1
|
Peng J, Ma P, Wu X, Yang T, Hu Y, Xu Y, Li S, Zhang H, Liu H. A case-control study and systematic review of the association between glutathione S-transferase genes and chronic kidney disease. Heliyon 2023; 9:e21183. [PMID: 37920524 PMCID: PMC10618768 DOI: 10.1016/j.heliyon.2023.e21183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 09/10/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Background GSTM1 deletion was reported to be associated with CKD progression in cohort studies. However, the results of case‒control studies were conflicting. The association between GST genes and CKD progression needs to be studied in China. Therefore, we conducted this case‒control study and systematic review for Southwest China to outline the association between GST genes and CKD. Methods CKD patients and healthy controls were enrolled from June 1, 2022 to 1 August 2022. Reported case‒control studies were identified by searching databases until 1 September 2022 for meta-analysis. Results Significant associations were found between deletions of GSTM1 and GSTT1 and CKD risk (all P < 0.01) but not in GSTP1 rs1695 (all P > 0.05) in Southwest China. Then, we conducted a meta-analysis on 30 studies and found positive associations between deletions of GSTM1 and GSTT1 and CKD risk (all P < 0.01) but failed to find associations in GSTP1 rs1695 (all P > 0.05). Stratification analysis for ethnicity only showed a significant association in Southern Asia (P < 0.05) but not in Eastern Asia or other populations. This was different from our case‒control results. The current evidence was influenced by study quality and PCR method but not by control selection. Given the different stages of CKD patients, a subanalysis of disease stages was performed, and the results remained positive. Interestingly, we found no significant associations between DM-CKD and GST genes, which should be interpreted with caution. Conclusion We found that GSTM1 and GSTT1 null genotypes were risk factors for CKD in China. The results of the meta-analysis were somewhat different from our results. We considered that antioxidant therapy might be useful for the treatment of these patients.
Collapse
Affiliation(s)
- Jie Peng
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, Sichuan Province, 610500, PR China
| | - Pei Ma
- Department of Forensic Medicine, Zhongnan Hospital, Wuhan University, 168# Donghu Road, Wuhan, Hubei Province, 430071, PR China
- Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, 168# Donghu Road, Wuhan, Hubei Province, 430071, PR China
| | - Xueqin Wu
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, Sichuan Province, 610500, PR China
| | - Tianrong Yang
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, Sichuan Province, 610500, PR China
| | - Yuting Hu
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, Sichuan Province, 610500, PR China
| | - Ying Xu
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, Sichuan Province, 610500, PR China
| | - Shuang Li
- Department of Clinical Laboratory, The Third People's Hospital of Chengdu, 82# Qinglong Street, Chengdu, Sichuan Province, 610014, PR China
| | - Hang Zhang
- Department of Clinical Laboratory, The Third People's Hospital of Chengdu, 82# Qinglong Street, Chengdu, Sichuan Province, 610014, PR China
| | - Hongzhou Liu
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, Sichuan Province, 610500, PR China
- Department of Clinical Laboratory, The Third People's Hospital of Chengdu, 82# Qinglong Street, Chengdu, Sichuan Province, 610014, PR China
| |
Collapse
|
2
|
Silva MAP, Figueiredo DBS, Lara JR, Paschoalinotte EE, Braz LG, Braz MG. Evaluation of genetic instability, oxidative stress, and metabolism-related gene polymorphisms in workers exposed to waste anesthetic gases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9609-9623. [PMID: 36057057 DOI: 10.1007/s11356-022-22765-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Professionals who work in operating rooms (ORs) may be exposed daily to waste anesthetic gases (WAGs) due to the use of inhalational anesthetics. Considering the controversial findings related to genetic damage and redox status in addition to a lack of knowledge about the effect of polymorphisms in genes related to phase I and II detoxification upon occupational exposure to WAGs, this cross-sectional study is the first to jointly evaluate biomarkers of genetic instability, oxidative stress, and susceptibility genes in professionals occupationally exposed to high trace amounts of halogenated (≥ 7 ppm) and nitrous oxide (165 ppm) anesthetics in ORs and in individuals not exposed to WAGs (control group). Elevated rates of buccal micronucleus (MN) and nuclear bud (NBUD) were observed in the exposure group and in professionals exposed aged more than 30 years. Exposed males showed a higher antioxidant capacity, as determined by the ferric reducing antioxidant power (FRAP), than exposed females; exposed females had higher frequencies of MN and NBUD than nonexposed females. Genetic instability (MN) was observed in professionals with greater weekly WAG exposure, and those exposed for longer durations (years) exhibited oxidative stress (increased lipid peroxidation and decreased FRAP). Polymorphisms in metabolic genes (cytochrome P450 2E1 (CYP2E1) and glutathione S-transferases (GSTs)) did not exert an effect, except for the effects of the GSTP1 (rs1695) AG/GG polymorphism on FRAP (both groups) and GSTP1 AG/GG and GSTT1 null polymorphisms, which were associated with greater FRAP values in exposed males. Minimizing WAG exposure is necessary to reduce impacts on healthcare workers.
Collapse
Affiliation(s)
- Mariane A P Silva
- Medical School - São Paulo State University (UNESP), Prof. Mario Rubens G. Montenegro Av. Botucatu, São Paulo, 18618-687, Brazil
| | - Drielle B S Figueiredo
- Medical School - São Paulo State University (UNESP), Prof. Mario Rubens G. Montenegro Av. Botucatu, São Paulo, 18618-687, Brazil
| | - Juliana R Lara
- Medical School - São Paulo State University (UNESP), Prof. Mario Rubens G. Montenegro Av. Botucatu, São Paulo, 18618-687, Brazil
| | - Eloisa E Paschoalinotte
- Medical School - São Paulo State University (UNESP), Prof. Mario Rubens G. Montenegro Av. Botucatu, São Paulo, 18618-687, Brazil
| | - Leandro G Braz
- Medical School - São Paulo State University (UNESP), Prof. Mario Rubens G. Montenegro Av. Botucatu, São Paulo, 18618-687, Brazil
| | - Mariana G Braz
- Medical School - São Paulo State University (UNESP), Prof. Mario Rubens G. Montenegro Av. Botucatu, São Paulo, 18618-687, Brazil.
| |
Collapse
|
3
|
Verma N, Pandit S, Gupta PK, Kumar S, Kumar A, Giri SK, Yadav G, Priya K. Occupational health hazards and wide spectrum of genetic damage by the organic solvent fumes at the workplace: A critical appraisal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30954-30966. [PMID: 35102507 DOI: 10.1007/s11356-022-18889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Long-term exposure to organic solvents is known to affect human health posing serious occupational hazards. Organic solvents are genotoxic, and they can cause genetic changes in the exposed employees' somatic or germ cells. Chemicals such as benzene, toluene, and gasoline induce an excessive amount of genotoxicity results either in genetic polymorphism or culminates in deleterious mutations when concentration crosses the threshold limits. The impact of genotoxicity is directly related to the time of exposure, types, and quantum of solvent. Genotoxicity affects almost all the physiological systems, but the most vulnerable ones are the nervous system, reproductive system, and blood circulatory system. Based on the available literature report, we propose to evaluate the outcomes of such chemicals on the exposed humans at the workplace. Attempts would be made to ascertain if the long-term exposure makes a person resistant to such chemicals. This may seem to be a far-fetched idea but has not been studied. The health prospect of this study is envisaged to complement the already existing data facilitating a deeper understanding of the genotoxicity across the population. This would also demonstrate if it correlates with the demographic profile of the population and contributes to comorbidity and epidemiology.
Collapse
Affiliation(s)
- Neha Verma
- Deptt. of Life Sciences, SBSR, Sharda University, Greater Noida, UP, 201310, India
| | - Soumya Pandit
- Deptt. of Life Sciences, SBSR, Sharda University, Greater Noida, UP, 201310, India
| | - Piyush Kumar Gupta
- Deptt. of Life Sciences, SBSR, Sharda University, Greater Noida, UP, 201310, India
| | - Sanjay Kumar
- Deptt. of Life Sciences, SBSR, Sharda University, Greater Noida, UP, 201310, India
| | - Anil Kumar
- Center of Medical Biotechnology, Maharishi Dayanand University, Rohtak Haryana, HR, 124001, India
| | - Shiv Kumar Giri
- Department of Biotechnology, Maharaja Agrasen University, Baddi, HP, India
| | - Gulab Yadav
- Department of Biotechnology, Maharaja Agrasen University, Baddi, HP, India
| | - Kanu Priya
- Deptt. of Life Sciences, SBSR, Sharda University, Greater Noida, UP, 201310, India.
| |
Collapse
|
4
|
Salihu M, Batiha GES, Kasozi KI, Zouganelis GD, Sharkawi SM, Ahmed EI, Usman IM, Nalugo H, Ochieng JJ, Ssengendo I, Okeniran OS, Pius T, Kimanje KR, Kegoye ES, Kenganzi R, Ssempijja F. Crinum jagus (J. Thomps. Dandy): Antioxidant and protective properties as a medicinal plant on toluene-induced oxidative stress damages in liver and kidney of rats. Toxicol Rep 2022; 9:699-712. [PMID: 35433275 PMCID: PMC9011043 DOI: 10.1016/j.toxrep.2022.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/22/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
Crinum jagus (C. jagus; J. Thomps.) Dandy (Liliaceae) is a pantropical plant known for its medicinal values and pharmacological properties. The study assessed the protective effects and changes in oxidative stress indices due to C. jagus leaf extracts on the toluene-induced liver and kidney injuries in rats. The study was conducted on 8-week-old male Wistar rats (n = 80), weighing 243.3 ± 1.42 g. Group I, 1 ml/kg distilled water for 7 days; Group II, 4.5 ml/kg toluene once, 1 ml/kg distilled water for 7 days; Group III, 4.5 ml/kg toluene once, 500 mg/kg methanolic extract for 7 days; Group IV, 4.5 ml/kg toluene once, 500 mg/kg aqueous extract for 7 days; Group V, 500 mg/kg methanolic extract for 7 days; Group VI, 500 mg/kg aqueous extract for 7 days; Group VII, 500 mg/kg of vitamin C for 7 days; Group, VIII, 4.5 ml/kg toluene once, 500 mg/kg vitamin C for 7 days, all administrations were given by oral gavage. The phytochemical contents, absolute and relative organ weights of liver and kidneys, liver and kidney function tests, antioxidant status, as well as histological tests were analyzed using standard protocols. The tannins, flavonoids, and polyphenols were in highest concentration in both extracts, content in methanol extract (57.04 ± 1.51 mgg-1, 35.43 ± 1.03 mgg-1, 28.2 ± 0.34 mgg-1 respectively) > aqueous extract (18.74 ± 1.01 mgg-1, 13.43 ± 0.47 mgg-1, 19.65 ± 0.21 mgg-1 respectively). In the negative control group (II), bodyweights significantly (P < 0.05) reduced by 22%, liver weight and kidney weight significantly (P < 0.05) increased by 42% and 83% respectively, liver-to-bodyweight and kidney-to-bodyweight ratios increased significantly (P < 0.05); serum liver function tests (LFTs) i.e., bilirubin, alkaline phosphatase (ALP), Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), Gamma-glutamyl transferase (GGT), and serum kidney function tests (creatinine and urea) were significantly (P < 0.05) elevated; oxidant status (tissue malondialdehyde; MDA) was significantly (P < 0.05) elevated, antioxidant status i.e., tissue superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels was significantly (P < 0.05) reduced; with markedly visible renal and hepatic histopathological findings, compared to the normal control group. In C. jagus extract test groups (III and IV), the parameters were significantly (P < 0.05) alleviated and reversed to normal/near normal compared to the negative control. The LFTs, kidney function tests, and antioxidant status were significantly (P < 0.05) more improved with the methanol extract test and standard control groups compared to the aqueous extract test group; Also, the methanol extract test group showed better histological features than the aqueous extract test and standard control groups. The methanolic extract shows better antioxidant potential due to the availability of more nonenzymatic antioxidants (tannins, flavonoids, and polyphenols). The findings showed that toluene is a very aggressive xenobiotic due to the promotion of oxidative stress and peroxidation of cellular lipids, but C. jagus leaves provide significant protection through the reducing power of nonenzymatic antioxidants and their ability to induce endogenous antioxidant enzymes (SOD, CAT, and glutathione reductase or GR) causing reduced cellular lipid peroxidation and tissue damages, quickened tissue repair, and improved cell biology of liver and kidneys during toluene toxicity. The methanol leaf extract provides better protection and should be advanced for more experimental and clinical studies to confirm its efficacy in alleviating oxidative stress tissue injuries, specifically due to toluene.
Collapse
Key Words
- ALP, Alkaline phosphatase
- ALT, Alanine aminotransferase
- AST, Aspartate Aminotransferase
- Anti-lipid peroxidation
- Antioxidants
- Catalase Crinum jagus
- GGT, Gamma-glutamyl transferase
- GR, glutathione reductase
- GSH, Glutathione
- Glutathione superoxide dismutase
- Histoprotective
- LFTs, Liver function tests
- MDA, malondialdehyde
- Malondialdehyde
- SOD, Superoxide dismutase
- TOL, Toluene
- Toluene toxicity
- VC, Vitamin C
Collapse
Affiliation(s)
- Mariama Salihu
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | | | - George D. Zouganelis
- Human Science Research Centre, University of Derby, Kedleston Road, DE22 1GB, Derby, United Kingdom
| | - Souty M.Z. Sharkawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Eman Ibrahim Ahmed
- Pharmacology and Therapeutics Department, College of Medicine, Jouf University, Sakaka 72346, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Fayoum University, Fayoum 63511, Egypt
| | - Ibe Michael Usman
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Halima Nalugo
- Department of Anatomy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
| | - Juma J. Ochieng
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Ibrahim Ssengendo
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Olatayo Segun Okeniran
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Theophilus Pius
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, Kampala International University Teaching Hospital, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Kyobe Ronald Kimanje
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Eric Simidi Kegoye
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Ritah Kenganzi
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, Kampala International University Teaching Hospital, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Fred Ssempijja
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| |
Collapse
|
5
|
Jafari Roshan S, Mansoori Y, Hosseini SR, Sabour D, Daraei A. Genetic variations in ATM and H2AX loci contribute to risk of hematological abnormalities in individuals exposed to BTEX chemicals. J Clin Lab Anal 2022; 36:e24321. [PMID: 35235704 PMCID: PMC8993635 DOI: 10.1002/jcla.24321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 11/20/2022] Open
Abstract
Background Loci controlling DNA double‐strand breaks (DSBs) repair play an important role in defending against the harmful health effects of benzene, toluene, ethylbenzene, and xylene (BTEX), but their gene variants may alter their repair capacity. The aim of the current study was to determine the relationship of functional polymorphisms ATM‐rs228589 A>T, WRN‐rs1800392 G>T and H2AX‐rs7759 A>G in DBS repair loci with the abnormal hematological indices in workers who exposed to BTEXs. Methods We included 141 cases with one or more abnormal hematological parameters, who had been occupationally exposed to BTEX chemicals and 152 controls with a similar exposure condition but without any abnormal hematological parameters. Atmospheric concentrations of BTEXs were measured and whole blood samples were taken from the participants to determine hematologic parameters and SNP genotyping. Results Results showed that T allele of ATM‐rs228589 and G allele of H2AX‐rs7759 had a higher frequency in cases than controls (p = 0.012 and p = 0.001, respectively). Also, AT and TT genotypes of ATM‐rs228589 and AG and GG genotypes of H2AX‐rs7759 were higher in cases compared to controls. The AT and TT genotypes of ATM‐rs228589 have significant associations with a risk of hematological abnormalities in the codominant (AT vs. AA, p = 0.018), dominant (AT + TT vs. AA, p = 0.010) and overdominant (AT vs. AA + TT, p = 0.037) models. The GG and AG genotypes of H2AX‐rs7759 were in relation with increased risk of abnormal hematological indices under codominant (GA vs. AA, p = 0.009 & GG vs. AA, p = 0.005), dominant (AG + GG vs. AA, p = 0.001), and recessive (GG vs. AA + AG, p = 0.025) models. Conclusions These observations may help to understand the mechanisms of BTEX hematotoxicity and identify useful biomarkers of risk assessment for workers exposed to BTEX.
Collapse
Affiliation(s)
- Samaneh Jafari Roshan
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Seyed Reza Hosseini
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Davood Sabour
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
6
|
Abubakar MB, Sanusi KO. Influence of GSTM1 and GSTT1 genetic polymorphisms on petrol-induced toxicities: A systematic review. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
7
|
Genetic Polymorphism on Susceptibility to Nephrotoxic Properties of BTEXs Compounds. J Occup Environ Med 2018; 60:e559. [DOI: 10.1097/jom.0000000000001407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|