1
|
Schlünssen V, Mandrioli D, Pega F, Momen NC, Ádám B, Chen W, Cohen RA, Godderis L, Göen T, Hadkhale K, Kunpuek W, Lou J, Mandic-Rajcevic S, Masci F, Nemery B, Popa M, Rajatanavin N, Sgargi D, Siriruttanapruk S, Sun X, Suphanchaimat R, Thammawijaya P, Ujita Y, van der Mierden S, Vangelova K, Ye M, Zungu M, Scheepers PTJ. The prevalences and levels of occupational exposure to dusts and/or fibres (silica, asbestos and coal): A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. ENVIRONMENT INTERNATIONAL 2023; 178:107980. [PMID: 37487377 DOI: 10.1016/j.envint.2023.107980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND The World Health Organization (WHO) and the International Labour Organization (ILO) are developing joint estimates of the work-related burden of disease and injury (WHO/ILO Joint Estimates), with contributions from a large number of individual experts. Evidence from human, animal and mechanistic data suggests that occupational exposure to dusts and/or fibres (silica, asbestos and coal dust) causes pneumoconiosis. In this paper, we present a systematic review and meta-analysis of the prevalences and levels of occupational exposure to silica, asbestos and coal dust. These estimates of prevalences and levels will serve as input data for estimating (if feasible) the number of deaths and disability-adjusted life years that are attributable to occupational exposure to silica, asbestos and coal dust, for the development of the WHO/ILO Joint Estimates. OBJECTIVES We aimed to systematically review and meta-analyse estimates of the prevalences and levels of occupational exposure to silica, asbestos and coal dust among working-age (≥ 15 years) workers. DATA SOURCES We searched electronic academic databases for potentially relevant records from published and unpublished studies, including Ovid Medline, PubMed, EMBASE, and CISDOC. We also searched electronic grey literature databases, Internet search engines and organizational websites; hand-searched reference lists of previous systematic reviews and included study records; and consulted additional experts. STUDY ELIGIBILITY AND CRITERIA We included working-age (≥ 15 years) workers in the formal and informal economy in any WHO and/or ILO Member State but excluded children (< 15 years) and unpaid domestic workers. We included all study types with objective dust or fibre measurements, published between 1960 and 2018, that directly or indirectly reported an estimate of the prevalence and/or level of occupational exposure to silica, asbestos and/or coal dust. STUDY APPRAISAL AND SYNTHESIS METHODS At least two review authors independently screened titles and abstracts against the eligibility criteria at a first stage and full texts of potentially eligible records at a second stage, then data were extracted from qualifying studies. We combined prevalence estimates by industrial sector (ISIC-4 2-digit level with additional merging within Mining, Manufacturing and Construction) using random-effects meta-analysis. Two or more review authors assessed the risk of bias and all available authors assessed the quality of evidence, using the ROB-SPEO tool and QoE-SPEO approach developed specifically for the WHO/ILO Joint Estimates. RESULTS Eighty-eight studies (82 cross-sectional studies and 6 longitudinal studies) met the inclusion criteria, comprising > 2.4 million measurements covering 23 countries from all WHO regions (Africa, Americas, Eastern Mediterranean, South-East Asia, Europe, and Western Pacific). The target population in all 88 included studies was from major ISCO groups 3 (Technicians and Associate Professionals), 6 (Skilled Agricultural, Forestry and Fishery Workers), 7 (Craft and Related Trades Workers), 8 (Plant and Machine Operators and Assemblers), and 9 (Elementary Occupations), hereafter called manual workers. Most studies were performed in Construction, Manufacturing and Mining. For occupational exposure to silica, 65 studies (61 cross-sectional studies and 4 longitudinal studies) were included with > 2.3 million measurements collected in 22 countries in all six WHO regions. For occupational exposure to asbestos, 18 studies (17 cross-sectional studies and 1 longitudinal) were included with > 20,000 measurements collected in eight countries in five WHO regions (no data for Africa). For occupational exposure to coal dust, eight studies (all cross-sectional) were included comprising > 100,000 samples in six countries in five WHO regions (no data for Eastern Mediterranean). Occupational exposure to silica, asbestos and coal dust was assessed with personal or stationary active filter sampling; for silica and asbestos, gravimetric assessment was followed by technical analysis. Risk of bias profiles varied between the bodies of evidence looking at asbestos, silica and coal dust, as well as between industrial sectors. However, risk of bias was generally highest for the domain of selection of participants into the studies. The largest bodies of evidence for silica related to the industrial sectors of Construction (ISIC 41-43), Manufacturing (ISIC 20, 23-25, 27, 31-32) and Mining (ISIC 05, 07, 08). For Construction, the pooled prevalence estimate was 0.89 (95% CI 0.84 to 0.93, 17 studies, I2 91%, moderate quality of evidence) and the level estimate was rated as of very low quality of evidence. For Manufacturing, the pooled prevalence estimate was 0.85 (95% CI 0.78 to 0.91, 24 studies, I2 100%, moderate quality of evidence) and the pooled level estimate was rated as of very low quality of evidence. The pooled prevalence estimate for Mining was 0.75 (95% CI 0.68 to 0.82, 20 studies, I2 100%, moderate quality of evidence) and the pooled level estimate was 0.04 mg/m3 (95% CI 0.03 to 0.05, 17 studies, I2 100%, low quality of evidence). Smaller bodies of evidence were identified for Crop and animal production (ISIC 01; very low quality of evidence for both prevalence and level); Professional, scientific and technical activities (ISIC 71, 74; very low quality of evidence for both prevalence and level); and Electricity, gas, steam and air conditioning supply (ISIC 35; very low quality of evidence for both prevalence and level). For asbestos, the pooled prevalence estimate for Construction (ISIC 41, 43, 45,) was 0.77 (95% CI 0.65 to 0.87, six studies, I2 99%, low quality of evidence) and the level estimate was rated as of very low quality of evidence. For Manufacturing (ISIC 13, 23-24, 29-30), the pooled prevalence and level estimates were rated as being of very low quality of evidence. Smaller bodies of evidence were identified for Other mining and quarrying (ISIC 08; very low quality of evidence for both prevalence and level); Electricity, gas, steam and air conditioning supply (ISIC 35; very low quality of evidence for both prevalence and level); and Water supply, sewerage, waste management and remediation (ISIC 37; very low quality of evidence for levels). For coal dust, the pooled prevalence estimate for Mining of coal and lignite (ISIC 05), was 1.00 (95% CI 1.00 to 1.00, six studies, I2 16%, moderate quality of evidence) and the pooled level estimate was 0.77 mg/m3 (95% CI 0.68 to 0.86, three studies, I2 100%, low quality of evidence). A small body of evidence was identified for Electricity, gas, steam and air conditioning supply (ISIC 35); with very low quality of evidence for prevalence, and the pooled level estimate being 0.60 mg/m3 (95% CI -6.95 to 8.14, one study, low quality of evidence). CONCLUSIONS Overall, we judged the bodies of evidence for occupational exposure to silica to vary by industrial sector between very low and moderate quality of evidence for prevalence, and very low and low for level. For occupational exposure to asbestos, the bodies of evidence varied by industrial sector between very low and low quality of evidence for prevalence and were of very low quality of evidence for level. For occupational exposure to coal dust, the bodies of evidence were of very low or moderate quality of evidence for prevalence, and low for level. None of the included studies were population-based studies (i.e., covered the entire workers' population in the industrial sector), which we judged to present serious concern for indirectness, except for occupational exposure to coal dust within the industrial sector of mining of coal and lignite. Selected estimates of the prevalences and levels of occupational exposure to silica by industrial sector are considered suitable as input data for the WHO/ILO Joint Estimates, and selected estimates of the prevalences and levels of occupational exposure to asbestos and coal dust may perhaps also be suitable for estimation purposes. Protocol identifier: https://doi.org/10.1016/j.envint.2018.06.005. PROSPERO registration number: CRD42018084131.
Collapse
Affiliation(s)
- Vivi Schlünssen
- Department of Public Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark; National Research Center for the Working Environment, Copenhagen, Denmark.
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Frank Pega
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland.
| | - Natalie C Momen
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Balázs Ádám
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, United Arab Emirates
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Robert A Cohen
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Thomas Göen
- University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Watinee Kunpuek
- International Health Policy Program, Ministry of Public Health, Nonthaburi, Thailand
| | - Jianlin Lou
- Institute of Occupational Diseases, Hangzhou Medical College, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Stefan Mandic-Rajcevic
- Department of Health Sciences, University of Milano, Milan, Italy; International Centre for Rural Health, San Paolo Hospital, Milan, Italy
| | - Federica Masci
- Department of Health Sciences, University of Milano, Milan, Italy; International Centre for Rural Health, San Paolo Hospital, Milan, Italy
| | - Ben Nemery
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Madalina Popa
- Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Daria Sgargi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Somkiat Siriruttanapruk
- Division of Epidemiology, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Xin Sun
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Repeepong Suphanchaimat
- International Health Policy Program, Ministry of Public Health, Nonthaburi, Thailand; Division of Epidemiology, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Panithee Thammawijaya
- Division of Epidemiology, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Yuka Ujita
- Labour Administration, Labour Inspection and Occupational Safety and Health Branch, International Labour Organization, Geneva, Switzerland; Decent Work Technical Support Team for East and South-East Asia and the Pacific, International Labour Organization, Thailand
| | - Stevie van der Mierden
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy; Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Katya Vangelova
- National Center of Public Health and Analyses, Ministry of Health, Sofia, Bulgaria
| | - Meng Ye
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Muzimkhulu Zungu
- National Institute for Occupational Health, South Africa, Johannesburg, Gauteng Province, South Africa
| | - Paul T J Scheepers
- Radboud Institute for Health Sciences, Radboudumc, Nijmegen, The Netherlands; Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Shao Y, Hwang J, Alexander BH, Mandel JH, MacLehose RF, Ramachandran G. Reconstructing historical exposures to elongate mineral particles (EMPs) in the taconite mining industry for 1955-2010. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2019; 16:817-826. [PMID: 31647751 DOI: 10.1080/15459624.2019.1676431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As part of ongoing epidemiological studies for assessing the association between exposure to dust from taconite operations and the development of respiratory diseases, the goal of this study was to reconstruct the exposures of workers to elongate mineral particle (EMP) in the Minnesota taconite mining industry from 1955-2010. Historical NIOSH-7400 and equivalent EMP personal exposure data were extracted from two sources: (1) the Mine Safety and Health Administration (MSHA) online database recorded for all inspection results since 1978 with 655 EMP monitoring records from 1978-2010 for 13 MSHA Mine IDs associated with this study; and (2) the mining companies' internal monitoring reports contained 96 personal EMP exposure records. NIOSH-7400 EMP personal exposures were measured for workers in different jobs in all active mines in 2010 by obtaining 1,285 personal samples. After data treatment, all data were grouped into seven mines and eight departments. Within each mine-department, the yearly EMP mean concentration in f/cc for each year of operation was predicted using two approaches. The performance of two approaches varied by situation. The assumptions underlying each approach described in this article have limitations. A linear regression based on limited historical measurements and those made in 2010-2011 (Approach 1) does not yield reasonable and plausible values of the slope. Approach 2 assumes that the EMP and the respirable dust in the same department share the same historical time trend. This approach allowed us to avail of the more reasonable slope estimates from the historical respirable dust data set and yielded more plausible historical exposure estimates for most locations. This work with two different job exposure matrix (JEMs) provides a unique research opportunity to study the potential impact of exposure assessment to epidemiological results. Both JEMs are being used to assess associations between EMP and respiratory disease in epidemiological studies.
Collapse
Affiliation(s)
- Yuan Shao
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jooyeon Hwang
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bruce H Alexander
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey H Mandel
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Richard F MacLehose
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gurumurthy Ramachandran
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Lockey JE, Dunning K, Hilbert TJ, Borton E, Levin L, Rice CH, McKay RT, Shipley R, Meyer CA, Perme C, LeMasters GK. Comment on "pleural plaques and lung function in the Marysville worker cohort: a re-analysis" by Zu et al. (2016). Inhal Toxicol 2017; 29:43-45. [PMID: 28330426 DOI: 10.1080/08958378.2017.1292332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- James E Lockey
- a Departments of Environmental Health Pulmonary Medicine and Internal Medicine , University of Cincinnati , Cincinnati , OH , USA
| | - Kari Dunning
- b Department of Rehabilitation Sciences , University of Cincinnati , Cincinnati , OH , USA
| | - Timothy J Hilbert
- c Department of Environmental Health , University of Cincinnati , Cincinnati , OH , USA
| | - Eric Borton
- c Department of Environmental Health , University of Cincinnati , Cincinnati , OH , USA
| | - Linda Levin
- c Department of Environmental Health , University of Cincinnati , Cincinnati , OH , USA
| | - Carol H Rice
- c Department of Environmental Health , University of Cincinnati , Cincinnati , OH , USA
| | - Roy T McKay
- c Department of Environmental Health , University of Cincinnati , Cincinnati , OH , USA
| | - Ralph Shipley
- d Department of Radiology , University of Cincinnati , Cincinnati , OH , USA
| | - Cristopher A Meyer
- e University of Wisconsin School of Medicine and Public Health , Madison , WI , USA
| | - Charles Perme
- f Mercy Health-Anderson Hospital , Cincinnati , OH , USA
| | - Grace K LeMasters
- c Department of Environmental Health , University of Cincinnati , Cincinnati , OH , USA
| |
Collapse
|
6
|
Ryan PH, LeMasters GK, Burkle J, Lockey JE, Black B, Rice C. Childhood exposure to Libby amphibole during outdoor activities. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2015; 25:4-11. [PMID: 23695492 DOI: 10.1038/jes.2013.26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/05/2013] [Indexed: 06/02/2023]
Abstract
Residents of Libby, MT were exposed to amphibole asbestos through multiple environmental pathways. Previous exposure characterization has primarily relied on qualitative report of these exposure activities. The objectives of this study were to describe available data from the US EPA preremediation actions for Libby amphibole (LA) exposure in Libby, MT and develop an approach to characterize outdoor residential exposure to LA among children. Homes in Libby, MT included in the US EPA preremediation Contaminant Screening Survey (CSS) were categorized by the presence of interior and/or exterior visible vermiculite and concentrations of LA were measured in samples of dust and soil. Airborne exposure to LA while digging/gardening, raking, and mowing were estimated using US EPA activity-based sampling (ABS) results. Residential histories and frequency/duration of childhood activities were combined with ABS to demonstrate the approach for estimating potential exposure. A total of 3154 residential properties participated in the CSS and 44% of these had visible exterior vermiculite. Airborne concentrations of LA where there was visible vermiculite outdoors were 3-15 times higher during digging/gardening, raking, and mowing activities compared with homes without visible outdoor vermiculite. Digging and gardening activities represented the greatest contribution to estimated exposures and 73% of the participants reported this activity before the age of 6 years. This methodology demonstrated the use of historical preremediation data to estimate residential exposures of children for specific activities. Children younger than age 6 years may have been exposed to LA while digging/gardening, especially at homes where there is visible outdoor vermiculite. This approach may be extended to other activities and applied to the entire cohort to examine health outcomes.
Collapse
Affiliation(s)
- Patrick H Ryan
- 1] Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA [2] Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Grace K LeMasters
- Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jeffrey Burkle
- Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - James E Lockey
- 1] Division of Occupational and Environmental Medicine, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA [2] Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Brad Black
- Center for Asbestos Related Disease, Libby, Montana, USA
| | - Carol Rice
- Division of Environmental and Occupational Hygiene, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
8
|
Noonan CW, Conway K, Landguth EL, McNew T, Linker L, Pfau J, Black B, Szeinuk J, Flores R. Multiple pathway asbestos exposure assessment for a Superfund community. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2015; 25:18-25. [PMID: 24756101 DOI: 10.1038/jes.2014.25] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/24/2014] [Indexed: 05/16/2023]
Abstract
Libby, MT, USA, was the home to workers at a historical vermiculite mining facility and served as the processing and distribution center for this industrial product that was contaminated with amphibole asbestos. Several pathways of environmental asbestos exposure to the general population have been identified. The local clinic and health screening program collects data from participants on past occupational and environmental exposures to vermiculite and asbestos. Health studies among this population have demonstrated associations between amphibole exposure and health outcomes, but critical questions regarding the nature and level of exposure associated with specific outcomes remain unanswered. The objective of this study was to develop a comprehensive exposure assessment approach that integrates information on individuals' contact frequency with multiple exposure pathways. For 3031 participants, we describe cumulative exposure metrics for environmental exposures, occupational exposures, and residents' contact with carry-home asbestos from household workers. As expected, cumulative exposures for all three occupational categories were higher among men compared with women, and cumulative exposures for household contact and environmental pathways were higher among women. The comprehensive exposure assessment strategies will advance health studies and risk assessment approaches in this population with a complex history of both occupational and environmental asbestos exposure.
Collapse
Affiliation(s)
- Curtis W Noonan
- Center for Environmental Health Sciences, Department of Biomedical Sciences, University of Montana, Missoula, Montana, USA
| | - Kathrene Conway
- Center for Environmental Health Sciences, Department of Biomedical Sciences, University of Montana, Missoula, Montana, USA
| | - Erin L Landguth
- Computational Ecology Laboratory, Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Tracy McNew
- Center for Asbestos Related Disease, Libby, Montana, USA
| | - Laura Linker
- Department of Cardiothoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jean Pfau
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, USA
| | - Brad Black
- Center for Asbestos Related Disease, Libby, Montana, USA
| | - Jaime Szeinuk
- Department of Cardiothoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Raja Flores
- Department of Cardiothoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|