Vance SA, Kim YH, George IJ, Dye JA, Williams WC, Schladweiler MJ, Gilmour MI, Jaspers I, Gavett SH. Contributions of particulate and gas phases of simulated burn pit smoke exposures to impairment of respiratory function.
Inhal Toxicol 2023;
35:129-138. [PMID:
36692431 PMCID:
PMC10392891 DOI:
10.1080/08958378.2023.2169416]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023]
Abstract
OBJECTIVE
Inhalation of smoke from the burning of waste materials on military bases is associated with increased incidences of cardiopulmonary diseases. This study examined the respiratory and inflammatory effects of acute inhalation exposures in mice to smoke generated by military burn pit-related materials including plywood (PW), cardboard (CB), mixed plastics (PL), and a mixture of these three materials (MX) under smoldering (0.84 MCE) and flaming (0.97 MCE) burn conditions.
METHODS
Mice were exposed nose-only for one hour on two consecutive days to whole or filtered smoke or clean air alone. Smoldering combustion emissions had greater concentrations of PM (∼40 mg/m3) and VOCs (∼5-12 ppmv) than flaming emissions (∼4 mg/m3 and ∼1-2 ppmv, respectively); filtered emissions had equivalent levels of VOCs with negligible PM. Breathing parameters were assessed during exposure by head-out plethysmography.
RESULTS
All four smoldering burn pit emission types reduced breathing frequency (F) and minute volumes (MV) compared with baseline exposures to clean air, and HEPA filtration significantly reduced the effects of all smoldering materials except CB. Flaming emissions had significantly less suppression of F and MV compared with smoldering conditions. No acute effects on lung inflammatory cells, cytokines, lung injury markers, or hematology parameters were noted in smoke-exposed mice compared with air controls, likely due to reduced respiration and upper respiratory scrubbing to reduce the total deposited PM dose in this short-term exposure.
CONCLUSION
Our data suggest that material and combustion type influences respiratory responses to burn pit combustion emissions. Furthermore, PM filtration provides significant protective effects only for certain material types.
Collapse