and identified the dominant phyla (Proteobacteria, Firmicutes) and genera (Mycoplasma, unclassified Enterobacterales, Cetobacterium) involved in the intestinal inflammatory response of largemouth bass. Pearson's correlation analyses showed that differentially expressed genes in the MAPK signaling pathway were significantly correlated with some microflora. The results of this study will help to develop strategies to reduce damage caused by hypoxic stress in aquacultured fish.
Collapse
|
3
|
Clayton DB, Tong CMC, Li B, Taylor AS, De S, Mason MD, Dudley AG, Davidoff O, Kobayashi H, Haase VH. Inhibition of hypoxia-inducible factor-prolyl hydroxylation protects from cyclophosphamide-induced bladder injury and urinary dysfunction. Am J Physiol Renal Physiol 2022; 323:F81-F91. [PMID: 35499237 PMCID: PMC9236868 DOI: 10.1152/ajprenal.00344.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Disruption of the blood-urine barrier can result in acute or chronic inflammatory bladder injury. Activation of the oxygen-regulated hypoxia-inducible factor (HIF) pathway has been shown to protect mucosal membranes by increasing the expression of cytoprotective genes and by suppressing inflammation. The activity of HIF is controlled by prolyl hydroxylase domain (PHD) dioxygenases, which have been exploited as therapeutic targets for the treatment of anemia of chronic kidney disease. Here, we established a mouse model of acute cyclophosphamide (CYP)-induced blood-urine barrier disruption associated with inflammation and severe urinary dysfunction to investigate the HIF-PHD axis in inflammatory bladder injury. We found that systemic administration of dimethyloxalylglycine or molidustat, two small-molecule inhibitors of HIF-prolyl hydroxylases, profoundly mitigated CYP-induced bladder injury and inflammation as assessed by morphological analysis of transmural edema and urothelial integrity and by measuring tissue cytokine expression. Void spot analysis to examine bladder function quantitatively demonstrated that HIF-prolyl hydroxylase inhibitor administration normalized micturition patterns and protected against CYP-induced alteration of urinary frequency and micturition patterns. Our study highlights the therapeutic potential of HIF-activating small-molecule compounds for the prevention or therapy of bladder injury and urinary dysfunction due to blood-urine barrier disruption.NEW & NOTEWORTHY Disruption of the blood-urine barrier can result in acute or chronic inflammatory bladder injury. Here, we demonstrate that pharmacological inhibition of hypoxia-inducible factor (HIF)-prolyl hydroxylation prevented bladder injury and protected from urinary dysfunction in a mouse model of cyclophosphamide-induced disruption of the blood-urine barrier. Our study highlights a potential role for HIF-activating small-molecule compounds in the prevention or therapy of bladder injury and urinary dysfunction and provides a rationale for future clinical studies.
Collapse
Affiliation(s)
- Douglass B Clayton
- Division of Pediatric Urology, Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ching Man Carmen Tong
- Division of Pediatric Urology, Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Belinda Li
- Division of Pediatric Urology, Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Abby S Taylor
- Division of Pediatric Urology, Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shuvro De
- Division of Pediatric Urology, Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matthew D Mason
- Division of Pediatric Urology, Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anne G Dudley
- Division of Pediatric Urology, Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Olena Davidoff
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Medical and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Hanako Kobayashi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Medical and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Volker H Haase
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Medical and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
4
|
Gonzalez CG, Mills RH, Kordahi MC, Carrillo-Terrazas M, Secaira-Morocho H, Widjaja CE, Tsai MS, Mittal Y, Yee BA, Vargas F, Weldon K, Gauglitz JM, Delaroque C, Sauceda C, Rossitto LA, Ackermann G, Humphrey G, Swafford AD, Siegel CA, Buckey JC, Raffals LE, Sadler C, Lindholm P, Fisch KM, Valaseck M, Suriawinata A, Yeo GW, Ghosh P, Chang JT, Chu H, Dorrestein P, Zhu Q, Chassaing B, Knight R, Gonzalez DJ, Dulai PS. The Host-Microbiome Response to Hyperbaric Oxygen Therapy in Ulcerative Colitis Patients. Cell Mol Gastroenterol Hepatol 2022; 14:35-53. [PMID: 35378331 PMCID: PMC9117812 DOI: 10.1016/j.jcmgh.2022.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Hyperbaric oxygen therapy (HBOT) is a promising treatment for moderate-to-severe ulcerative colitis. However, our current understanding of the host and microbial response to HBOT remains unclear. This study examined the molecular mechanisms underpinning HBOT using a multi-omic strategy. METHODS Pre- and post-intervention mucosal biopsies, tissue, and fecal samples were collected from HBOT phase 2 clinical trials. Biopsies and fecal samples were subjected to shotgun metaproteomics, metabolomics, 16s rRNA sequencing, and metagenomics. Tissue was subjected to bulk RNA sequencing and digital spatial profiling (DSP) for single-cell RNA and protein analysis, and immunohistochemistry was performed. Fecal samples were also used for colonization experiments in IL10-/- germ-free UC mouse models. RESULTS Proteomics identified negative associations between HBOT response and neutrophil azurophilic granule abundance. DSP identified an HBOT-specific reduction of neutrophil STAT3, which was confirmed by immunohistochemistry. HBOT decreased microbial diversity with a proportional increase in Firmicutes and a secondary bile acid lithocholic acid. A major source of the reduction in diversity was the loss of mucus-adherent taxa, resulting in increased MUC2 levels post-HBOT. Targeted database searching revealed strain-level associations between Akkermansia muciniphila and HBOT response status. Colonization of IL10-/- with stool obtained from HBOT responders resulted in lower colitis activity compared with non-responders, with no differences in STAT3 expression, suggesting complementary but independent host and microbial responses. CONCLUSIONS HBOT reduces host neutrophil STAT3 and azurophilic granule activity in UC patients and changes in microbial composition and metabolism in ways that improve colitis activity. Intestinal microbiota, especially strain level variations in A muciniphila, may contribute to HBOT non-response.
Collapse
Key Words
- bclxl, b-cell lymphoma-extra large
- bim, bcl-2 interacting protein
- dsp, digital spatial profiling
- fdr, false discovery rate
- hbot, hyperbaric oxygen therapy
- hif, hypoxia inducible factor
- il, interleukin
- lca, lithocholic acid
- mapk, mitogen-activated protein kinase
- ms, mass spectrometry
- nlrp3, nod-, lrr- and pyrin domain-containing protein 3
- roi, regions of interest
- ros, reactive oxygen species
- stat3, signal transducer and activator of transcription 3
- tmt, tandem mass tag
- uc, ulcerative colitis
Collapse
Affiliation(s)
- Carlos G Gonzalez
- Department of Pharmacology, University of California, San Diego, California; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California; Department of Pediatrics, University of California, San Diego, California
| | - Robert H Mills
- Department of Pharmacology, University of California, San Diego, California; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California; Department of Pediatrics, University of California, San Diego, California
| | - Melissa C Kordahi
- INSERM U1016, team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR 8104, Université de Paris, Paris, France
| | - Marvic Carrillo-Terrazas
- Department of Pharmacology, University of California, San Diego, California; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California
| | - Henry Secaira-Morocho
- School of Life Sciences, Arizona State University, Tempe, Arizona; Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona
| | - Christella E Widjaja
- Division of Gastroenterology, University of California San Diego, San Diego, California
| | - Matthew S Tsai
- Division of Gastroenterology, University of California San Diego, San Diego, California
| | - Yash Mittal
- Division of Gastroenterology, University of California San Diego, San Diego, California
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California; Institute for Genomic Medicine, University of California San Diego, San Diego, California
| | - Fernando Vargas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California
| | - Kelly Weldon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California; Department of Computer Science and Engineering, University of California San Diego, San Diego, California
| | - Julia M Gauglitz
- Department of Pediatrics, University of California, San Diego, California
| | - Clara Delaroque
- INSERM U1016, team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR 8104, Université de Paris, Paris, France
| | - Consuelo Sauceda
- Department of Pharmacology, University of California, San Diego, California
| | - Leigh-Ana Rossitto
- Department of Pharmacology, University of California, San Diego, California
| | - Gail Ackermann
- Department of Pediatrics, University of California, San Diego, California
| | - Gregory Humphrey
- Department of Pediatrics, University of California, San Diego, California
| | - Austin D Swafford
- Department of Computer Science and Engineering, University of California San Diego, San Diego, California
| | - Corey A Siegel
- Section of Gastroenterology and Hepatology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Jay C Buckey
- Center for Hyperbaric Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Laura E Raffals
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Charlotte Sadler
- Division of Hyperbaric Medicine, Department of Emergency Medicine, University of California San Diego, San Diego, California
| | - Peter Lindholm
- Division of Hyperbaric Medicine, Department of Emergency Medicine, University of California San Diego, San Diego, California
| | - Kathleen M Fisch
- Center for Computational Biology and Bioinformatics, University of California San Diego, San Diego, California
| | - Mark Valaseck
- Department of Pathology, University of California San Diego, San Diego, California
| | - Arief Suriawinata
- Section of Gastroenterology and Hepatology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California; Institute for Genomic Medicine, University of California San Diego, San Diego, California
| | - Pradipta Ghosh
- Division of Gastroenterology, University of California San Diego, San Diego, California; Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California
| | - John T Chang
- Division of Gastroenterology, University of California San Diego, San Diego, California
| | - Hiutung Chu
- Department of Pathology, University of California San Diego, San Diego, California; Center for Microbiome Innovation, University of California San Diego, San Diego, California; Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (cMAV), University of California, San Diego, La Jolla, California
| | - Pieter Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California; Department of Pediatrics, University of California, San Diego, California; Center for Microbiome Innovation, University of California San Diego, San Diego, California
| | - Qiyun Zhu
- School of Life Sciences, Arizona State University, Tempe, Arizona; Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona
| | - Benoit Chassaing
- INSERM U1016, team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR 8104, Université de Paris, Paris, France
| | - Rob Knight
- Department of Computer Science and Engineering, University of California San Diego, San Diego, California; Department of Pediatrics, University of California, San Diego, California; Center for Microbiome Innovation, University of California San Diego, San Diego, California
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, California; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California; Center for Microbiome Innovation, University of California San Diego, San Diego, California
| | - Parambir S Dulai
- Division of Gastroenterology, University of California San Diego, San Diego, California; Division of Gastroenterology, Northwestern University, Chicago, Illinois.
| |
Collapse
|
5
|
Butyrate Protects Porcine Colon Epithelium from Hypoxia-Induced Damage on a Functional Level. Nutrients 2021; 13:nu13020305. [PMID: 33498991 PMCID: PMC7911740 DOI: 10.3390/nu13020305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
The large intestinal epithelium is confronted with the necessity to adapt quickly to varying levels of oxygenation. In contrast to other tissues, it meets this requirement successfully and remains unharmed during (limited) hypoxic periods. The large intestine is also the site of bacterial fermentation producing short-chain fatty acids (SCFA). Amongst these SCFA, butyrate has been reported to ameliorate many pathological conditions. Thus, we hypothesized that butyrate protects the colonocytes from hypoxic damage. We used isolated porcine colon epithelium mounted in Ussing chambers, incubated it with or without butyrate and simulated hypoxia by changing the gassing regime to test this hypothesis. We found an increase in transepithelial conductance and a decrease in short-circuit current across the epithelia when simulating hypoxia for more than 30 min. Incubation with 50 mM butyrate significantly ameliorated these changes to the epithelial integrity. In order to characterize the protective mechanism, we compared the effects of butyrate to those of iso-butyrate and propionate. These two SCFAs exerted similar effects to butyrate. Therefore, we propose that the protective effect of butyrate on colon epithelium under hypoxia is not (only) based on its nutritive function, but rather on the intracellular signaling effects of SCFA.
Collapse
|
6
|
Losso JN. Food Processing, Dysbiosis, Gastrointestinal Inflammatory Diseases, and Antiangiogenic Functional Foods or Beverages. Annu Rev Food Sci Technol 2021; 12:235-258. [PMID: 33467906 DOI: 10.1146/annurev-food-062520-090235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Foods and beverages provide nutrients and alter the gut microbiota, resulting in eubiosis or dysbiosis. Chronic consumption of a diet that is high in saturated or trans fats, meat proteins, reducing sugars, and salt and low in fiber induces dysbiosis. Dysbiosis, loss of redox homeostasis, mast cells, hypoxia, angiogenesis, the kynurenine pathway, transglutaminase 2, and/or the Janus kinase pathway are implicated in the pathogenesis and development of inflammatory bowel disease, celiac disease, and gastrointestinal malignancy. This review discusses the effects of oxidative, carbonyl, or glycative stress-inducing dietary ingredients or food processing-derived compounds on gut microbiota and gastrointestinal epithelial and mast cells as well as on the development of associated angiogenic diseases, including key signaling pathways. The preventive or therapeutic potential and the biochemical pathways of antiangiogenic or proangiogenic foods or beverages are also described. The outcomes of the interactions between disease pathways and components of food are critical for the design of foods and beverages for healthy lives.
Collapse
Affiliation(s)
- Jack N Losso
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA;
| |
Collapse
|
7
|
Sanghani NS, Haase VH. Hypoxia-Inducible Factor Activators in Renal Anemia: Current Clinical Experience. Adv Chronic Kidney Dis 2019; 26:253-266. [PMID: 31477256 PMCID: PMC7318915 DOI: 10.1053/j.ackd.2019.04.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
Prolyl hydroxylase domain oxygen sensors are dioxygenases that regulate the activity of hypoxia-inducible factor (HIF), which controls renal and hepatic erythropoietin production and coordinates erythropoiesis with iron metabolism. Small molecule inhibitors of prolyl hydroxylase domain dioxygenases (HIF-PHI [prolyl hydroxylase inhibitor]) stimulate the production of endogenous erythropoietin and improve iron metabolism resulting in efficacious anemia management in patients with CKD. Three oral HIF-PHIs-daprodustat, roxadustat, and vadadustat-have now advanced to global phase III clinical development culminating in the recent licensing of roxadustat for oral anemia therapy in China. Here, we survey current clinical experience with HIF-PHIs, discuss potential therapeutic advantages, and deliberate over safety concerns regarding long-term administration in patients with renal anemia.
Collapse
Affiliation(s)
- Neil S Sanghani
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Volker H Haase
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Medical Cell Biology, Uppsala Universitet, Uppsala, Sweden; Department of Molecular Physiology & Biophysics and Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN.
| |
Collapse
|
8
|
Dulai PS, Buckey JC, Raffals LE, Swoger JM, Claus PL, OʼToole K, Ptak JA, Gleeson MW, Widjaja CE, Chang JT, Adler JM, Patel N, Skinner LA, Haren SP, Goldby-Reffner K, Thompson KD, Siegel CA. Hyperbaric oxygen therapy is well tolerated and effective for ulcerative colitis patients hospitalized for moderate-severe flares: a phase 2A pilot multi-center, randomized, double-blind, sham-controlled trial. Am J Gastroenterol 2018; 113:1516-1523. [PMID: 29453383 DOI: 10.1038/s41395-018-0005-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/25/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hyperbaric oxygen therapy (HBOT) markedly increases tissue oxygen delivery. Case series suggest it may have a potential therapeutic benefit in ulcerative colitis (UC). We investigated the therapeutic potential of HBOT as an adjunct to steroids for UC flares requiring hospitalization. METHODS The study was terminated early due to poor recruitment with 18 of the planned 70 patients enrolled. UC patients hospitalized for moderate-severe flares (Mayo score ≥6, endoscopic sub-score ≥2) were block randomized to steroids + daily HBOT (n = 10) or steroids + daily sham hyperbaric air (n = 8). Patients were blinded to study assignment, and assessments were performed by a blinded gastroenterologist. Primary outcome was the clinical remission rate at study day 5 (partial Mayo score ≤2 with no sub-score >1). Key secondary outcomes were: clinical response (reduction in partial Mayo score ≥2, rectal bleeding sub-score of 0-1) and progression to second-line therapy (colectomy or biologic therapy) during the hospitalization. RESULTS A significantly higher proportion of HBOT-treated patients achieved clinical remission at study day 5 and 10 (50 vs. 0%, p = 0.04). HBOT-treated patients less often required progression to second-line therapy during the hospitalization (10 vs. 63%, p = 0.04). The proportion requiring in-hospital colectomy specifically as second-line therapy for medically refractory UC was lower in the HBOT group compared to sham (0 vs. 38%, p = 0.07). There were no serious adverse events. CONCLUSION In this small, proof-of-concept, phase 2A trial, the use of HBOT as an adjunctive therapy to steroids for UC patients hospitalized for moderate-severe flares resulted in higher rates of clinical remission, and a reduction in rates of progression to second-line therapy during the hospitalization. Larger well-powered trials are needed, however, to provided definitive evidence of therapeutic benefit.
Collapse
Affiliation(s)
- Parambir S Dulai
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jay C Buckey
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Laura E Raffals
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jason M Swoger
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Paul L Claus
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kevin OʼToole
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Judy A Ptak
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael W Gleeson
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Christella E Widjaja
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John T Chang
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jeffery M Adler
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nihal Patel
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Laurie A Skinner
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Shawn P Haren
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kimberly Goldby-Reffner
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kimberly D Thompson
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Corey A Siegel
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Abstract
Polymorphonuclear neutrophils (PMNs) are innate immune system cells that play an essential role in eradicating invading pathogens. PMN migration to sites of infection/inflammation requires exiting the microcirculation and subsequent crossing of epithelial barriers in mucosa-lined organs such as the lungs and intestines. Although these processes usually occur without significant damage to surrounding host tissues, dysregulated/excessive PMN transmigration and resultant bystander-tissue damage are characteristic of numerous mucosal inflammatory disorders. Mechanisms controlling PMN extravasation have been well characterized, but the molecular details regarding regulation of PMN migration across mucosal epithelia are poorly understood. Given that PMN migration across mucosal epithelia is strongly correlated with disease symptoms in many inflammatory mucosal disorders, enhanced understanding of the mechanisms regulating PMN transepithelial migration should provide insights into clinically relevant tissue-targeted therapies aimed at ameliorating PMN-mediated bystander-tissue damage. This review will highlight current understanding of the molecular interactions between PMNs and mucosal epithelia and the associated functional consequences.
Collapse
Affiliation(s)
- Jennifer C Brazil
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Charles A Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
10
|
D'Ignazio L, Batie M, Rocha S. Hypoxia and Inflammation in Cancer, Focus on HIF and NF-κB. Biomedicines 2017; 5:E21. [PMID: 28536364 PMCID: PMC5489807 DOI: 10.3390/biomedicines5020021] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer is often characterised by the presence of hypoxia and inflammation. Paramount to the mechanisms controlling cellular responses under such stress stimuli, are the transcription factor families of Hypoxia Inducible Factor (HIF) and Nuclear Factor of κ-light-chain-enhancer of activated B cells (NF-κB). Although, a detailed understating of how these transcription factors respond to their cognate stimulus is well established, it is now appreciated that HIF and NF-κB undergo extensive crosstalk, in particular in pathological situations such as cancer. Here, we focus on the current knowledge on how HIF is activated by inflammation and how NF-κB is modulated by hypoxia. We summarise the evidence for the possible mechanism behind this activation and how HIF and NF-κB function impacts cancer, focusing on colorectal, breast and lung cancer. We discuss possible new points of therapeutic intervention aiming to harness the current understanding of the HIF-NF-κB crosstalk.
Collapse
Affiliation(s)
- Laura D'Ignazio
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD15EH, UK.
| | - Michael Batie
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD15EH, UK.
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD15EH, UK.
| |
Collapse
|