1
|
Tuminello S, Durmus N, Snuderl M, Chen Y, Shao Y, Reibman J, Arslan AA, Taioli E. DNA Methylation as a Molecular Mechanism of Carcinogenesis in World Trade Center Dust Exposure: Insights from a Structured Literature Review. Biomolecules 2024; 14:1302. [PMID: 39456235 PMCID: PMC11506790 DOI: 10.3390/biom14101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The collapse of the World Trade Center (WTC) buildings in New York City generated a large plume of dust and smoke. WTC dust contained human carcinogens including metals, asbestos, polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants (POPs, including polychlorinated biphenyls (PCBs) and dioxins), and benzene. Excess levels of many of these carcinogens have been detected in biological samples of WTC-exposed persons, for whom cancer risk is elevated. As confirmed in this structured literature review (n studies = 80), all carcinogens present in the settled WTC dust (metals, asbestos, benzene, PAHs, POPs) have previously been shown to be associated with DNA methylation dysregulation of key cancer-related genes and pathways. DNA methylation is, therefore, a likely molecular mechanism through which WTC exposures may influence the process of carcinogenesis.
Collapse
Affiliation(s)
- Stephanie Tuminello
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nedim Durmus
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
| | - Matija Snuderl
- Department of Pathology, NYU Langone Medical Center, New York, NY 10016, USA;
| | - Yu Chen
- Department of Population Health, NYU Langone Medical Center, New York, NY 10016, USA
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Yongzhao Shao
- Department of Population Health, NYU Langone Medical Center, New York, NY 10016, USA
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Joan Reibman
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
- Division of Environmental Medicine, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
| | - Alan A. Arslan
- Department of Population Health, NYU Langone Medical Center, New York, NY 10016, USA
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
- Department of Obstetrics and Gynecology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Emanuela Taioli
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
2
|
Heidari H, Lawrence DA. An integrative exploration of environmental stressors on the microbiome-gut-brain axis and immune mechanisms promoting neurological disorders. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:233-263. [PMID: 38994870 DOI: 10.1080/10937404.2024.2378406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The microbiome-gut-brain axis is altered by environmental stressors such as heat, diet, and pollutants as well as microbes in the air, water, and soil. These stressors might alter the host's microbiome and symbiotic relationship by modifying the microbial composition or location. Compartmentalized mutualistic microbes promote the beneficial interactions in the host leading to circulating metabolites and hormones such as insulin and leptin that affect inter-organ functions. Inflammation and oxidative stress induced by environmental stressors may alter the composition, distribution, and activities of the microbes in the microbiomes such that the resultant metabolite and hormone changes are no longer beneficial. The microbiome-gut-brain axis and immune adverse changes that may accompany environmental stressors are reviewed for effects on innate and adaptive immune cells, which may make host immunity less responsive to pathogens and more reactive to self-antigens. Cardiovascular and fluid exchanges to organs might adversely alter organ functionality. Organs, especially the brain, need a consistent supply of nutrients and clearance of debris; disruption of these exchanges by stressors, and involvement of gut microbiome are discussed regarding neural dysfunctions with Alzheimer's disease, autistic spectrum disorders, viral infections, and autoimmune diseases. The focus of this review includes the manner in which environmental stressors may disrupt gut microbiota leading to adverse immune and hormonal influences on development of neuropathology related to hyperhomocysteinemia, inflammation, and oxidative stress, and how certain therapeutics may be beneficial. Strategies are explored to lessen detrimental effects of environmental stressors on central and peripheral health navigated toward (1) understanding neurological disorders and (2) promoting environmental and public health and well-being.
Collapse
Affiliation(s)
- Hajar Heidari
- Department of Biomedical Sciences, University at Albany School of Public Health, Rensselaer, NY, USA
| | - David A Lawrence
- Department of Biomedical Sciences, University at Albany School of Public Health, Rensselaer, NY, USA
- Department of Environmental Health Sciences, University at Albany School of Public Health, Rensselaer, NY, USA
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| |
Collapse
|
3
|
Guedes Pinto T, Dias TA, Renno ACM, de Barros Viana M, Ribeiro DA. The role of genetic polymorphisms for inducing genotoxicity in workers occupationally exposed to benzene: a systematic review. Arch Toxicol 2024; 98:1991-2005. [PMID: 38600397 DOI: 10.1007/s00204-024-03744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Benzene is used worldwide as a major raw material in a number of industrial processes and also a potent airborne pollutant emitted from traffic exhaust fume. The present systematic review aimed to identify potential associations between genetic polymorphisms and occupational benzene-induced genotoxicity. For this purpose, a total of 22 selected studies were carefully analysed. Our results revealed a positive relation between gene polymorphism and genotoxicity in individuals exposed to benzene, since 17 studies (out of 22) observed positive relations between genotoxicity and polymorphisms in xenobiotics metabolizing genes influencing, therefore, individuals' susceptibility to genomic damage induced by benzene. In other words, individuals with some genotypes may show increase or decrease DNA damage and/or higher or lower DNA-repair potential. As for the quality assessment, 17 studies (out of 22) were categorized as Strong or Moderate and, therefore, we consider our findings to be trustworthy. Taken together, such findings are consistent with the notion that benzene induces genotoxicity in mammalian cells being strongly dependent on the genetic polymorphism. Certainly, such findings are important for clarifying the role of biomarkers related to genotoxicity in human biomonitoring studies.
Collapse
Affiliation(s)
- Thiago Guedes Pinto
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Thayza Aires Dias
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Ana Claudia Muniz Renno
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Milena de Barros Viana
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil.
| |
Collapse
|
4
|
Purnomo AF, Daryanto B, Seputra KP, Budaya TN, Lutfiana NC, Nurkolis F, Chung S, Suh JY, Park MN, Seo BK, Kim B. Methylenetetrahydrofolate Reductase C677T (rs1801133) Polymorphism Is Associated with Bladder Cancer in Asian Population: Epigenetic Meta-Analysis as Precision Medicine Approach. Cancers (Basel) 2023; 15:4402. [PMID: 37686678 PMCID: PMC10487222 DOI: 10.3390/cancers15174402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The etiology of bladder cancer remains unclear. This study investigates the impact of gene polymorphisms, particularly methylenetetrahydrofolate reductase gene (MTHFR), on bladder cancer susceptibility, focusing on the rs1801133 single-nucleotide polymorphism (SNP). A meta-analysis was conducted after systematically reviewing the MTHFR gene literature, adhering to PRISMA guidelines and registering in PROSPERO (CRD42023423064). Seven studies were included, showing a significant association between the MTHFR C677T (rs1801133) polymorphism and bladder cancer susceptibility. Individuals with the T-allele or TT genotype had a higher likelihood of bladder cancer. In the Asian population, the overall analysis revealed an odds ratio (OR) of 1.15 (95% CI 1.03-1.30; p-value = 0.03) for T-allele versus C-allele and an OR of 1.34 (95% CI 1.04-1.72; p-value = 0.02) for TT genotype versus TC+CC genotype. The CC genotype, however, showed no significant association with bladder cancer. Notably, epigenetic findings displayed low sensitivity but high specificity, indicating reliable identified associations while potentially overlooking some epigenetic factors related to bladder cancer. In conclusion, the MTHFR T-allele and TT genotype were associated with increased bladder cancer risk in the Asian population. These insights into genetic factors influencing bladder cancer susceptibility could inform targeted prevention and treatment strategies. Further research is warranted to validate and expand these findings.
Collapse
Affiliation(s)
- Athaya Febriantyo Purnomo
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
- Department of Urology, Faculty of Medicine, Universitas Brawijaya, Malang 65142, Indonesia
| | - Besut Daryanto
- Department of Urology, Faculty of Medicine, Universitas Brawijaya, Malang 65142, Indonesia
| | - Kurnia Penta Seputra
- Department of Urology, Faculty of Medicine, Universitas Brawijaya, Malang 65142, Indonesia
| | - Taufiq Nur Budaya
- Department of Urology, Faculty of Medicine, Universitas Brawijaya, Malang 65142, Indonesia
| | - Nurul Cholifah Lutfiana
- Department of Biosciences and Biomedicine, Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya 36201, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta 55281, Indonesia;
| | - Sanghyun Chung
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Kyung Hee Myungbo Clinic of Korean Medicine, Hwaseong-si 18466, Republic of Korea
| | - Jin Young Suh
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Seoul Forest Korean Medicine Clinic, Ttukseomro 312, Seongdong-gu, Seoul 04773, Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Byung-Kwan Seo
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Acupuncture and Moxibustion Medicine, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Jiménez-Garza O, Ghosh M, Barrow TM, Godderis L. Toxicomethylomics revisited: A state-of-the-science review about DNA methylation modifications in blood cells from workers exposed to toxic agents. Front Public Health 2023; 11:1073658. [PMID: 36891347 PMCID: PMC9986591 DOI: 10.3389/fpubh.2023.1073658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/25/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Epigenetic marks have been proposed as early changes, at the subcellular level, in disease development. To find more specific biomarkers of effect in occupational exposures to toxicants, DNA methylation studies in peripheral blood cells have been performed. The goal of this review is to summarize and contrast findings about DNA methylation in blood cells from workers exposed to toxicants. Methods A literature search was performed using PubMed and Web of Science. After first screening, we discarded all studies performed in vitro and in experimental animals, as well as those performed in other cell types other than peripheral blood cells. Results: 116 original research papers met the established criteria, published from 2007 to 2022. The most frequent investigated exposures/labor group were for benzene (18.9%) polycyclic aromatic hydrocarbons (15.5%), particulate matter (10.3%), lead (8.6%), pesticides (7.7%), radiation (4.3%), volatile organic compound mixtures (4.3%), welding fumes (3.4%) chromium (2.5%), toluene (2.5%), firefighters (2.5%), coal (1.7%), hairdressers (1.7%), nanoparticles (1.7%), vinyl chloride (1.7%), and others. Few longitudinal studies have been performed, as well as few of them have explored mitochondrial DNA methylation. Methylation platforms have evolved from analysis in repetitive elements (global methylation), gene-specific promoter methylation, to epigenome-wide studies. The most reported observations were global hypomethylation as well as promoter hypermethylation in exposed groups compared to controls, while methylation at DNA repair/oncogenes genes were the most studied; studies from genome-wide studies detect differentially methylated regions, which could be either hypo or hypermethylated. Discussion Some evidence from longitudinal studies suggest that modifications observed in cross-sectional designs may be transitory; then, we cannot say that DNA methylation changes are predictive of disease development due to those exposures. Conclusion Due to the heterogeneity in the genes studied, and scarcity of longitudinal studies, we are far away from considering DNA methylation changes as biomarkers of effect in occupational exposures, and nor can we establish a clear functional or pathological correlate for those epigenetic modifications associated with the studied exposures.
Collapse
Affiliation(s)
- Octavio Jiménez-Garza
- Health Sciences Institute, Autonomous University of Hidalgo State, Pachuca Hidalgo, Mexico
| | - Manosij Ghosh
- Environment and Health Department, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Timothy M Barrow
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, United Kingdom
| | - Lode Godderis
- Environment and Health Department, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Touala-Chaila Z, Abderrahmane RK, Benseddik K, Meroufel DN. A meta-analysis on the susceptibility to the development of bladder cancer in the presence of DNMT3A, DNMT3B, and MTHFR gene polymorphisms. AFRICAN JOURNAL OF UROLOGY 2022. [DOI: 10.1186/s12301-022-00301-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The etiology of bladder cancer is not yet well known. In this study, we want to evaluate the effect of polymorphisms of genes that have an epigenetic effect (MTHFR, DNMT3A/B) on the susceptibility to develop bladder cancer (BC).
Methods
A systematic review was performed for MTHFR, DNMT3A, and DNMT3B, followed by a meta-analysis conducted for rs1801131, rs1801133, rs2274976, rs1550117, and rs1569686 SNPs. A sensitivity and a subgroup analysis were then used.
Results
20 studies were included, where no statistically significant association between any of the analyzed SNPs and the occurrence of BC was detected. Subgroup analysis revealed a statistically significant association in North African population with rs1801133: TT vs. TC + CC (P = 0.013; OR 95% CI = 0.52 [0.311–0.872]); TT vs.TC (P = 0.003; OR 95% CI = 0.448 [0.261–0.769]) and in North American population with rs1801131: CC vs. CA (P = 0.039; OR 95% CI = 0.71 [0.523–0.984]). A sensitivity analysis revealed that there is a statistically significant association between rs1801131 and the occurrence of BC (OR = 0.79, 95%CI [0.65–0.97]), (OR = 0.80, 95%CI [0.65–0.98]) and (OR = 0.78, 95%CI [0.63–0.96]) which correspond to CC vs. CA + AA; CC vs. CA; and CC vs. AA genetic models.
Conclusion
This is the first study to assess the effect of DNMTs on bladder cancer risk. No statistically significant association was found between polymorphisms of MTHFR, DNMT3A/B genes and bladder cancer development, except for the North African and the North American populations with rs1801133 and rs1801131, respectively, with a protective effect of rs1801131 based on a sensitivity analysis.
Collapse
|
7
|
Ren JC, Wang T, Wu H, Zhang GH, Sun D, Guo K, Li H, Zhang F, Wu W, Xia ZL. Promoter hypermethylation in CSF3R induces peripheral neutrophil reduction in benzene-exposure poisoning. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:786-796. [PMID: 32329128 DOI: 10.1002/em.22382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/22/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Benzene is a global pollutant and has been established to cause leukemia. To better understand the role of DNA methylation in benzene toxicity, peripheral blood mononuclear cells were collected from six benzene-poisoning patients and six matched controls for genome-wide DNA methylation screening by Illumina Infinium Methylation 450 BeadChip. The Gene Chip Human Gene 2.0 ST Array (Affymetrix) was used to analyze global mRNA expression. Compared with the corresponding sites of controls, 442 sites in patients were hypermethylated, corresponding to 253 genes, and 237 sites were hypomethylated, corresponding to 130 genes. The promoter methylation and mRNA expression of CSF3R, CREB5, and F2R were selected for verification by bisulfite sequencing and real-time PCR in a larger data set with 21 cases and 23 controls. The results indicated that promoter methylation of CSF3R (p = .005) and F2R (p = .015) was significantly higher in cases than in controls. Correlation analysis showed that the promoter methylation of CSF3R (p < .001) and F2R (p < .001) was highly correlated with its mRNA expression. In the poisoning cases, neutrophil percentage was significantly different among the high, middle, and low CSF3R-methylation groups (p = .002). In particular, the neutrophil percentage in the high CSF3R-methylation group (48.10 ± 9.63%) was significantly lower than that in the low CSF3R-methylation group (59.30 ± 6.26%) (p = .012). The correlation coefficient between promoter methylation in CSF3R and the neutrophil percentage was -0.445 (p = .020) in cases and - 0.398 (p = .060) in controls. These results imply that hypermethylation occurs in the CSF3R promoter due to benzene exposure and is significantly associated with a reduction in neutrophils.
Collapse
Affiliation(s)
- Jing-Chao Ren
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Tongshuai Wang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Hantian Wu
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Guang-Hui Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Daoyuan Sun
- Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Kongrong Guo
- Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Haibin Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Fengquan Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Zhao-Lin Xia
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Scholten B, Vlaanderen J, Stierum R, Portengen L, Rothman N, Lan Q, Pronk A, Vermeulen R. A Quantitative Meta-Analysis of the Relation between Occupational Benzene Exposure and Biomarkers of Cytogenetic Damage. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:87004. [PMID: 32783535 PMCID: PMC7422719 DOI: 10.1289/ehp6404] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND The genotoxicity of benzene has been investigated in dozens of biomonitoring studies, mainly by studying (classical) chromosomal aberrations (CAs) or micronuclei (MN) as markers of DNA damage. Both have been shown to be predictive of future cancer risk in cohort studies and could, therefore, potentially be used for risk assessment of genotoxicity-mediated cancers. OBJECTIVES We sought to estimate an exposure-response curve (ERC) and quantify between-study heterogeneity using all available quantitative evidence on the cytogenetic effects of benzene exposure on CAs and MN respectively. METHODS We carried out a systematic literature review and summarized all available data of sufficient quality using meta-analyses. We assessed the heterogeneity in slope estimates between studies and conducted additional sensitivity analyses to assess how various study characteristics impacted the estimated ERC. RESULTS Sixteen CA (1,356 individuals) and 13 MN studies (2,097 individuals) were found to be eligible for inclusion in a meta-analysis. Studies where benzene was the primary genotoxic exposure and that had adequate assessment of both exposure and outcomes were used for the primary analysis. Estimated slope estimates were an increase of 0.27% CA [(95% CI: 0.08%, 0.47%); based on the results from 4 studies] and 0.27% MN [(95% CI: -0.23%, 0.76%); based on the results from 7 studies] per parts-per-million benzene exposure. We observed considerable between-study heterogeneity for both end points (I2>90%). DISCUSSION Our study provides a systematic, transparent, and quantitative summary of the literature describing the strong association between benzene exposure and accepted markers of genotoxicity in humans. The derived consensus slope can be used as a best estimate of the quantitative relationship between real-life benzene exposure and genetic damage in future risk assessment. We also quantitate the large between-study heterogeneity that exists in this literature, a factor which is crucial for the interpretation of single-study or consensus slopes. https://doi.org/10.1289/EHP6404.
Collapse
Affiliation(s)
- Bernice Scholten
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
- Netherlands Organisation for Applied Scientific Research, Zeist, Netherlands
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Rob Stierum
- Netherlands Organisation for Applied Scientific Research, Zeist, Netherlands
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Nat Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland, USA
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland, USA
| | - Anjoeka Pronk
- Netherlands Organisation for Applied Scientific Research, Zeist, Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
9
|
de Souza MR, Rohr P, Kahl VFS, Kvitko K, Cappetta M, Lopes WM, Simon D, da Silva J. The influence of polymorphisms of xenobiotic-metabolizing and DNA repair genes in DNA damage, telomere length and global DNA methylation evaluated in open-cast coal mining workers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109975. [PMID: 31787382 DOI: 10.1016/j.ecoenv.2019.109975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Coal plants represent one of the main sources of environmental pollution due to the combustion process of this mineral and the consequent release of gases and particles which, in significant quantities, can lead to a potential risk to health and the environment. The susceptibility of individuals to the genotoxic effects of coal mining can be modulated by genetic variations in the xenobiotic detoxification and DNA repair processes. The aim of this study was to evaluate if xenobiotic metabolism polymorphism, base excision repair polymorphisms and non-homologous end joining repair polymorphism, could modify individual susceptibility to genomic instability and epigenetic alterations induced in workers by occupational exposure to coal. In this study, polymerase chain reaction was used to examine the polymorphic sites. The sample population comprising 70 coal mine workers and 71 workers non-exposed to coal. Our results demonstrated the effect of individual genotypes on different biomarkers evaluated. Significant decrease in % of global DNA methylation were observed in CYP1A1 Val/- exposed individuals compared to CYP1A1 Ile/Ile individuals. Coal workers who carried the XRCC4 Ile/Ile genotype showed decrease NBUD frequencies, while the XRCC4 Thr/- genotype was associated with decrease in Buccal micronucleus cells for the group not exposed. No influence of GSTM1 null, GSTT1 null, GSTP1 Ile105Val, hOGG1 Ser326Cys, XRCC1 Arg194Trp polymorphisms was observed. Thus, the current study reinforces the importance of considering the effect of metabolizing and repair variant genotypes on the individual susceptibility to incorporate DNA damage, as these processes act in a coordinated manner to determine the final response to coal exposure.
Collapse
Affiliation(s)
- Melissa Rosa de Souza
- Laboratory of Genetic Toxicology, Post-Graduate Program in Cellular and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Paula Rohr
- Laboratory of Genetic Toxicology, Post-Graduate Program in Cellular and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | | | - Kátia Kvitko
- Laboratory of Immunogenetics, Post-Graduate Program in Genetics and Molecular Biology (PPGBM), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mónica Cappetta
- Laboratory of Genetic Epidemiology, Department of Genetics, Medicine School, Universidad de la República, Montevideo, Uruguay
| | - Wilner Martinez Lopes
- Department of Genetic Toxicology and Chromosome Pathology, Instituto de Investigaciones Biologicas Clemente Estable, Montevideo, Uruguay
| | - Daniel Simon
- Laboratory of Human Molecular Genetics, Post-Graduate Program in Cellular and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, Post-Graduate Program in Cellular and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil; Laboratory of Genetic Toxicology, La Salle University (UniLaSalle), Canoas, RS, Brazil.
| |
Collapse
|
10
|
Abstract
Purpose of review This review demonstrates the growing body of evidence connecting DNA methylation to prior exposure. It highlights the potential to use DNA methylation patterns as a feasible, stable, and accurate biomarker of past exposure, opening new opportunities for environmental and gene-environment interaction studies among existing banked samples. Recent findings We present the evidence for association between past exposure, including prenatal exposures, and DNA methylation measured at a later time in the life course. We demonstrate the potential utility of DNA methylation-based biomarkers of past exposure using results from multiple studies of smoking as an example. Multiple studies show the ability to accurately predict prenatal smoking exposure based on DNA methylation measured at birth, in childhood, and even adulthood. Separate sets of DNA methylation loci have been used to predict past personal smoking exposure (postnatal) as well. Further, it appears that these two types of exposures, prenatal and previous personal exposure, can be isolated from each other. There is also a suggestion that quantitative methylation scores may be useful for estimating dose. We highlight the remaining needs for rigor in methylation biomarker development including analytic challenges as well as the need for development across multiple developmental windows, multiple tissue types, and multiple ancestries. Summary If fully developed, DNA methylation-based biomarkers can dramatically shift our ability to carry out environmental and genetic-environmental epidemiology using existing biobanks, opening up unprecedented opportunities for environmental health.
Collapse
|