1
|
Ying Y, Ju R, Wang J, Li W, Ji Y, Shi Z, Chen J, Chen M. Accuracy of machine learning in diagnosing microsatellite instability in gastric cancer: A systematic review and meta-analysis. Int J Med Inform 2025; 193:105685. [PMID: 39515046 DOI: 10.1016/j.ijmedinf.2024.105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Significant challenges persist in the early identification of microsatellite instability (MSI) within current clinical practice. In recent years, with the growing utilization of machine learning (ML) in the diagnosis and management of gastric cancer (GC), numerous researchers have explored the effectiveness of ML methodologies in detecting MSI. Nevertheless, the predictive value of these approaches still lacks comprehensive evidence. Accordingly, this study was carried out to consolidate the accuracy of ML in the prompt detection of MSI in GC. METHODS PubMed, the Cochrane Library, the Web of Science, and Embase were retrieved up to March 20, 2024. The risk of bias in the encompassed studies was evaluated utilizing a risk assessment tool for predictive models. Models were then subjected to subgroup analysis based on the modeling variables. RESULTS A total of 12 studies, encompassing 11,912 patients with GC, satisfied the predefined inclusion criteria. ML models established in these studies were primarily based on pathological images, clinical features, and radiomics. The results suggested that in the validation sets, the pathological image-based models had a synthesized c-index of 0.86 [95 % CI (0.83-0.89)], with sensitivity and specificity being 0.86 [95 % CI (0.76-0.92)] and 0.83 [95 % CI (0.78-0.87)], respectively; radiomics feature-based models achieved respective values of 0.87 [95 % CI (0.81-0.92)], 0.77 [95 % CI (0.70-0.83)] and 0.81 [95 % CI (0.74-0.87)]; radiomics feature-based models + clinical feature-based models achieved respective values of 0.87 [95 % CI (0.81-0.93)], 0.78 [95 % CI (0.70-0.84)] and 0.79 [95 % CI (0.69-0.86)]. CONCLUSIONS ML has demonstrated optimal performance in detecting MSI in GC and could serve as a prospective early adjunctive detection tool for MSI in GC. Future research should contemplate minimally invasive or non-invasive, readily collectible, and efficient predictors to augment the predictive accuracy of ML.
Collapse
Affiliation(s)
- Yuou Ying
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Ruyi Ju
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Jieyi Wang
- The Basic Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Wenkai Li
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Yuan Ji
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Zhenyu Shi
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Jinhan Chen
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Mingxian Chen
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Street Gucui No. 234, Region Xihu, Hangzhou 310012, Zhejiang Province, China.
| |
Collapse
|
2
|
Chen J, Liu S, Lin Y, Hu W, Shi H, Liao N, Zhou M, Gao W, Chen Y, Shi P. The quality and accuracy of radiomics model in diagnosing osteoporosis: a systematic review and meta-analysis. Acad Radiol 2024:S1076-6332(24)00940-1. [PMID: 39701845 DOI: 10.1016/j.acra.2024.11.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
RATIONALE AND OBJECTIVES The purpose of this study is to conduct a meta-analysis to evaluate the diagnostic performance of current radiomics models for diagnosing osteoporosis, as well as to assess the methodology and reporting quality of these radiomics studies. METHODS According to PRISMA guidelines, four databases including MEDLINE, Web of Science, Embase and the Cochrane Library were searched systematically to select relevant studies published before July 18, 2024. The articles that used radiomics models for diagnosing osteoporosis were considered eligible. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool and radiomics quality score (RQS) were used to assess the quality of included studies. The pooled diagnostic odds ratio (DOR), sensitivity, specificity, area under the summary receiver operator characteristic curve (AUC) were calculated to estimated diagnostic efficiency of pooled model. RESULTS A total of 25 studies were included, of which 24 provided usable data that were utilized for the meta-analysis, including 1553 patients with osteoporosis and 2200 patients without osteoporosis. The mean RQS score of included studies was 11.48 ± 4.92, with an adherence rate of 31.89%. The pooled DOR, sensitivity and specificity for model to diagnose osteoporosis were 81.72 (95% CI: 51.08 - 130.73), 0.90 (95% CI: 0.87-0.93) and 0.90 (95% CI: 0.87-0.93), respectively. The AUC was 0.96, indicating a high diagnostic capability. Subgroup analysis revealed that the use of different imaging modalities to construct radiomics models might be one source of heterogeneity. Radiomics models built using CT images and deep learning algorithms demonstrated higher diagnostic accuracy for osteoporosis. CONCLUSION Radiomics models for the diagnosis of osteoporosis have high diagnostic efficacy. In the future, radiomics models for diagnosing osteoporosis will be an efficient instrument to assist clinical doctors in screening osteoporosis patients. However, relevant guidelines should be followed strictly to improve the quality of radiomics studies.
Collapse
Affiliation(s)
- Jianan Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Song Liu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Youxi Lin
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Wenjun Hu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Huihong Shi
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Nianchun Liao
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Miaomiao Zhou
- Department of Endocrinology, People's Hospital of Dingbian, Dingbian, Shanxi, PR China (M.Z.)
| | - Wenjie Gao
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Yanbo Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Peijie Shi
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China (P.S.).
| |
Collapse
|
3
|
Tu L, Deng Y, Chen Y, Luo Y. Accuracy of deep learning in the differential diagnosis of coronary artery stenosis: a systematic review and meta-analysis. BMC Med Imaging 2024; 24:243. [PMID: 39285323 PMCID: PMC11403958 DOI: 10.1186/s12880-024-01403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/19/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND In recent years, as deep learning has received widespread attention in the field of heart disease, some studies have explored the potential of deep learning based on coronary angiography (CAG) or coronary CT angiography (CCTA) images in detecting the extent of coronary artery stenosis. However, there is still a lack of a systematic understanding of its diagnostic accuracy, impeding the advancement of intelligent diagnosis of coronary artery stenosis. Therefore, we conducted this study to review the accuracy of image-based deep learning in detecting coronary artery stenosis. METHODS We retrieved PubMed, Cochrane, Embase, and Web of Science until April 11, 2023. The risk of bias in the included studies was appraised using the QUADAS-2 tool. We extracted the accuracy of deep learning in the test set and performed subgroup analyses by binary and multiclass classification scenarios. We performed a subgroup analysis based on different degrees of stenosis and applied a double arcsine transformation to process the data. The analysis was done by using R. RESULTS Our systematic review finally included 18 studies, involving 3568 patients and 13,362 images. In the included studies, deep learning models were constructed based on CAG and CCTA. In binary classification tasks, the accuracy for detecting > 25%, > 50% and > 70% degrees of stenosis at the vessel level were 0.81 (95% CI: 0.71-0.85), 0.73 (95% CI: 0.58-0.88) and 0.61 (95% CI: 0.56-0.65), respectively. In multiclass classification tasks, the accuracy for detecting 0-25%, 25-50%, 50-70%, and 70-100% degrees of stenosis at the vessel level were 0.78 (95% CI: 0.73-0.84), 0.86 (95% CI: 0.78-0.93), 0.83 (95% CI: 0.70-0.97), and 0.70 (95% CI: 0.42-0.98), respectively. CONCLUSIONS Our study shows that deep learning models based on CAG and CCTA appear to be relatively accurate in diagnosing different degrees of coronary artery stenosis. However, for various degrees of stenosis, their accuracy still needs to be further improved.
Collapse
Affiliation(s)
- Li Tu
- Department of Cardiovascular Diseases, The First Branch, The First Affiliated Hospital of Chongqing Medical University, No. 191 Renmin Road, Yuzhong District, Chongqing, 400012, China.
| | - Ying Deng
- Department of Cardiovascular Diseases, The First Branch, The First Affiliated Hospital of Chongqing Medical University, No. 191 Renmin Road, Yuzhong District, Chongqing, 400012, China
| | - Yun Chen
- Department of Cardiovascular Diseases, The First Branch, The First Affiliated Hospital of Chongqing Medical University, No. 191 Renmin Road, Yuzhong District, Chongqing, 400012, China
| | - Yi Luo
- Department of Cardiovascular Diseases, The First Branch, The First Affiliated Hospital of Chongqing Medical University, No. 191 Renmin Road, Yuzhong District, Chongqing, 400012, China
| |
Collapse
|
4
|
Wang JL, Tang LS, Zhong X, Wang Y, Feng YJ, Zhang Y, Liu JY. A machine learning radiomics based on enhanced computed tomography to predict neoadjuvant immunotherapy for resectable esophageal squamous cell carcinoma. Front Immunol 2024; 15:1405146. [PMID: 38947338 PMCID: PMC11211602 DOI: 10.3389/fimmu.2024.1405146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Background Patients with resectable esophageal squamous cell carcinoma (ESCC) receiving neoadjuvant immunotherapy (NIT) display variable treatment responses. The purpose of this study is to establish and validate a radiomics based on enhanced computed tomography (CT) and combined with clinical data to predict the major pathological response to NIT in ESCC patients. Methods This retrospective study included 82 ESCC patients who were randomly divided into the training group (n = 57) and the validation group (n = 25). Radiomic features were derived from the tumor region in enhanced CT images obtained before treatment. After feature reduction and screening, radiomics was established. Logistic regression analysis was conducted to select clinical variables. The predictive model integrating radiomics and clinical data was constructed and presented as a nomogram. Area under curve (AUC) was applied to evaluate the predictive ability of the models, and decision curve analysis (DCA) and calibration curves were performed to test the application of the models. Results One clinical data (radiotherapy) and 10 radiomic features were identified and applied for the predictive model. The radiomics integrated with clinical data could achieve excellent predictive performance, with AUC values of 0.93 (95% CI 0.87-0.99) and 0.85 (95% CI 0.69-1.00) in the training group and the validation group, respectively. DCA and calibration curves demonstrated a good clinical feasibility and utility of this model. Conclusion Enhanced CT image-based radiomics could predict the response of ESCC patients to NIT with high accuracy and robustness. The developed predictive model offers a valuable tool for assessing treatment efficacy prior to initiating therapy, thus providing individualized treatment regimens for patients.
Collapse
Affiliation(s)
- Jia-Ling Wang
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Lian-Sha Tang
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xia Zhong
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Wang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yu-Jie Feng
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yun Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ji-Yan Liu
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Abbaspour E, Karimzadhagh S, Monsef A, Joukar F, Mansour-Ghanaei F, Hassanipour S. Application of radiomics for preoperative prediction of lymph node metastasis in colorectal cancer: a systematic review and meta-analysis. Int J Surg 2024; 110:3795-3813. [PMID: 38935817 PMCID: PMC11175807 DOI: 10.1097/js9.0000000000001239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/19/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) stands as the third most prevalent cancer globally, projecting 3.2 million new cases and 1.6 million deaths by 2040. Accurate lymph node metastasis (LNM) detection is critical for determining optimal surgical approaches, including preoperative neoadjuvant chemoradiotherapy and surgery, which significantly influence CRC prognosis. However, conventional imaging lacks adequate precision, prompting exploration into radiomics, which addresses this shortfall by converting medical images into reproducible, quantitative data. METHODS Following PRISMA, Supplemental Digital Content 1 (http://links.lww.com/JS9/C77) and Supplemental Digital Content 2 (http://links.lww.com/JS9/C78), and AMSTAR-2 guidelines, Supplemental Digital Content 3 (http://links.lww.com/JS9/C79), we systematically searched PubMed, Web of Science, Embase, Cochrane Library, and Google Scholar databases until 11 January 2024, to evaluate radiomics models' diagnostic precision in predicting preoperative LNM in CRC patients. The quality and bias risk of the included studies were assessed using the Radiomics Quality Score (RQS) and the modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Subsequently, statistical analyses were conducted. RESULTS Thirty-six studies encompassing 8039 patients were included, with a significant concentration in 2022-2023 (20/36). Radiomics models predicting LNM demonstrated a pooled area under the curve (AUC) of 0.814 (95% CI: 0.78-0.85), featuring sensitivity and specificity of 0.77 (95% CI: 0.69, 0.84) and 0.73 (95% CI: 0.67, 0.78), respectively. Subgroup analyses revealed similar AUCs for CT and MRI-based models, and rectal cancer models outperformed colon and colorectal cancers. Additionally, studies utilizing cross-validation, 2D segmentation, internal validation, manual segmentation, prospective design, and single-center populations tended to have higher AUCs. However, these differences were not statistically significant. Radiologists collectively achieved a pooled AUC of 0.659 (95% CI: 0.627, 0.691), significantly differing from the performance of radiomics models (P<0.001). CONCLUSION Artificial intelligence-based radiomics shows promise in preoperative lymph node staging for CRC, exhibiting significant predictive performance. These findings support the integration of radiomics into clinical practice to enhance preoperative strategies in CRC management.
Collapse
Affiliation(s)
- Elahe Abbaspour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Sahand Karimzadhagh
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Abbas Monsef
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
6
|
Feng F, Chu Y, Yao Y, Xu B, Song Q. An anoikis-related lncRNA signature may predict the prognosis, immune infiltration, and drug sensitivity in esophageal cancer. Heliyon 2024; 10:e31202. [PMID: 38803953 PMCID: PMC11128934 DOI: 10.1016/j.heliyon.2024.e31202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Background Esophageal cancer (EC) is a prevalent malignancy with heterogeneous outcomes. This study explores the significance of anoikis-related long non-coding RNAs (lncRNAs) in EC, aiming to unravel their molecular roles and clinical implications. Methods Transcriptome and clinical data were obtained from TCGA database for EC samples. We identified anoikis-related genes and lncRNAs by Pearson correlation analysis. The risk score model hinged on prognostic lncRNAs filtered from multiple steps. Risk scores were calculated using the derived formula, and categorized patients into low- and high-risk groups. Model robustness was assessed through Kaplan-Meier (KM) survival analysis and Receiver Operating Characteristic (ROC) curve, with clinical utility achieved via a constructed nomogram. We also explored the interplay between the risk score and immune cell infiltration, and investigated drug sensitivity. Results We identified 2365 anoikis-related lncRNAs through co-expression analysis, including 1415 significant lncRNAs differentially expressed between normal and tumor samples. A risk score model was constructed from ten prognostic lncRNAs. The risk score model effectively stratified patients based on the median score, and its predictive capacity was validated through KM survival, ROC curve analyses, and the external GSE53622 dataset. The nomogram provided a practical tool for individualized prognosis evaluation. We unveiled significant correlations between specific immune cell subsets and the risk score. Eosinophils and common lymphoid progenitors exhibited positive associations, while endothelial cells and myeloid dendritic cells showed negative correlations. Drug sensitivity analysis revealed potential sensitive drugs for EC treatment that aligned with the risk subgroups. Conclusion This study established an anoikis-related lncRNAs risk score model that may predict the prognosis, immune infiltration, and drug sensitivity in EC, in hope of facilitating tailored patient management.
Collapse
Affiliation(s)
- Fan Feng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Yuxin Chu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| |
Collapse
|
7
|
Zhu C, Sun W, Chen C, Qiu Q, Wang S, Song Y, Ma X. Prediction of malignant esophageal fistula in esophageal cancer using a radiomics-clinical nomogram. Eur J Med Res 2024; 29:217. [PMID: 38570887 PMCID: PMC10993504 DOI: 10.1186/s40001-024-01746-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 02/25/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Malignant esophageal fistula (MEF), which occurs in 5% to 15% of esophageal cancer (EC) patients, has a poor prognosis. Accurate identification of esophageal cancer patients at high risk of MEF is challenging. The goal of this study was to build and validate a model to predict the occurrence of esophageal fistula in EC patients. METHODS This study retrospectively enrolled 122 esophageal cancer patients treated by chemotherapy or chemoradiotherapy (53 with fistula, 69 without), and all patients were randomly assigned to a training (n = 86) and a validation (n = 36) cohort. Radiomic features were extracted from pre-treatment CTs, clinically predictors were identified by logistic regression analysis. Lasso regression model was used for feature selection, and radiomics signature building. Multivariable logistic regression analysis was used to develop the clinical nomogram, radiomics-clinical nomogram and radiomics prediction model. The models were validated and compared by discrimination, calibration, reclassification, and clinical benefit. RESULTS The radiomic signature consisting of ten selected features, was significantly associated with esophageal fistula (P = 0.001). Radiomics-clinical nomogram was created by two predictors including radiomics signature and stenosis, which was identified by logistic regression analysis. The model showed good discrimination with an AUC = 0.782 (95% CI 0.684-0.8796) in the training set and 0.867 (95% CI 0.7461-0.987) in the validation set, with an AIC = 101.1, and good calibration. When compared to the clinical prediction model, the radiomics-clinical nomogram improved NRI by 0.236 (95% CI 0.153, 0.614) and IDI by 0.125 (95% CI 0.040, 0.210), P = 0.004. CONCLUSION We developed and validated the first radiomics-clinical nomogram for malignant esophageal fistula, which could assist clinicians in identifying patients at high risk of MEF.
Collapse
Affiliation(s)
- Chao Zhu
- School of Basic Medicine, Qingdao University, Qingdao, 266000, China
- Department of Oncology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, 266042, China
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, 250117, China
| | - Wenju Sun
- Department of Oncology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, 266042, China
| | - Cunhai Chen
- Department of Oncology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, 266042, China
| | - Qingtao Qiu
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, 250117, China
| | - Shuai Wang
- Department of Radiation Oncology, Affiliated Hospital of Weifang Medical University, Weifang, 261000, China
| | - Yang Song
- School of Basic Medicine, Qingdao University, Qingdao, 266000, China.
| | - Xuezhen Ma
- Department of Oncology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, 266042, China.
| |
Collapse
|
8
|
Yang Z, Guan F, Bronk L, Zhao L. Multi-omics approaches for biomarker discovery in predicting the response of esophageal cancer to neoadjuvant therapy: A multidimensional perspective. Pharmacol Ther 2024; 254:108591. [PMID: 38286161 DOI: 10.1016/j.pharmthera.2024.108591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024]
Abstract
Neoadjuvant chemoradiotherapy (NCRT) followed by surgery has been established as the standard treatment strategy for operable locally advanced esophageal cancer (EC). However, achieving pathologic complete response (pCR) or near pCR to NCRT is significantly associated with a considerable improvement in survival outcomes, while pCR patients may help organ preservation for patients by active surveillance to avoid planned surgery. Thus, there is an urgent need for improved biomarkers to predict EC chemoradiation response in research and clinical settings. Advances in multiple high-throughput technologies such as next-generation sequencing have facilitated the discovery of novel predictive biomarkers, specifically based on multi-omics data, including genomic/transcriptomic sequencings and proteomic/metabolomic mass spectra. The application of multi-omics data has shown the benefits in improving the understanding of underlying mechanisms of NCRT sensitivity/resistance in EC. Particularly, the prominent development of artificial intelligence (AI) has introduced a new direction in cancer research. The integration of multi-omics data has significantly advanced our knowledge of the disease and enabled the identification of valuable biomarkers for predicting treatment response from diverse dimension levels, especially with rapid advances in biotechnological and AI methodologies. Herein, we summarize the current status of research on the use of multi-omics technologies in predicting NCRT response for EC patients. Current limitations, challenges, and future perspectives of these multi-omics platforms will be addressed to assist in experimental designs and clinical use for further integrated analysis.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 15 West Changle Road, Xi'an, China
| | - Fada Guan
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, United States of America
| | - Lawrence Bronk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Lina Zhao
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 15 West Changle Road, Xi'an, China.
| |
Collapse
|
9
|
Sun S, Yao W, Wang Y, Yue P, Guo F, Deng X, Zhang Y. Development and validation of machine-learning models for the difficulty of retroperitoneal laparoscopic adrenalectomy based on radiomics. Front Endocrinol (Lausanne) 2023; 14:1265790. [PMID: 38034013 PMCID: PMC10687448 DOI: 10.3389/fendo.2023.1265790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Objective The aim is to construct machine learning (ML) prediction models for the difficulty of retroperitoneal laparoscopic adrenalectomy (RPLA) based on clinical and radiomic characteristics and to validate the models. Methods Patients who had undergone RPLA at Shanxi Bethune Hospital between August 2014 and December 2020 were retrospectively gathered. They were then randomly split into a training set and a validation set, maintaining a ratio of 7:3. The model was constructed using the training set and validated using the validation set. Furthermore, a total of 117 patients were gathered between January and December 2021 to form a prospective set for validation. Radiomic features were extracted by drawing the region of interest using the 3D slicer image computing platform and Python. Key features were selected through LASSO, and the radiomics score (Rad-score) was calculated. Various ML models were constructed by combining Rad-score with clinical characteristics. The optimal models were selected based on precision, recall, the area under the curve, F1 score, calibration curve, receiver operating characteristic curve, and decision curve analysis in the training, validation, and prospective sets. Shapley Additive exPlanations (SHAP) was used to demonstrate the impact of each variable in the respective models. Results After comparing the performance of 7 ML models in the training, validation, and prospective sets, it was found that the RF model had a more stable predictive performance, while xGBoost can significantly benefit patients. According to SHAP, the variable importance of the two models is similar, and both can reflect that the Rad-score has the most significant impact. At the same time, clinical characteristics such as hemoglobin, age, body mass index, gender, and diabetes mellitus also influenced the difficulty. Conclusion This study constructed ML models for predicting the difficulty of RPLA by combining clinical and radiomic characteristics. The models can help surgeons evaluate surgical difficulty, reduce risks, and improve patient benefits.
Collapse
Affiliation(s)
- Shiwei Sun
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Wei Yao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yue Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Peng Yue
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Fuyu Guo
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaoqian Deng
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yangang Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|