1
|
Krajnak K, Farcas M, Richardson D, Hammer MA, Waugh S, McKinney W, Knepp A, Jackson M, Burns D, LeBouf R, Matheson J, Thomas T, Qian Y. Exposure to emissions generated by 3-dimensional printing with polycarbonate: effects on peripheral vascular function, cardiac vascular morphology and expression of markers of oxidative stress in male rat cardiac tissue. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:541-559. [PMID: 38682597 DOI: 10.1080/15287394.2024.2346938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Three-dimensional (3D) printing with polycarbonate (PC) plastic occurs in manufacturing settings, homes, and schools. Emissions generated during printing with PC stock and bisphenol-A (BPA), an endocrine disrupter in PC, may induce adverse health effects. Inhalation of 3D printer emissions, and changes in endocrine function may lead to cardiovascular dysfunction. The goal of this study was to determine whether there were any changes in markers of peripheral or cardiovascular dysfunction in animals exposed to PC-emissions. Male Sprague Dawley rats were exposed to PC-emissions generated by 3D printing for 1, 4, 8, 15 or 30 d. Exposure induced a reduction in the expression of the antioxidant catalase (Cat) and endothelial nitric oxide synthase (eNos). Endothelin and hypoxia-induced factor 1α transcripts increased after 30 d. Alterations in transcription were associated with elevations in immunostaining for estrogen and androgen receptors, nitrotyrosine, and vascular endothelial growth factor in cardiac arteries of PC-emission exposed animals. There was also a reduction eNOS immunostaining in cardiac arteries from rats exposed to PC-emissions. Histological analyses of heart sections revealed that exposure to PC-emissions resulted in vasoconstriction of cardiac arteries and thickening of the vascular smooth muscle wall, suggesting there was a prolonged vasoconstriction. These findings are consistent with studies showing that inhalation 3D-printer emissions affect cardiovascular function. Although BPA levels in animals were relatively low, exposure-induced changes in immunostaining for estrogen and androgen receptors in cardiac arteries suggest that changes in the action of steroid hormones may have contributed to the alterations in morphology and markers of cardiac function.
Collapse
Affiliation(s)
- Kristine Krajnak
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mariana Farcas
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diana Richardson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mary Anne Hammer
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Stacey Waugh
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Alycia Knepp
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mark Jackson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Dru Burns
- Respiratory Health Division, Morgantown, WV, USA
| | - Ryan LeBouf
- Respiratory Health Division, Morgantown, WV, USA
| | | | - Treye Thomas
- Consumer Product Safety Commission, Rockville, MD, USA
| | - Yong Qian
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
2
|
Krajnak K, Warren C, Xu X, Chapman P, Waugh S, Boots T, Welcome D, Dong R. Applied Force Alters Sensorineural and Peripheral Vascular Function in a Rat Model of Hand-Arm Vibration Syndrome. J Occup Environ Med 2024; 66:93-104. [PMID: 37903602 PMCID: PMC10921367 DOI: 10.1097/jom.0000000000002998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
OBJECTIVE This study described the effects of applied force (grip) on vascular and sensorineural function in an animal model of hand-arm vibration syndrome (HAVS). METHODS Rat tails were exposed to 0, 2, or 4 N of applied force 4 hr/d for 10 days. Blood flow and sensitivity to transcutaneous electrical stimulation and pressure were measured. RESULTS Applied force increased blood flow but reduced measures of arterial plasticity. Animals exposed to force tended to be more sensitive to 250-Hz electrical stimulation and pressure applied to the tail. CONCLUSIONS Effects of applied force on blood flow and sensation are different than those of vibration. Studies examining co-exposures to force and vibration will provide data that can be used to determine how these factors affect risk of workers developing vascular and sensorineural dysfunction (ie, HAVS).
Collapse
Affiliation(s)
- Kristine Krajnak
- From the Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Dehghani F, Saeedi H, Khaghani A, Bagherzadeh Cham M. Immediate effects of counterforce brace with and without vibration on pain, muscle strength and range of motion in participants with lateral epicondylitis. A pilot study. Assist Technol 2023; 35:451-459. [PMID: 36036957 DOI: 10.1080/10400435.2022.2116126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 10/15/2022] Open
Abstract
Lateral epicondylitis is one of the most common elbow problems. Counterforce braces are commonly used to manage lateral epicondylitis. Recent studies showed that vibration can decrease pain and increase muscle strength by improving motor abilities. The aim of this study was to evaluate the effects of a counterforce brace with and without vibration on pain, muscular strength, wrist and elbow joints range of motion in the participants with lateral epicondylitis. In this repeated measure pre-post clinical trial study, 28 participants with lateral epicondylitis were included. Pain were measured with Visual Analogue Scale (VAS), wrist and elbow flexor/extensor muscles strength with digital dynamometer, wrist and elbow flexion/extension range of motion with goniometer in 3 condition baseline, counterforce brace and counterforce brace with vibration. Pain using counterforce bracing with vibration showed a significant reduction as compared with baseline and counterforce bracing (P < 0.001). Wrist flexor muscles strength (P = 0.005), elbow flexor/extensor muscles strength respectively (P = 0.04, P = 0.02), wrist flexion/extension range of motion (P < 0.001) following the use of counterforce bracing with vibration increased significantly compared with baseline. The results show that the counterforce bracing with and without vibration relieves pain and improves range of motion and muscles strength in lateral epicondylitis participants, but this improvement is more significant with the use of vibration.
Collapse
Affiliation(s)
- Forough Dehghani
- Department of Orthotics & Prosthetics, Iran University of Medical sciences, Tehran, Iran
| | - Hassan Saeedi
- Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
- Rehabilitation Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Khaghani
- Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Masumeh Bagherzadeh Cham
- Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neuromusculoskeletal Research Center, Department of Physical Medicine and Rehabilitation, School of Medicine, Firoozgar General Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Dong RG, Warren C, Xu XS, Wu JZ, Welcome DE, Waugh S, Krajnak K. A novel rat-tail model for studying human finger vibration health effects. Proc Inst Mech Eng H 2023; 237:890-904. [PMID: 37345449 PMCID: PMC10557186 DOI: 10.1177/09544119231181246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
It has been hypothesized that the biodynamic responses of the human finger tissues to vibration are among the major stimuli that cause vibration health effects. Furthermore, the finger contact pressure can alter these effects. It is difficult to test these hypotheses using human subjects or existing animal models. The objective of this study was to develop a new rat-tail vibration model to investigate the combined effects of vibration and contact pressure and to identify their relationships with the biodynamic responses. Physically, the new exposure system was developed by adding a loading device to an existing rat-tail model. An analytical model of the rat-tail exposure system was proposed and used to formulate the methods for quantifying the biodynamic responses. A series of tests with six tails dissected from rat cadavers were conducted to test and evaluate the new model. The experimental and modeling results demonstrate that the new model behaves as predicted. Unlike the previous model, the vibration strain and stress of the rat tail does not depend primarily on the vibration response of the tail itself but on that of the loading device. This makes it possible to quantify and control the biodynamic responses conveniently and reliably by measuring the loading device response. This study also identified the basic characteristics of the tail biodynamic responses in the exposure system, which can be used to help design the experiments for studying vibration biological effects.
Collapse
Affiliation(s)
- Ren G Dong
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Christopher Warren
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Xueyan S Xu
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - John Z Wu
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Daniel E Welcome
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Stacey Waugh
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Kristine Krajnak
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| |
Collapse
|
5
|
Krajnak K, Waugh S, Welcome D, Xu XS, Warren C, McKinney W, Dong RG. Effects of whole-body vibration on reproductive physiology in a rat model of whole-body vibration. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:953-971. [PMID: 36165131 PMCID: PMC9885295 DOI: 10.1080/15287394.2022.2128954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Findings from epidemiological studies suggest that occupational exposure to whole-body vibration (WBV) may increase the risk of miscarriage and contribute to a reduction in fertility rates in both men and women. However, workers exposed to WBV may also be exposed to other risk factors that contribute to reproductive dysfunction. The goal of this experiment was to examine the effects of WBV on reproductive physiology in a rat model. Male and female rats were exposed to WBV at the resonant frequency of the torso (31.5 Hz, 0.3 g amplitude) for 4 hr/day for 10 days. WBV exposure resulted in a significant reduction in number of developing follicles, and decrease in circulating estradiol concentrations, ovarian luteinizing hormone receptor protein levels, and marked changes in transcript levels for several factors involved in follicular development, cell cycle, and steroidogenesis. In males, WBV resulted in a significant reduction in spermatids and circulating prolactin levels, elevation in number of males having higher circulating testosterone concentrations, and marked alterations in levels of transcripts associated with oxidative stress, inflammation, and factors involved in regulating the cell cycle. Based upon these findings data indicate that occupational exposure to WBV contributes to adverse alterations in reproductive physiology in both genders that may lead to reduction in fertility.
Collapse
Affiliation(s)
- K Krajnak
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - S Waugh
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - D Welcome
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - X S Xu
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - C Warren
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - W McKinney
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - R G Dong
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| |
Collapse
|
6
|
Masud AA, Shen CL, Luk HY, Chyu MC. Impact of Local Vibration Training on Neuromuscular Activity, Muscle Cell, and Muscle Strength: A Review. Crit Rev Biomed Eng 2022; 50:1-17. [PMID: 35997107 DOI: 10.1615/critrevbiomedeng.2022041625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This paper presents a review of studies on the effects of local vibration training (LVT) on muscle strength along with the associated changes in neuromuscular and cell dynamic responses. Application of local/direct vibration can significantly change the structural properties of muscle cell and can improve muscle strength. The improvement is largely dependent on vibration parameters such as amplitude and frequency. The results of 20 clinical studies reveal that electromyography (EMG) and maximal voluntary contraction (MVC) vary depending on vibration frequency, and studies using frequencies of 28-30 Hz reported greater increases in muscle activity in terms of EMG (rms) value and MVC data than the studies using higher frequencies. A greater muscle activity can be related to the recruitment of large motor units due to the application of local vibration. A greater increase in EMG (rms) values for biceps and triceps during extension than flexion under LVT suggests that types of muscles and their functions play an important role. Although a number of clinical trials and animal studies have demonstrated positive effects of vibration on muscle, an optimum training protocol has not been established. An attempt is made in this study to investigate the optimal LVT conditions on different muscles through review and analysis of published results in the literature pertaining to the changes in the neuromuscular activity. Directions for future research are discussed with regard to identifying optimal conditions for LVT and better understanding of the mechanisms associated with effects of vibration on muscles.
Collapse
Affiliation(s)
- Abdullah Al Masud
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Chwan-Li Shen
- Department of Pathology, School of Medicine, Texas Tech University, Lubbock, TX, USA
| | - Hui-Ying Luk
- Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Ming-Chien Chyu
- Department of Pathology, School of Medicine, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
7
|
Dong RG, Wu JZ, Xu XS, Welcome DE, Krajnak K. A Review of Hand-Arm Vibration Studies Conducted by US NIOSH since 2000. VIBRATION 2021; 4:482-528. [PMID: 34414357 PMCID: PMC8371562 DOI: 10.3390/vibration4020030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies on hand-transmitted vibration exposure, biodynamic responses, and biological effects were conducted by researchers at the Health Effects Laboratory Division (HELD) of the National Institute for Occupational Safety and Health (NIOSH) during the last 20 years. These studies are systematically reviewed in this report, along with the identification of areas where additional research is needed. The majority of the studies cover the following aspects: (i) the methods and techniques for measuring hand-transmitted vibration exposure; (ii) vibration biodynamics of the hand-arm system and the quantification of vibration exposure; (iii) biological effects of hand-transmitted vibration exposure; (iv) measurements of vibration-induced health effects; (iv) quantification of influencing biomechanical effects; and (v) intervention methods and technologies for controlling hand-transmitted vibration exposure. The major findings of the studies are summarized and discussed.
Collapse
Affiliation(s)
- Ren G. Dong
- Physical Effects Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - John Z. Wu
- Physical Effects Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Xueyan S. Xu
- Physical Effects Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Daniel E. Welcome
- Physical Effects Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Kristine Krajnak
- Physical Effects Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| |
Collapse
|
8
|
Burnett JK, Choi YT, Li H, Wereley NM, Miller RH, Shim JK. Vibration Suppression of a Composite Prosthetic Foot Using Piezoelectric Shunt Damping: Implications to Vibration-Induced Cumulative Trauma. IEEE Trans Biomed Eng 2021; 68:2741-2751. [PMID: 33476263 DOI: 10.1109/tbme.2021.3053374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Energy-storage-and-return (ESAR) prosthetic feet have improved amputee mobility due to their efficient conversion of strain energy to mechanical work. However, this efficiency is typically achieved using light-weight, high-stiffness materials, which generate high-frequency vibrations that are potentially injurious if transmitted to biological tissues. To reduce the vibration which may cause cumulative tissue trauma, high-frequency vibration suppression by piezoelectric shunt damping patches on a commercial ESAR foot was evaluated. METHODS Two patches with either passive or active shunt circuits were placed on the foot to investigate vibration suppression during experimental tests where a plastic hammer was used to hit a clamped ESAR foot on the free end. Prosthesis bending moments at each modal frequency were obtained by finite element methods to identify piezoelectric patch placement. RESULTS Both shunt circuits decreased vibration amplitudes at specific modes better than the no shunt case, but also increased the amplitude at specific frequencies. The vibration suppression performance of the active shunt circuit deteriorated at the second mode, while the vibration suppression performance of the passive shunt circuit deteriorated at all frequencies above the third mode. CONCLUSIONS These results indicate piezoelectric shunt patches may be a viable strategy for decreasing vibrations of an ESAR foot, with active methods more efficient at suppressing high-frequency vibrations. Additional research is necessary to fine-tune the method for maximal vibration suppression. SIGNIFICANCE Overall, this study indicates that high-frequency vibration suppression is possible using piezoelectric patches, possibly decreasing the cumulative tissue damage that may occur with repetitive exposure to vibration.
Collapse
|
9
|
Krajnak K. Frequency-dependent changes in mitochondrial number and generation of reactive oxygen species in a rat model of vibration-induced injury. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:20-35. [PMID: 31971087 PMCID: PMC7737659 DOI: 10.1080/15287394.2020.1718043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Regular use of vibrating hand tools results in cold-induced vasoconstriction, finger blanching, and a reduction in tactile sensitivity and manual dexterity. Depending upon the length and frequency, vibration induces regeneration, or dysfunction and apoptosis, inflammation and an increase in reactive oxygen species (ROS) levels. These changes may be associated with mitochondria, this study examined the effects of vibration on total and functional mitochondria number. Male rats were exposed to restraint or tail vibration at 62.5, 125, or 250 Hz. The frequency-dependent effects of vibration on mitochondrial number and generation of oxidative stress were examined. After 10 days of exposure at 125 Hz, ventral tail arteries (VTA) were constricted and there was an increase in mitochondrial number and intensity of ROS staining. In the skin, the influence of vibration on arterioles displayed a similar but insignificant response in VTA. There was also a reduction in the number of small nerves with exposure to vibration at 250 Hz, and a reduction in mitochondrial number in nerves in restrained and all vibrated conditions. There was a significant rise in the size of the sensory receptors with vibration at 125 Hz, and an elevation in ROS levels. Based upon these results, mitochondria number and activity are affected by vibration, especially at frequencies at or near resonance. The influence of vibration on the vascular system may either be adaptive or maladaptive. However, the effects on cutaneous nerves might be a precursor to loss of innervation and sensory function noted in workers exposed to vibration.
Collapse
Affiliation(s)
- Kristine Krajnak
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
10
|
Pacurari M, Waugh S, Krajnak K. Acute Vibration Induces Peripheral Nerve Sensitization in a Rat Tail Model: Possible Role of Oxidative Stress and Inflammation. Neuroscience 2018; 398:263-272. [PMID: 30553794 DOI: 10.1016/j.neuroscience.2018.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/20/2022]
Abstract
Prolonged occupational exposure to hand-held vibrating tools leads to pain and reductions in tactile sensitivity, grip strength and manual dexterity. The goal of the current study was to use a rat-tail vibration model to determine how vibration frequency influences factors related to nerve injury and dysfunction. Rats were exposed to restraint, or restraint plus tail vibration at 62.5 Hz or 250 Hz. Nerve function was assessed using the current perception threshold (CPT) test. Exposure to vibration at 62.5 and 250 Hz, resulted in a reduction in the CPT at 2000 and 250-Hz electrical stimulation (i.e. increased Aβ and Aδ, nerve fiber sensitivity). Vibration exposure at 250 Hz also resulted in an increased sensitivity of C-fibers to electrical stimulation and thermal nociception. These changes in nerve fiber sensitivity were associated with increased expression of interleukin (IL)-1β and tumor necrosis factor (TNF)-α in ventral tail nerves, and increases in circulating concentrations of IL-1 β in rats exposed to 250-Hz vibration. There was an increase in glutathione, but no changes in other measures of oxidative activity in the peripheral nerve. However, measures of oxidative stress were increased in the dorsal root ganglia (DRG). These changes in pro-inflammatory factors and markers of oxidative stress in the peripheral nerve and DRG were associated with inflammation, and reductions in myelin basic protein and post-synaptic density protein (PSD)-95 gene expression, suggesting that vibration-induced changes in sensory function may be the result of changes at the exposed nerve, the DRG and/or the spinal cord.
Collapse
Affiliation(s)
- M Pacurari
- Department of Biology, Jackson State University, Jackson, MS 39217, United States
| | - S Waugh
- Engineering and Controls Technology Branch, National Institute for Occupational Safety and Health, Morgantown, WV 26501, United States
| | - K Krajnak
- Engineering and Controls Technology Branch, National Institute for Occupational Safety and Health, Morgantown, WV 26501, United States.
| |
Collapse
|
11
|
Krajnak K, Waugh S. Systemic Effects of Segmental Vibration in an Animal Model of Hand-Arm Vibration Syndrome. J Occup Environ Med 2018; 60:886-895. [PMID: 30020212 PMCID: PMC6173648 DOI: 10.1097/jom.0000000000001396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Epidemiology suggests that occupational exposure to hand-transmitted (segmental) vibration has local and systemic effects. This study used an animal model of segmental vibration to characterize the systemic effects of vibration. METHODS Male Sprague Dawley rats were exposed to tail vibration for 10 days. Genes indicative of inflammation, oxidative stress, and cell cycle, along were measured in the heart, kidney, prostate, and liver. RESULTS Vibration increased oxidative stress and pro-inflammatory gene expression, and decreased anti-oxidant enzymes in heart tissue. In the prostate and liver, vibration resulted in changes in the expression of pro-inflammatory factors and genes involved in cell cycle regulation. CONCLUSIONS These changes are consistent with epidemiological studies suggesting that segmental vibration has systemic effects. These effects may be mediated by changes in autonomic nervous system function, and/or inflammation and oxidative stress.
Collapse
Affiliation(s)
- Kristine Krajnak
- Engineering Controls and Technology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, Washington
| | | |
Collapse
|
12
|
Krajnak K. Health effects associated with occupational exposure to hand-arm or whole body vibration. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:320-334. [PMID: 30583715 PMCID: PMC6415671 DOI: 10.1080/10937404.2018.1557576] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Workers in a number of different occupational sectors are exposed to workplace vibration on a daily basis. This exposure may arise through the use of powered-hand tools or hand-transmitted vibration (HTV). Workers might also be exposed to whole body vibration (WBV) by driving delivery vehicles, earth moving equipment, or through use of tools that generate vibration at low dominant frequencies and high amplitudes, such as jackhammers. Occupational exposure to vibration has been associated with an increased risk of musculoskeletal pain in the back, neck, hands, shoulders, and hips. Occupational exposure may also contribute to the development of peripheral and cardiovascular disorders and gastrointestinal problems. In addition, there are more recent data suggesting that occupational exposure to vibration may enhance the risk of developing certain cancers. The aim of this review is to provide an assessment of the occupations where exposure to vibration is most prevalent, and a description of the adverse health effects associated with occupational exposure to vibration. This review will examine (1) various experimental methods used to measure and describe the characteristics of vibration generated by various tools and vehicles, (2) the etiology of vibration-induced disorders, and (3) how these data were employed to assess and improve intervention strategies and equipment that reduces the transmission of vibration to the body. Finally, there is a discussion of the research gaps that need to be investigated to further reduction in the incidence of vibration-induced illnesses and injuries.
Collapse
Affiliation(s)
- Kristine Krajnak
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| |
Collapse
|
13
|
Krajnak K, Miller GR, Waugh S. Contact area affects frequency-dependent responses to vibration in the peripheral vascular and sensorineural systems. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:6-19. [PMID: 29173119 PMCID: PMC6379067 DOI: 10.1080/15287394.2017.1401022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/01/2017] [Indexed: 05/18/2023]
Abstract
Repetitive exposure to hand-transmitted vibration is associated with development of peripheral vascular and sensorineural dysfunctions. These disorders and symptoms associated with it are referred to as hand-arm vibration syndrome (HAVS). Although the symptoms of the disorder have been well characterized, the etiology and contribution of various exposure factors to development of the dysfunctions are not well understood. Previous studies performed using a rat-tail model of vibration demonstrated that vascular and peripheral nervous system adverse effects of vibration are frequency-dependent, with vibration frequencies at or near the resonant frequency producing the most severe injury. However, in these investigations, the amplitude of the exposed tissue was greater than amplitude typically noted in human fingers. To determine how contact with vibrating source and amplitude of the biodynamic response of the tissue affects the risk of injury occurring, this study compared the influence of frequency using different levels of restraint to assess how maintaining contact of the tail with vibrating source affects the transmission of vibration. Data demonstrated that for the most part, increasing the contact of the tail with the platform by restraining it with additional straps resulted in an enhancement in transmission of vibration signal and elevation in factors associated with vascular and peripheral nerve injury. In addition, there were also frequency-dependent effects, with exposure at 250 Hz generating greater effects than vibration at 62.5 Hz. These observations are consistent with studies in humans demonstrating that greater contact and exposure to frequencies near the resonant frequency pose the highest risk for generating peripheral vascular and sensorineural dysfunction.
Collapse
Affiliation(s)
- Kristine Krajnak
- a Engineering and Controls Technology Branch , National Institute for Occupational Safety and Health Morgantown , Morgantown , WV , USA
| | - G R Miller
- a Engineering and Controls Technology Branch , National Institute for Occupational Safety and Health Morgantown , Morgantown , WV , USA
| | - Stacey Waugh
- a Engineering and Controls Technology Branch , National Institute for Occupational Safety and Health Morgantown , Morgantown , WV , USA
| |
Collapse
|
14
|
Hua Y, Lemerle P, Ganghoffer JF. A two scale modeling and computational framework for vibration-induced Raynaud syndrome. J Mech Behav Biomed Mater 2017; 71:320-328. [PMID: 28391171 DOI: 10.1016/j.jmbbm.2017.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 11/15/2022]
Abstract
Hand-Arm Vibration syndrome (HAVS), usually caused by long-term use of hand-held power tools, can in certain manifestations alter the peripheral blood circulation in the hand-arm region. HAVS typically occurs after exposure to cold, causing an abnormally strong vasoconstriction of blood vessels. A pathoanatomical mechanism suggests that a reduction of the lumen of the blood vessels in VWF (Vibration White Finger) subjects, due to either hypertrophy or thickening of the vessel wall, may be at the origin of the disease. However, the direct and indirect effects of the load of the hand-held tools on the structure of blood vessels remain controversial:.one hypothesis is the mechanical action of vibration on the local acral dysregulation and/or on the vessel histomorphological modifications. Another hypothesis is the participation of the sympathetic nervous system to this dysregulation. In this paper, we assume the modifications as mechanobiological growth and the load-effect relationship may be interpreted as directly or indirectly induced. This work is the first attempt to model the effect of vibration through soft tissues onto the distal capillaries, addressing the double paradigm of multi space-time scales, i.e. low period vibration versus high time constant of the growth phenomenon as well as vibrations propagating in the macroscopic tissue including the microscopic capillary structures subjected to a pathological microstructural evolution. The objective is to lay down the theoretical basis of growth modeling for the small distal artery, with the ability to predict the geometrical and structural changes of the arterial walls caused by vibration exposure. We adopt the key idea of splitting the problem into one global vibration problem at the macroscopic scale and one local growth problem at the micro level. The macroscopic hyperelastic viscous dynamic model of the fingertip cross-section is validated by fitting experimental data. It is then used in steady-state vibration conditions to predict the mechanical fields in the close vicinity of capillaries. The space scale transfer from macroscopic to microscopic levels is ensured by considering a representative volume element (RVE) embedding a single capillary in its center. The vibrations emitted by the hand held power tool are next linked to the capillary growth through the adopted biomechanical growth model at the capillary level. The obtained results show that vibrations induce an increase of the thickness of the capillary's wall, thereby confirming the scenario of vibrations induced reduction of the lumen of blood vessels.
Collapse
Affiliation(s)
- Yue Hua
- INRS, Institut National de Recherche et de Sécurité, 1, rue du Morvan, 54519 Vandœuvre Cedex, France; CNRS, LEMTA, UMR 7563, Université de Lorraine, 2, Avenue de la forêt de Haye, BP 90161, 54505 Vandoeuvre-lès-Nancy, France
| | - Pierre Lemerle
- INRS, Institut National de Recherche et de Sécurité, 1, rue du Morvan, 54519 Vandœuvre Cedex, France
| | - Jean-François Ganghoffer
- CNRS, LEMTA, UMR 7563, Université de Lorraine, 2, Avenue de la forêt de Haye, BP 90161, 54505 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
15
|
Waugh S, Kashon ML, Li S, Miller GR, Johnson C, Krajnak K. Transcriptional Pathways Altered in Response to Vibration in a Model of Hand-Arm Vibration Syndrome. J Occup Environ Med 2016; 58:344-50. [PMID: 27058473 PMCID: PMC4837947 DOI: 10.1097/jom.0000000000000705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The aim of this study was to use an established model of vibration-induced injury to assess frequency-dependent changes in transcript expression in skin, artery, and nerve tissues. METHODS Transcript expression in tissues from control and vibration-exposed rats (4 h/day for 10 days at 62.5, 125, or 250 Hz; 49 m/s, rms) was measured. Transcripts affected by vibration were used in bioinformatics analyses to identify molecular- and disease-related pathways associated with exposure to vibration. RESULTS Analyses revealed that cancer-related pathways showed frequency-dependent changes in activation or inhibition. Most notably, the breast-related cancer-1 pathway was affected. Other pathways associated with breast cancer type 1 susceptibility protein related signaling, or associated with cancer and cell cycle/cell survivability were also affected. CONCLUSION Occupational exposure to vibration may result in DNA damage and alterations in cell signaling pathways that have significant effects on cellular division.
Collapse
Affiliation(s)
- Stacey Waugh
- Engineering Controls and Technology Branch and Biostatistics and Epidemiology Branch (Waugh, Miller, Johnson, Dr Krajnak), and National Institute for Occupational Safety and Health, Morgantown, West Virginia (Drs Kashon, Li)
| | | | | | | | | | | |
Collapse
|
16
|
Krajnak K, Raju SG, Miller GR, Johnson C, Waugh S, Kashon ML, Riley DA. Long-term daily vibration exposure alters current perception threshold (CPT) sensitivity and myelinated axons in a rat-tail model of vibration-induced injury. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:101-111. [PMID: 26852665 DOI: 10.1080/15287394.2015.1104272] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Repeated exposure to hand-transmitted vibration through the use of powered hand tools may result in pain and progressive reductions in tactile sensitivity. The goal of the present study was to use an established animal model of vibration-induced injury to characterize changes in sensory nerve function and cellular mechanisms associated with these alterations. Sensory nerve function was assessed weekly using the current perception threshold test and tail-flick analgesia test in male Sprague-Dawley rats exposed to 28 d of tail vibration. After 28 d of exposure, Aβ fiber sensitivity was reduced. This reduction in sensitivity was partly attributed to structural disruption of myelin. In addition, the decrease in sensitivity was also associated with a reduction in myelin basic protein and 2',3'- cyclic nucleotide phosphodiasterase (CNPase) staining in tail nerves, and an increase in circulating calcitonin gene-related peptide (CGRP) concentrations. Changes in Aβ fiber sensitivity and CGRP concentrations may serve as early markers of vibration-induced injury in peripheral nerves. It is conceivable that these markers may be utilized to monitor sensorineural alterations in workers exposed to vibration to potentially prevent additional injury.
Collapse
Affiliation(s)
- Kristine Krajnak
- a Engineering and Control Technology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| | - Sandya G Raju
- b Department of Cell Biology, Neurobiology & Anatomy , Medical College of Wisconsin , Milwaukee , Wisconsin , USA
| | - G Roger Miller
- a Engineering and Control Technology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| | - Claud Johnson
- a Engineering and Control Technology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| | - Stacey Waugh
- a Engineering and Control Technology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| | - Michael L Kashon
- c Biostatistics and Epidemiology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| | - Danny A Riley
- b Department of Cell Biology, Neurobiology & Anatomy , Medical College of Wisconsin , Milwaukee , Wisconsin , USA
| |
Collapse
|
17
|
Kiedrowski M, Waugh S, Miller R, Johnson C, Krajnak K. The effects of repetitive vibration on sensorineural function: biomarkers of sensorineural injury in an animal model of metabolic syndrome. Brain Res 2015; 1627:216-24. [PMID: 26433044 DOI: 10.1016/j.brainres.2015.09.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 10/23/2022]
Abstract
Exposure to hand-transmitted vibration in the work-place can result in the loss of sensation and pain in workers. These effects may be exacerbated by pre-existing conditions such as diabetes or the presence of primary Raynaud's phenomena. The goal of these studies was to use an established model of vibration-induced injury in Zucker rats. Lean Zucker rats have a normal metabolic profile, while obese Zucker rats display symptoms of metabolic disorder or Type II diabetes. This study examined the effects of vibration in obese and lean rats. Zucker rats were exposed to 4h of vibration for 10 consecutive days at a frequency of 125 Hz and acceleration of 49 m/s(2) for 10 consecutive days. Sensory function was checked using transcutaneous electrical stimulation on days 1, 5 and 9 of the exposure. Once the study was complete the ventral tail nerves, dorsal root ganglia and spinal cord were dissected, and levels of various transcripts involved in sensorineural dysfunction were measured. Sensorineural dysfunction was assessed using transcutaneous electrical stimulation. Obese Zucker rats displayed very few changes in sensorineural function. However they did display significant changes in transcript levels for factors involved in synapse formation, peripheral nerve remodeling, and inflammation. The changes in transcript levels suggested that obese Zucker rats had some level of sensory nerve injury prior to exposure, and that exposure to vibration activated pathways involved in injury and re-innervation.
Collapse
Affiliation(s)
- Megan Kiedrowski
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, USA
| | - Stacey Waugh
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, USA
| | - Roger Miller
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, USA
| | - Claud Johnson
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, USA
| | - Kristine Krajnak
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, USA.
| |
Collapse
|
18
|
Streijger F, Lee JH, Chak J, Dressler D, Manouchehri N, Okon EB, Anderson LM, Melnyk AD, Cripton PA, Kwon BK. The Effect of Whole-Body Resonance Vibration in a Porcine Model of Spinal Cord Injury. J Neurotrauma 2015; 32:908-21. [DOI: 10.1089/neu.2014.3707] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Femke Streijger
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Jae H.T. Lee
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason Chak
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- Deparments of Mechanical Engineering and Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dan Dressler
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- Deparments of Mechanical Engineering and Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Elena B. Okon
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa M. Anderson
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Angela D. Melnyk
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- Deparments of Mechanical Engineering and Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter A. Cripton
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- Deparments of Mechanical Engineering and Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Spine Surgery Institute (VSSI), Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Krajnak K, Waugh S, Johnson C, Miller RG, Welcome D, Xu X, Warren C, Sarkisian S, Andrew M, Dong RG. Antivibration gloves: effects on vascular and sensorineural function, an animal model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:571-82. [PMID: 25965192 PMCID: PMC4700820 DOI: 10.1080/15287394.2015.1014079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Anti-vibration gloves have been used to block the transmission of vibration from powered hand tools to the user, and to protect users from the negative health consequences associated with exposure to vibration. However, there are conflicting reports as to the efficacy of gloves in protecting workers. The goal of this study was to use a characterized animal model of vibration-induced peripheral vascular and nerve injury to determine whether antivibration materials reduced or inhibited the effects of vibration on these physiological symptoms. Rats were exposed to 4 h of tail vibration at 125 Hz with an acceleration 49 m/s(2). The platform was either bare or covered with antivibrating glove material. Rats were tested for tactile sensitivity to applied pressure before and after vibration exposure. One day following the exposure, ventral tail arteries were assessed for sensitivity to vasodilating and vasoconstricting factors and nerves were examined histologically for early indicators of edema and inflammation. Ventral tail artery responses to an α2C-adrenoreceptor agonist were enhanced in arteries from vibration-exposed rats compared to controls, regardless of whether antivibration materials were used or not. Rats exposed to vibration were also less sensitive to pressure after exposure. These findings are consistent with experimental findings in humans suggesting that antivibration gloves may not provide protection against the adverse health consequences of vibration exposure in all conditions. Additional studies need to be done examining newer antivibration materials.
Collapse
Affiliation(s)
- K Krajnak
- a Engineering and Controls Technology Branch , National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang YJ, Huang XL, Yan JW, Wan YN, Wang BX, Tao JH, Chen B, Li BZ, Yang GJ, Wang J. The association between vibration and vascular injury in rheumatic diseases: a review of the literature. Autoimmunity 2014; 48:61-8. [PMID: 25112484 DOI: 10.3109/08916934.2014.947477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vascular manifestations can be seen early in the pathogenesis of inflammatory rheumatic diseases. Animal experiments, laboratory and clinical findings indicated that acute or long-term vibration exposure can induce vascular abnormalities. Recent years, in addition to Raynaud's phenomenon (RP), vibration as a risk factor for other rheumatic diseases has also received corresponding considered. This review is concentrated upon the role of vibration in the disease of systemic sclerosis (SSc). In this review, we are going to discuss the main mechanisms which are thought to be important in pathophysiology of vascular injury under the three broad headings of "vascular", "neural" and "intravascular". Aspects on the vibration and vascular inflammation are briefly discussed. And the epidemiological studies related to vibration studies in SSc and other rheumatic diseases are taken into account.
Collapse
Affiliation(s)
- Yu-Jie Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University , Hefei , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Krajnak K, Waugh S, Miller GR, Johnson C. Recovery of vascular function after exposure to a single bout of segmental vibration. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:1061-9. [PMID: 25072825 PMCID: PMC4505626 DOI: 10.1080/15287394.2014.903813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Work rotation schedules may be used to reduce the negative effects of vibration on vascular function. This study determined how long it takes vascular function to recover after a single exposure to vibration in rats (125 Hz, acceleration 5 g). The responsiveness of rat-tail arteries to the vasoconstricting factor UK14304, an α2C-adrenoreceptor agonist, and the vasodilating factor acetylcholine (ACh) were measured ex vivo 1, 2, 7, or 9 d after exposure to a single bout of vibration. Vasoconstriction induced by UK14304 returned to control levels after 1 d of recovery. However, re-dilation induced by ACh did not return to baseline until after 9 d of recovery. Exposure to vibration exerted prolonged effects on peripheral vascular function, and altered vascular responses to a subsequent exposure. To optimize the positive results of work rotation schedules, it is suggested that studies assessing recovery of vascular function after exposure to a single bout of vibration be performed in humans.
Collapse
Affiliation(s)
- Kristine Krajnak
- a Engineering and Controls Technology Branch , Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| | | | | | | |
Collapse
|
22
|
KRAJNAK KM, WAUGH S, JOHNSON C, MILLER GR, XU X, WARREN C, DONG RG. The effects of impact vibration on peripheral blood vessels and nerves. INDUSTRIAL HEALTH 2013; 51:572-80. [PMID: 24077447 PMCID: PMC4202742 DOI: 10.2486/indhealth.2012-0193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 07/30/2013] [Indexed: 05/03/2023]
Abstract
Research regarding the risk of developing hand-arm vibration syndrome after exposure to impact vibration has produced conflicting results. This study used an established animal model of vibration-induced dysfunction to determine how exposure to impact vibration affects peripheral blood vessels and nerves. The tails of male rats were exposed to a single bout of impact vibration (15 min exposure, at a dominant frequency of 30 Hz and an unweighted acceleration of approximately 345 m/s(2)) generated by a riveting hammer. Responsiveness of the ventral tail artery to adrenoreceptor-mediated vasoconstriction and acetylcholine-mediated re-dilation was measured ex vivo. Ventral tail nerves and nerve endings in the skin were assessed using morphological and immunohistochemical techniques. Impact vibration did not alter vascular responsiveness to any factors or affect trunk nerves. However, 4 days following exposure there was an increase in protein-gene product (PGP) 9.5 staining around hair follicles. A single exposure to impact vibration, with the exposure characteristics described above, affects peripheral nerves but not blood vessels.
Collapse
Affiliation(s)
- Kristine M. KRAJNAK
- Engineering and Controls Technology Branch, National
Institutes for Occupational Safety and Health, USA
| | - Stacey WAUGH
- Engineering and Controls Technology Branch, National
Institutes for Occupational Safety and Health, USA
| | - Claud JOHNSON
- Engineering and Controls Technology Branch, National
Institutes for Occupational Safety and Health, USA
| | - G. Roger MILLER
- Engineering and Controls Technology Branch, National
Institutes for Occupational Safety and Health, USA
| | - Xueyan XU
- Engineering and Controls Technology Branch, National
Institutes for Occupational Safety and Health, USA
| | - Christopher WARREN
- Engineering and Controls Technology Branch, National
Institutes for Occupational Safety and Health, USA
| | - Ren G. DONG
- Engineering and Controls Technology Branch, National
Institutes for Occupational Safety and Health, USA
| |
Collapse
|
23
|
Characterization of Frequency-Dependent Responses of the Vascular System to Repetitive Vibration. J Occup Environ Med 2012. [DOI: 10.1097/jom.0b013e318270d560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|