1
|
Liu YT, Wu HL, Su YD, Wang Y, Li Y. Development in the Study of Natural Killer Cells for Malignant Peritoneal Mesothelioma Treatment. Cancer Biother Radiopharm 2024; 39:551-561. [PMID: 39093850 DOI: 10.1089/cbr.2024.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Malignant peritoneal mesothelioma (MPeM) is a rare primary malignant tumor originating from peritoneal mesothelial cells. Insufficient specificity of the symptoms and their frequent reappearance following surgery make it challenging to diagnose, creating a need for more efficient treatment options. Natural killer cells (NK cells) are part of the innate immune system and are classified as lymphoid cells. Under the regulation of activating and inhibiting receptors, NK cells secrete various cytokines to exert cytotoxic effects and participate in antiforeign body, antiviral, and antitumor activities. This review provides a comprehensive summary of the specific alterations observed in NK cells following MPeM treatment, including changes in cell number, subpopulation distribution, active receptors, and cytotoxicity. In addition, we summarize the impact of various therapeutic interventions, such as chemotherapy, immunotherapy, and targeted therapy, on NK cell function post-MPeM treatment.
Collapse
Affiliation(s)
- Yi-Tong Liu
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - He-Liang Wu
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Yan-Dong Su
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yi Wang
- Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Li
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Surgical Oncology, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Vannucchi M, Pennati V, Mencaroni C, Defraia C, Bardhi L, Castiglione F, Bellan C, Comin CE. KRAS Mutations Are Associated with Shortened Survival in Patients with Epithelioid Malignant Pleural Mesothelioma. Cancers (Basel) 2023; 15:cancers15072072. [PMID: 37046732 PMCID: PMC10093256 DOI: 10.3390/cancers15072072] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive malignancy of the pleural surface that includes three major histologic subtypes, epitheliod, sarcomatoid and biphasic. Epithelioid mesothelioma is usually associated with better prognosis. The genetic mechanisms driving MPM, the possible target mutations and the correlation with overall survival remain largely unsettled. We performed target exome sequencing in 29 cases of MPM aimed at identifying somatic mutations and, eventually, their correlation with phenotypic traits and prognostic significance. We found that KRAS mutations, occurring in 13.7% of cases, were associated with shortened median survival (7.6 versus 32.6 months in KRAS wild-type; p = 0.005), as it was the occurrence of any ≥3 mutations (7.6 versus 37.6 months; p = 0.049). Conversely, the presence of KDR single nucleotide polymorphism p.V297I (rs2305948) resulted in a favorable variable for survival (NR versus 23.4 months; p = 0.026). With the intrinsic limitations of a small number of cases and patient heterogeneity, results of this study contribute to the characterization of the mutation profile of MPM and the impact of selected somatic mutations, and possibly KDR polymorphism, on prognosis.
Collapse
Affiliation(s)
- Margherita Vannucchi
- Section of Pathology, Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
- Correspondence:
| | - Veronica Pennati
- Division of Pathological anatomy, Department of Medical and Surgical Critical Care, University of Florence, 50121 Florence, Italy
| | - Clelia Mencaroni
- Division of Pathological anatomy, Department of Medical and Surgical Critical Care, University of Florence, 50121 Florence, Italy
| | - Chiara Defraia
- Section of Pathology, Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Ledi Bardhi
- Section of Pathology, Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Francesca Castiglione
- Division of Pathological anatomy, Department of Medical and Surgical Critical Care, University of Florence, 50121 Florence, Italy
| | - Cristiana Bellan
- Section of Pathology, Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Camilla Eva Comin
- Department of Experimental and Clinical Medicine, Section of Surgery, Histopathology and Molecular Pathology, University of Florence, 50121 Florence, Italy
| |
Collapse
|
3
|
Filetti V, Lombardo C, Loreto C, Dounias G, Bracci M, Matera S, Rapisarda L, Rapisarda V, Ledda C, Vitale E. Small RNA-Seq Transcriptome Profiling of Mesothelial and Mesothelioma Cell Lines Revealed microRNA Dysregulation after Exposure to Asbestos-like Fibers. Biomedicines 2023; 11:biomedicines11020538. [PMID: 36831074 PMCID: PMC9953340 DOI: 10.3390/biomedicines11020538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Environmental exposure to fibers of respirable size has been identified as a risk for public health. Experimental evidence has revealed that a variety of fibers, including fluoro-edenite, can develop chronic respiratory diseases and elicit carcinogenic effects in humans. Fluoro-edenite (FE) is a silicate mineral first found in Biancavilla (Sicily, Italy) in 1997. Environmental exposure to its fibers has been correlated with a cluster of malignant pleural mesotheliomas. This neoplasm represents a public health problem due to its long latency and to its aggression not alerted by specific symptoms. Having several biomarkers providing us with data on the health state of those exposed to FE fibers or allowing an early diagnosis on malignant pleural mesothelioma, still asymptomatic patients, would be a remarkable goal. To these purposes, we reported the miRNA transcriptome in human normal mesothelial cell line (MeT-5A) and in the human malignant mesothelioma cell line (JU77) exposed and not exposed to FE fibers. The results showed a difference in the number of deregulated miRNAs between tumor and nontumor samples both exposed and not exposed to FE fibers. As a matter of fact, the effect of exposure to FE fibers is more evident in the expression of miRNA in the tumor samples than in the nontumor samples. In the present paper, several pathways involved in the pathogenesis of malignant pleural mesothelioma have been analyzed. We especially noticed the involvement of pathways that have important functions in inflammatory processes, angiogenesis, apoptosis, and necrosis. Besides this amount of data, further studies will be designed for the selection of the most significant miRNAs to test and validate their diagnostic potential, alone or in combination with other protein biomarkers, in high-risk individuals' liquid biopsy to have a noninvasive tool of diagnosis for this neoplasm.
Collapse
Affiliation(s)
- Veronica Filetti
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Claudia Lombardo
- Human Anatomy, Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, 95123 Catania, Italy
| | - Carla Loreto
- Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - George Dounias
- Department of Occupational and Environmental Health, University of West Attica, 10563 Athens, Greece
| | - Massimo Bracci
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Serena Matera
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Lucia Rapisarda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Venerando Rapisarda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Correspondence:
| | - Caterina Ledda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Ermanno Vitale
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
4
|
MEK1 drives oncogenic signaling and interacts with PARP1 for genomic and metabolic homeostasis in malignant pleural mesothelioma. Cell Death Discov 2023; 9:55. [PMID: 36765038 PMCID: PMC9918536 DOI: 10.1038/s41420-023-01307-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 02/12/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a lethal malignancy etiologically caused by asbestos exposure, for which there are few effective treatment options. Although asbestos carcinogenesis is associated with reactive oxygen species (ROS), the bona fide oncogenic signaling pathways that regulate ROS homeostasis and bypass ROS-evoked apoptosis in MPM are poorly understood. In this study, we demonstrate that the mitogen-activated protein kinase (MAPK) pathway RAS-RAF-MEK-ERK is hyperactive and a molecular driver of MPM, independent of histological subtypes and genetic heterogeneity. Suppression of MAPK signaling by clinically approved MEK inhibitors (MEKi) elicits PARP1 to protect MPM cells from the cytotoxic effects of MAPK pathway blockage. Mechanistically, MEKi induces impairment of homologous recombination (HR) repair proficiency and mitochondrial metabolic activity, which is counterbalanced by pleiotropic PARP1. Consequently, the combination of MEK with PARP inhibitors enhances apoptotic cell death in vitro and in vivo that occurs through coordinated upregulation of cytotoxic ROS in MPM cells, suggesting a mechanism-based, readily translatable strategy to treat this daunting disease. Collectively, our studies uncover a previously unrecognized scenario that hyperactivation of the MAPK pathway is an essential feature of MPM and provide unprecedented evidence that MAPK signaling cooperates with PARP1 to homeostatically maintain ROS levels and escape ROS-mediated apoptosis.
Collapse
|
5
|
KRAS Pathway Alterations in Malignant Pleural Mesothelioma: An Underestimated Player. Cancers (Basel) 2022; 14:cancers14174303. [PMID: 36077838 PMCID: PMC9454618 DOI: 10.3390/cancers14174303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Malignant pleural mesothelioma (MPM) is a rare, incurable cancer. KRAS pathway alterations are frequent in human MPM but have been likely underestimated by next generation sequencing studies. Abstract Malignant pleural mesothelioma (MPM) is a rare, incurable cancer of the mesothelial cells lining the lungs and the chest wall that is mainly caused by asbestos inhalation. The molecular mechanisms of mesothelial carcinogenesis are still unclear despite comprehensive studies of the mutational landscape of MPM, and the most frequently mutated genes BAP1, NF2, CDKN2A, TP53, and TSC1 cannot cause MPM in mice in a standalone fashion. Although KRAS pathway alterations were sporadically detected in older studies employing targeted sequencing, they have been largely undetected by next generation sequencing. We recently identified KRAS mutations and copy number alterations in a significant proportion of MPM patients. Here, we review and analyze multiple human datasets and the published literature to show that, in addition to KRAS, multiple other genes of the KRAS pathway are perturbed in a significant proportion of patients with MPM.
Collapse
|
6
|
Filetti V, La Ferlita A, Di Maria A, Cardile V, Graziano ACE, Rapisarda V, Ledda C, Pulvirenti A, Loreto C. Dysregulation of microRNAs and tRNA-derived ncRNAs in mesothelial and mesothelioma cell lines after asbestiform fiber exposure. Sci Rep 2022; 12:9181. [PMID: 35654808 PMCID: PMC9163335 DOI: 10.1038/s41598-022-13044-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/19/2022] [Indexed: 11/09/2022] Open
Abstract
Experimental evidence demonstrated that fluoro-edenite (FE) can develop chronic respiratory diseases and elicit carcinogenic effects. Environmental exposure to FE fibers is correlated with malignant pleural mesothelioma (MPM). An early diagnosis of MPM, and a comprehensive health monitoring of the patients exposed to FE fibers are two clinical issues that may be solved by the identification of specific biomarkers. We reported the microRNA (miRNA) and transfer RNA-derived non coding RNA (tRNA-derived ncRNA) transcriptome in human normal mesothelial and malignant mesothelioma cell lines exposed or not exposed to several concentration FE fibers. Furthermore, an interactive mesothelioma-based network was derived by using NetME tool. In untreated condition, the expression of miRNAs and tRNA-derived ncRNAs in tumor cells was significantly different with respect to non-tumor samples. Moreover, interesting and significant changes were found after the exposure of both cells lines to FE fibers. The network-based pathway analysis showed several signaling and metabolic pathways potentially involved in the pathogenesis of MPM. From papers analyzed by NetME, it is clear that many miRNAs can positively or negatively influence various pathways involved in MPM. For the first time, the analysis of tRNA-derived ncRNAs molecules in the context of mesothelioma has been made by using in vitro systems. Further studies will be designed to test and validate their diagnostic potential in high-risk individuals' liquid biopsies.
Collapse
Affiliation(s)
- Veronica Filetti
- Human Anatomy and Histology Unit, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Alessandro La Ferlita
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123, Catania, Italy
- Department of Cancer Biology and Genetics, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Antonio Di Maria
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123, Catania, Italy
| | - Venera Cardile
- Physiology Unit, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Adriana C E Graziano
- Physiology Unit, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Venerando Rapisarda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95123, Catania, Italy
| | - Caterina Ledda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95123, Catania, Italy.
| | - Alfredo Pulvirenti
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123, Catania, Italy
| | - Carla Loreto
- Human Anatomy and Histology Unit, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| |
Collapse
|
7
|
Malakoti F, Targhazeh N, Abadifard E, Zarezadeh R, Samemaleki S, Asemi Z, Younesi S, Mohammadnejad R, Hadi Hossini S, Karimian A, Alemi F, Yousefi B. DNA repair and damage pathways in mesothelioma development and therapy. Cancer Cell Int 2022; 22:176. [PMID: 35501851 PMCID: PMC9063177 DOI: 10.1186/s12935-022-02597-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/18/2022] [Indexed: 12/30/2022] Open
Abstract
Malignant mesothelioma (MMe) is an aggressive neoplasm that occurs through the transformation of mesothelial cells. Asbestos exposure is the main risk factor for MMe carcinogenesis. Other important etiologies for MMe development include DNA damage, over-activation of survival signaling pathways, and failure of DNA damage response (DDR). In this review article, first, we will describe the most important signaling pathways that contribute to MMe development and their interaction with DDR. Then, the contribution of DDR failure in MMe progression will be discussed. Finally, we will review the latest MMe therapeutic strategies that target the DDR pathway.
Collapse
Affiliation(s)
- Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Targhazeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Abadifard
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Zarezadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Samemaleki
- Department of Immunology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Simin Younesi
- Schoole of Health and Biomedical Sciences, RMIT University, Melbourne, Vic, Australia
| | - Reza Mohammadnejad
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hadi Hossini
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Marazioti A, Krontira AC, Behrend SJ, Giotopoulou GA, Ntaliarda G, Blanquart C, Bayram H, Iliopoulou M, Vreka M, Trassl L, Pepe MAA, Hackl CM, Klotz LV, Weiss SAI, Koch I, Lindner M, Hatz RA, Behr J, Wagner DE, Papadaki H, Antimisiaris SG, Jean D, Deshayes S, Grégoire M, Kayalar Ö, Mortazavi D, Dilege Ş, Tanju S, Erus S, Yavuz Ö, Bulutay P, Fırat P, Psallidas I, Spella M, Giopanou I, Lilis I, Lamort A, Stathopoulos GT. KRAS signaling in malignant pleural mesothelioma. EMBO Mol Med 2022; 14:e13631. [PMID: 34898002 PMCID: PMC8819314 DOI: 10.15252/emmm.202013631] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/28/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) arises from mesothelial cells lining the pleural cavity of asbestos-exposed individuals and rapidly leads to death. MPM harbors loss-of-function mutations in BAP1, NF2, CDKN2A, and TP53, but isolated deletion of these genes alone in mice does not cause MPM and mouse models of the disease are sparse. Here, we show that a proportion of human MPM harbor point mutations, copy number alterations, and overexpression of KRAS with or without TP53 changes. These are likely pathogenic, since ectopic expression of mutant KRASG12D in the pleural mesothelium of conditional mice causes epithelioid MPM and cooperates with TP53 deletion to drive a more aggressive disease form with biphasic features and pleural effusions. Murine MPM cell lines derived from these tumors carry the initiating KRASG12D lesions, secondary Bap1 alterations, and human MPM-like gene expression profiles. Moreover, they are transplantable and actionable by KRAS inhibition. Our results indicate that KRAS alterations alone or in accomplice with TP53 alterations likely play an important and underestimated role in a proportion of patients with MPM, which warrants further exploration.
Collapse
|
9
|
Singh A, Pruett N, Pahwa R, Mahajan AP, Schrump DS, Hoang CD. MicroRNA-206 suppresses mesothelioma progression via the Ras signaling axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:669-681. [PMID: 33996251 PMCID: PMC8093312 DOI: 10.1016/j.omtn.2021.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Malignant pleural mesothelioma (MPM) is an incurable surface neoplasm with peculiar pathobiology. MPM proliferates by using the tyrosine-kinase-Ras pathway. Despite representing an attractive therapeutic target, there are no standard agent(s) specifically inhibiting Ras signaling adopted in clinical settings. We posited that biologic effects of microRNA (miRNA) can disrupt this molecular network. Using patient samples, cell lines, and murine tumor xenograft models, we confirmed specific genes in the Ras pathway are targeted by an MPM-associated miRNA and then examined its therapeutic effects. We verified significant and consistent downregulation of miR-206 in MPM tissues. When miR-206 is ectopically re-expressed in MPM cells and delivered to tumor xenografts in mice, it exerted significant cell killing by suppressing multiple components of the receptor-tyrosine-kinase-Ras-cell-cycle-signaling network; some of which were prognostic when overexpressed and/or have not been druggable. Of note, we validated CDK6 as a novel target of miR-206. Overall, this miR-206-targeting mechanism manifested as induced G1/S cell cycle arrest. In addition, we identified a novel MPM therapeutic combination by adding systemic-route abemaciclib with local-route miR-206, which showed additive efficacy translating to improved survival. Our pre-clinical study suggests a potential pathophysiologic role for, and therapeutic relevance of, miR-206 in MPM.
Collapse
Affiliation(s)
- Anand Singh
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathanael Pruett
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roma Pahwa
- Urology Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arushi P. Mahajan
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David S. Schrump
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuong D. Hoang
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Wang A, Liu J, Zhuang X, Yu S, Zhu S, Liu Y, Chen X. Identification and Comparison of piRNA Expression Profiles of Exosomes Derived from Human Stem Cells from the Apical Papilla and Bone Marrow Mesenchymal Stem Cells. Stem Cells Dev 2020; 29:511-520. [PMID: 32031053 DOI: 10.1089/scd.2019.0277] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multifunctional stem cells that exist in almost all human tissues. In addition to their self-renewal and multidirectional differentiation potential, they also have valuable immunomodulatory abilities. Bone marrow mesenchymal stem cells (BMMSCs) are the first discovered MSCs and are the most widely studied. Stem cells from the apical papilla (SCAP) are derived from the apical papilla of incompletely developed teeth and play an important role in the formation and development of tooth root. Recent studies have shown that mesenchymal stem cell-derived exosomes (MSC-exo) have similar biological functions as MSCs. Moreover, increasing evidence has highlighted the functional relationship between noncoding regulatory RNAs, especially microRNAs, and MSC-exo. However, few studies have addressed the role of PIWI-interacting RNAs (piRNAs) in MSC-exo. To develop a better understanding of the biological functions of SCAP and BMMSCs, we compared and analyzed the piRNA expression profiles of the exosomes derived from human SCAP (SCAP-exo) and the exosomes of BMMSCs (BMMSC-exo). A total of 593 and 920 known piRNAs were identified from SCAP-exo and BMMSC-exo, respectively, and 21 piRNAs were found to be differentially expressed. In addition, we predicted the target genes of the differentially expressed piRNAs, and the target genes were subjected to the Gene Ontology enrichment and the Kyoto Encyclopedia of Genes and Genomes pathway analysis, revealing the possible biological functions of these differentially expressed piRNAs. We found that the target genes of the differentially expressed piRNAs mainly involved in biological regulation, cellular processes, metabolic processes, binding, and catalytic activity, which are closely related to the biological functions of MSCs. In conclusion, this study confirmed the differential expression profiles of piRNAs in SCAP-exo and BMMSC-exo and provided useful insights for further study of their functions.
Collapse
Affiliation(s)
- Aochen Wang
- Department of Paediatric Dentistry, School of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jie Liu
- Centre of Science Experiment, China Medical University, Shenyang, China
| | - Xueying Zhuang
- Department of Paediatric Dentistry, School of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Si Yu
- Department of Paediatric Dentistry, School of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Shu Zhu
- Department of Paediatric Dentistry, School of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yao Liu
- Department of Paediatric Dentistry, School of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xu Chen
- Department of Paediatric Dentistry, School of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
11
|
Ahmad Z, Jacobson BA, McDonald MW, Vattendahl Vidal N, Vattendahl Vidal G, Chen S, Dillenburg M, Okon AM, Patel MR, Wagner CR, Kratzke RA. Repression of oncogenic cap-mediated translation by 4Ei-10 diminishes proliferation, enhances chemosensitivity and alters expression of malignancy-related proteins in mesothelioma. Cancer Chemother Pharmacol 2020; 85:425-432. [PMID: 31974652 DOI: 10.1007/s00280-020-04029-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Activated cap-dependent translation promotes cancer by stimulating translation of mRNAs encoding malignancy-promoting proteins. The nucleoside monophosphate Protide, 4Ei-10, undergoes intracellular uptake and conversion by Hint1 to form 7-Cl-Ph-Ethyl-GMP. 7-Cl-Ph-Ethyl-GMP is an analog of cap and inhibits protein translation by binding and sequestering eIF4E thus blocking eIF4E from binding to the mRNA cap. The effects of inhibiting translation initiation by disruption of the eIF4F complex with 4Ei-10 were examined in malignant mesothelioma (MM). In a cell-free assay system, formation of the eIF4F complex was disabled in response to exposure to 4Ei-10. Treatment of MM with 4Ei-10 resulted in decreased cell proliferation, increased sensitivity to pemetrexed and altered expression of malignancy-related proteins. In light of these findings, suppression of translation initiation by small molecule inhibitors like 4Ei-10 alone or in combination with pemetrexed represents an encouraging strategy meriting further evaluation in the treatment of MM.
Collapse
Affiliation(s)
- Zeeshan Ahmad
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Blake A Jacobson
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | - Maxwell Dillenburg
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Aniekan M Okon
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Manish R Patel
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Carston R Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Robert A Kratzke
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA. .,Division of Heme-Onc-Transplant, University of Minnesota Medical School, MMC 480, 420 Delaware St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
12
|
PI3 Kinase Pathway and MET Inhibition is Efficacious in Malignant Pleural Mesothelioma. Sci Rep 2016; 6:32992. [PMID: 27623107 PMCID: PMC5021085 DOI: 10.1038/srep32992] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 08/15/2016] [Indexed: 12/16/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer that is commonly associated with prior asbestos exposure. Receptor tyrosine kinases (RTKs) such as MET and its downstream target PI3K are overexpressed and activated in a majority of MPMs. Here, we studied the combinatorial therapeutic efficacy of the MET/ALK inhibitor crizotinib, with either a pan-class I PI3K inhibitor, BKM120, or with a PI3K/mTOR dual inhibitor, GDC-0980, in mesothelioma. Cell viability results showed that MPM cells were highly sensitive to crizotinib, BKM120 and GDC-0980 when used individually and their combination was more effective in suppressing growth. Treatment of MPM cells with these inhibitors also significantly decreased cell migration, and the combination of them was synergistic. Treatment with BKM120 alone or in combination with crizotinib induced G2-M arrest and apoptosis. Both crizotinib and BKM120 strongly inhibited the activity of MET and PI3K as evidenced by the decreased phosphorylation of MET, AKT and ribosomal S6 kinase. Using a PDX mouse model, we showed that a combination of crizotinib with BKM120 was highly synergetic in inhibiting MPM tumor growth. In conclusion our findings suggest that dual inhibition of PI3K and MET pathway is an effective strategy in treating MPM as compared to a single agent.
Collapse
|
13
|
Jiang Y, Zhong B, Kawamura K, Morinaga T, Shingyoji M, Sekine I, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Tagawa M. Combination of a third generation bisphosphonate and replication-competent adenoviruses augments the cytotoxicity on mesothelioma. BMC Cancer 2016; 16:455. [PMID: 27405588 PMCID: PMC4942884 DOI: 10.1186/s12885-016-2483-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/04/2016] [Indexed: 02/07/2023] Open
Abstract
Background Approximately 80 % of mesothelioma specimens have the wild-type p53 gene, whereas they contain homozygous deletions in the INK4A/ARF locus that encodes p14ARF and the 16INK4A genes. Consequently, the majority of mesothelioma is defective of the p53 pathways. We examined whether zoledronic acid (ZOL), a third generation bisphosphonate, and adenoviruses with a deletion of the E1B-55kD gene (Ad-delE1B55), which augments p53 levels in the infected tumors, could produce combinatory anti-tumor effects on human mesothelioma cells bearing the wild-type p53 gene. Methods Cytotoxicity of ZOL and Ad-delE1B55 was assessed with a WST assay. Cell cycle changes were tested with flow cytometry. Expression levels of relevant molecules were examined with western blot analysis to investigate a possible mechanism of cytotoxicity. Furthermore, the expressions of Ad receptors on target cells and infectivity were estimated with flow cytometry. Viral replication was assayed with the tissue culture infection dose method. Results A combinatory use of ZOL and Ad-delE1B55 suppressed cell growth and increased sub-G1 or S-phase populations compared with a single agent, depending on cells tested. The combinatory treatment up-regulated p53 levels and subsequently enhanced the cleavage of caspase-3, 8, 9 and poly (ADP-ribose) polymerase, but expression of molecules involved in autophagy pathways were inconsistent. ZOL-treated cells also increased Ad infectivity with a dose-dependent manner and augmented Ad replication although the expression levels of integrin molecules, one of the Ad receptors, were down-regulated. Conclusions These findings indicated that ZOL and Ad-delE1B55 achieved combinatory anti-tumor effects through augmented apoptotic pathways or increased viral replication. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2483-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Boya Zhong
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoko Kawamura
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Takao Morinaga
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | | | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan. .,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
14
|
NF2 blocks Snail-mediated p53 suppression in mesothelioma. Oncotarget 2016; 6:10073-85. [PMID: 25823924 PMCID: PMC4496341 DOI: 10.18632/oncotarget.3543] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/13/2015] [Indexed: 12/15/2022] Open
Abstract
Although asbestos causes malignant pleural mesothelioma (MPM), rising from lung mesothelium, the molecular mechanism has not been suggested until now. Extremely low mutation rate in classical tumor suppressor genes (such as p53 and pRb) and oncogenes (including Ras or myc) indicates that there would be MPM-specific carcinogenesis pathway. To address this, we treated silica to mimic mesothelioma carcinogenesis in mesothelioma and non-small cell lung cancer cell lines (NSCLC). Treatment of silica induced p-Erk and Snail through RKIP reduction. In addition, p53 and E-cadherin were decreased by silica-treatment. Elimination of Snail restored p53 expression. We found that NF2 (frequently deleted in MPM) inhibited Snail-mediated p53 suppression and was stabilized by RKIP. Importantly, GN25, an inhibitor of p53-Snail interaction, induced p53 and apoptosis. These results indicate that MPM can be induced by reduction of RKIP/NF2, which suppresses p53 through Snail. Thus, the p53-Snail binding inhibitor such as GN25 is a drug candidate for MPM.
Collapse
|
15
|
Cedrés S, Ponce-Aix S, Pardo-Aranda N, Navarro-Mendivil A, Martinez-Marti A, Zugazagoitia J, Sansano I, Montoro MA, Enguita A, Felip E. Analysis of expression of PTEN/PI3K pathway and programmed cell death ligand 1 (PD-L1) in malignant pleural mesothelioma (MPM). Lung Cancer 2016; 96:1-6. [PMID: 27133741 DOI: 10.1016/j.lungcan.2016.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/24/2016] [Accepted: 03/07/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) frequently express elevated AKT/mTOR activity. Previous reports in gliomas, colon, breast and prostate cancer suggest that PTEN/PI3K pathway may be important for the induction of PD-L1 expression. This study explored the expression of PTEN/PI3K pathway and PD-L1 in MPM and its relationship with the patient́s prognosis MATERIAL AND METHODS Twenty seven consecutive MPM patients were reviewed. Formalin-fixed, paraffin-embedded tissue biopsies were used for immunohistochemical analysis of PTEN/PI3K pathway and PD-L1 RESULTS: Expression of PTEN, mTOR, pAKT, p4EBP1, peif4E, pS6 and FOXO3a was found in 88.5%, 92.3%, 78.3%, 38.5%, 100%, 52.2% and 100% of tumors and PD-L1 in 23%. We found a significant correlation between pAKT, FOXO3a and PD-L1 expression and longer overall survival (p <0.05). We did not identify significant association between the level of PD-L1 expression and alterations in PI3K pathway CONCLUSIONS This study shows PTEN/PI3K pathway and PD-L1 in MPM are frequently activated. Our results suggests that there is not association between PD-L1 and the involvement of the PI3K pathway in MPM.
Collapse
Affiliation(s)
- S Cedrés
- Medical Oncology Service, Vall d́Hebron Institute Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Universidad Autonoma de Barcelona, Barcelona, Spain.
| | - S Ponce-Aix
- Medical Oncology Service, 12 de Octubre University Hospital, Madrid, Spain
| | - N Pardo-Aranda
- Medical Oncology Service, Vall d́Hebron Institute Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Universidad Autonoma de Barcelona, Barcelona, Spain
| | - A Navarro-Mendivil
- Medical Oncology Service, Vall d́Hebron Institute Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Universidad Autonoma de Barcelona, Barcelona, Spain
| | - A Martinez-Marti
- Medical Oncology Service, Vall d́Hebron Institute Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Universidad Autonoma de Barcelona, Barcelona, Spain
| | - J Zugazagoitia
- Medical Oncology Service, 12 de Octubre University Hospital, Madrid, Spain
| | - I Sansano
- Pathology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - M A Montoro
- Pathology Department, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - A Enguita
- Pathology Department, 12 de Octubre University Hospital, Madrid, Spain
| | - E Felip
- Medical Oncology Service, Vall d́Hebron Institute Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Universidad Autonoma de Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Patel MR, Jacobson BA, Belgum H, Raza A, Sadiq A, Drees J, Wang H, Jay-Dixon J, Etchison R, Federspiel MJ, Russell SJ, Kratzke RA. Measles vaccine strains for virotherapy of non-small-cell lung carcinoma. J Thorac Oncol 2014; 9:1101-10. [PMID: 25157763 PMCID: PMC4145613 DOI: 10.1097/jto.0000000000000214] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Oncolytic virus therapy is a promising therapy for numerous tumor types. Edmonston-strain measles virus (MV) has been tested in clinical trials for ovarian cancer, glioma, and myeloma. Therefore, the antitumor activity of MV against non-small-cell lung cancer (NSCLC) was assessed. METHODS Human NSCLC cells and immortalized lung epithelial cell lines, Beas2B, were infected with either MV-producing green fluorescent protein or MV-producing carcinoembryonic antigen. Cells were assessed for viability, induction of apoptosis by caspase and poly-ADP ribose polymerase cleavage, and for viral transgene production. The dependency of MV entry on CD46 and nectin-4 were determined using blocking antibodies. The role of host translational activity on viral replication was assessed by overexpression of eIF4E and translation inhibition. Antitumor activity was assessed by measuring treated NSCLC xenografts from flanks of nude mice. RESULTS MV infection of NSCLC cells results in potent cell killing in most of the cell lines compared with immortalized Beas2B cells and induces apoptosis. MV infection was prevented by blocking of CD46, however independent of nectin-4 blockade. Tumor weights are diminished after intratumoral injections of MV-producing carcinoembryonic antigen in one of two cell lines and result in detectable viral transgene in serum of mice. CONCLUSIONS These data indicate that MV is oncolytic for human NSCLC and this was independent of nectin-4 expression. Dysregulated protein translational machinery may play a role in determining tumor tropism in NSCLC. MV combined with gemcitabine could be explored further as chemovirotherapy for NSCLC.
Collapse
Affiliation(s)
- Manish R Patel
- *Division of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis; and †Department of Molecular Medicine, Mayo Clinic Medical Center, Rochester, MN
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhou S, Liu L, Li H, Eilers G, Kuang Y, Shi S, Yan Z, Li X, Corson JM, Meng F, Zhou H, Sheng Q, Fletcher JA, Ou WB. Multipoint targeting of the PI3K/mTOR pathway in mesothelioma. Br J Cancer 2014; 110:2479-88. [PMID: 24762959 PMCID: PMC4021537 DOI: 10.1038/bjc.2014.220] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/20/2014] [Accepted: 03/27/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesothelioma is a notoriously chemotherapy-resistant neoplasm, as is evident in the dismal overall survival for patients with those of asbestos-associated disease. We previously demonstrated co-activation of multiple receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR), MET, and AXL in mesothelioma cell lines, suggesting that these kinases could serve as novel therapeutic targets. Although clinical trials have not shown activity for EGFR inhibitors in mesothelioma, concurrent inhibition of various activated RTKs has pro-apoptotic and anti-proliferative effects in mesothelioma cell lines. Thus, we hypothesised that a coordinated network of multi-RTK activation contributes to mesothelioma tumorigenesis. METHODS Activation of PI3K/AKT/mTOR, Raf/MAPK, and co-activation of RTKs were evaluated in mesotheliomas. Effects of RTK and downstream inhibitors/shRNAs were assessed by measuring mesothelioma cell viability/growth, apoptosis, activation of signalling intermediates, expression of cell-cycle checkpoints, and cell-cycle alterations. RESULTS We demonstrate activation of the PI3K/AKT/p70S6K and RAF/MEK/MAPK pathways in mesothelioma, but not in non-neoplastic mesothelial cells. The AKT activation, but not MAPK activation, was dependent on coordinated activation of RTKs EGFR, MET, and AXL. In addition, PI3K/AKT/mTOR pathway inhibition recapitulated the anti-proliferative effects of concurrent inhibition of EGFR, MET, and AXL. Dual targeting of PI3K/mTOR by BEZ235 or a combination of RAD001 and AKT knockdown had a greater effect on mesothelioma proliferation and viability than inhibition of individual activated RTKs or downstream signalling intermediates. Inhibition of PI3K/AKT was also associated with MDM2-p53 cell-cycle regulation. CONCLUSIONS These findings show that PI3K/AKT/mTOR is a crucial survival pathway downstream of multiple activated RTKs in mesothelioma, underscoring that PI3K/mTOR is a compelling target for therapeutic intervention.
Collapse
Affiliation(s)
- S Zhou
- 1] Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China [2] Department of Bioengineering, College of Biology and Chemical Engineering, Jiaxing University, Jiaxing, China
| | - L Liu
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - H Li
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - G Eilers
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Y Kuang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - S Shi
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Z Yan
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - X Li
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - J M Corson
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - F Meng
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - H Zhou
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Q Sheng
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - J A Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - W-B Ou
- 1] Zhejiang Provincial Key Laboratory of Applied Enzymology, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China [2] Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA [3] Department of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
18
|
Small-molecule inhibition of oncogenic eukaryotic protein translation in mesothelioma cells. Invest New Drugs 2014; 32:598-603. [DOI: 10.1007/s10637-014-0076-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/18/2014] [Indexed: 02/01/2023]
|
19
|
Resistance to EGFR-TKI can be mediated through multiple signaling pathways converging upon cap-dependent translation in EGFR-wild type NSCLC. J Thorac Oncol 2014; 8:1142-7. [PMID: 23883783 DOI: 10.1097/jto.0b013e31829ce963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION For the majority of patients with non-small-cell lung cancer (NSCLC), response to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is suboptimal. In models of acquired resistance to EGFR-TKI, activation of Akt phosphorylation is frequently observed. Because Akt activation results in downstream initiation of cap-dependent protein translation, we hypothesized that a strategy of targeting cap-dependent translation in combination with erlotinib might enhance therapy. METHODS NSCLC cells that are wild type for EGFR were assayed for sensitivity to erlotinib. Serum-starved NSCLC cells were assayed for EGFR signaling and downstream pathway activation by immunoblot after stimulation with epidermal growth factor. EGFR signaling and signaling mediators of cap-dependent translation were assayed by immunoblot under serum-replete conditions 24 hours after treatment with erlotinib. Finally, combination treatment with erlotinib and two different cap-dependent translation inhibitors were done to assess the effect on cell viability. RESULTS EGFR signaling is coupled to activation of cap-dependent translation in EGFR wild-type cells. Erlotinib inhibits EGFR phosphorylation in EGFR-TKI resistant cells, however, results in activation of downstream signaling molecules including Akt and extracellular regulated kinase, ERK 1/2, resulting in maintenance of eukaryotic initiation factor 4F (eIF4F) activation. eIF4F cap-complex formation is maintained in erlotinib-resistant cells, but not in erlotinib-sensitive cells. Finally, using an antisense oligonucleotide against eukaryotic translation initiation factor 4E and a small-molecule inhibitor to disrupt eIF4F formation, we show that cap-dependent translation inhibition can enhance sensitivity to erlotinib. CONCLUSION The results of these studies support further clinical development of translation inhibitors for treatment of NSCLC in combination with erlotinib.
Collapse
|
20
|
Jacobson BA, Thumma SC, Jay-Dixon J, Patel MR, Dubear Kroening K, Kratzke MG, Etchison RG, Konicek BW, Graff JR, Kratzke RA. Targeting eukaryotic translation in mesothelioma cells with an eIF4E-specific antisense oligonucleotide. PLoS One 2013; 8:e81669. [PMID: 24260583 PMCID: PMC3832430 DOI: 10.1371/journal.pone.0081669] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/17/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Aberrant cap-dependent translation is implicated in tumorigenesis in multiple tumor types including mesothelioma. In this study, disabling the eIF4F complex by targeting eIF4E with eIF4E-specific antisense oligonucleotide (4EASO) is assessed as a therapy for mesothelioma. METHODS Mesothelioma cells were transfected with 4EASO, designed to target eIF4E mRNA, or mismatch-ASO control. Cell survival was measured in mesothelioma treated with 4EASO alone or combined with either gemcitabine or pemetrexed. Levels of eIF4E, ODC, Bcl-2 and β-actin were assessed following treatment. Binding to a synthetic cap-analogue was used to study the strength of eIF4F complex activation following treatment. RESULTS eIF4E level and the formation of eIF4F cap-complex decreased in response to 4EASO, but not mismatch control ASO, resulting in cleavage of PARP indicating apoptosis. 4EASO treatment resulted in dose dependent decrease in eIF4E levels, which corresponded to cytotoxicity of mesothelioma cells. 4EASO resulted in decreased levels of eIF4E in non-malignant LP9 cells, but this did not correspond to increased cytotoxicity. Proteins thought to be regulated by cap-dependent translation, Bcl-2 and ODC, were decreased upon treatment with 4EASO. Combination therapy of 4EASO with pemetrexed or gemcitabine further reduced cell number. CONCLUSION 4EASO is a novel drug that causes apoptosis and selectively reduces eIF4E levels, eIF4F complex formation, and proliferation of mesothelioma cells. eIF4E knockdown results in decreased expression of anti-apoptotic and pro-growth proteins and enhances chemosensitivity.
Collapse
Affiliation(s)
- Blake A. Jacobson
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Saritha C. Thumma
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Joseph Jay-Dixon
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Manish R. Patel
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - K. Dubear Kroening
- Department of Biological Sciences, University of Wisconsin-Fox Valley, Menasha, Wisconsin, United States of America
| | - Marian G. Kratzke
- Research Service, Minneapolis Veterans Affairs Medical Center, Minneapolis, Minnesota, United States of America
| | - Ryan G. Etchison
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Bruce W. Konicek
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Jeremy R. Graff
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Robert A. Kratzke
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
21
|
Cedrés S, Montero MA, Martinez P, Martinez A, Rodríguez-Freixinós V, Torrejon D, Gabaldon A, Salcedo M, Ramon Y Cajal S, Felip E. Exploratory analysis of activation of PTEN-PI3K pathway and downstream proteins in malignant pleural mesothelioma (MPM). Lung Cancer 2012; 77:192-8. [PMID: 22459204 DOI: 10.1016/j.lungcan.2012.02.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 02/10/2012] [Accepted: 02/29/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is a highly aggressive neoplasm with elevated AKT/mTOR activity. We aimed to identify the expression and phosphorylation status of PTEN, PI3K and downstream signaling in MPM. PATIENTS AND METHODS Thirty consecutive MPM patients were identified. Clinical data analyzed: sex, age, histology, performance status (PS), white blood count, and neutrophil-lymphocyte ratio (NLR). Paraffin-embedded biopsies were used for immunohistochemical analysis. RESULTS Overexpression of PTEN, pMAPK, mTOR, pAKT, 4E-BP1, p4E-BP1, eIF-4E, peIF-4E, p-S6 and FOXO3a in MPM was found in 90%, 100%, 93.3%, 80%, 100%, 43.3%, 96.7%, 100%, 63.3% and 100% of tumors respectively. There was a significant correlation between low pS6 protein expression and longer progression free survival (PFS: 7.9 vs 5.6 months; p = 0.04) and overall survival (OS: 23.4 vs 5.6 months; p = 0.05). Patients with concomitant low expression of pS6 and p4E-BP1 and overexpression of FOXO3a had significantly better prognosis (34.6 vs 1.9 months; p = 0.004). In multivariate analysis, histology and NLR were independent prognostic factors (p = 0.02 and p = 0.04 respectively), but pS6 only showed a trend (p = 0.8). CONCLUSIONS This study shows PI3K pathway and downstream proteins in MPM are frequently activated and provides prognostic information. The role of PI3K pathway is worth of prospective validation in future studies on MPM.
Collapse
Affiliation(s)
- S Cedrés
- Medical Oncology Service/Vall d'Hebron University Hospital, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Patel MR, Sadiq AA, Jay-Dixon J, Jirakulaporn T, Jacobson BA, Farassati F, Bitterman PB, Kratzke RA. Novel role of c-jun N-terminal kinase in regulating the initiation of cap-dependent translation. Int J Oncol 2011; 40:577-82. [PMID: 22076560 DOI: 10.3892/ijo.2011.1252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/23/2011] [Indexed: 02/06/2023] Open
Abstract
Initiation of protein translation by the 5' mRNA cap is a tightly regulated step in cell growth and proliferation. Aberrant activation of cap-dependent translation is a hallmark of many cancers including non-small cell lung cancer. The canonical signaling mechanisms leading to translation initiation include activation of the Akt/mTOR pathway in response to the presence of nutrients and growth factors. We have previously observed that inhibition of c-jun N-terminal kinase (JNK) leads to inactivation of cap-dependent translation in mesothelioma cells. Since JNK is involved in the genesis of non-small cell lung cancer (NSCLC), we hypothesized that JNK could also be involved in activating cap-dependent translation in NSCLC cells and could represent an alternative pathway regulating translation. In a series of NSCLC cell lines, inhibition of JNK using SP600125 resulted in inhibition of 4E-BP1 phosphorylation and a decrease in formation of the cap-dependent translation complex, eIF4F. Furthermore, we show that JNK-mediated inhibition of translation is independent of mTOR. Our data provide evidence that JNK is involved in the regulation of translation and has potential as a therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Manish R Patel
- University of Minnesota Medical School, Division of Hematology, Oncology, and Transplantation, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
EphrinA1 inhibits malignant mesothelioma tumor growth via let-7 microRNA-mediated repression of the RAS oncogene. Cancer Gene Ther 2011; 18:806-16. [PMID: 21869823 DOI: 10.1038/cgt.2011.50] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
EphrinA1 binding with receptor EphA2 suppresses malignant mesothelioma (MM) growth. The mechanisms whereby EphrinA1 attenuates the MM cell (MMC) growth are not clear. In this study, we report that the activation of MMCs with EphrinA1 leads to an induction of let-7 microRNA (miRNA) expression, repression of RAS proto-oncogene and the attenuation of MM tumor growth. The expression of miRNAs was determined by reverse transcription-quantitative polymerase chain reaction and in situ hybridization. RAS expression was determined by q-PCR, western blotting and immunofluorescence. MMC proliferation and tumor growth were determined by WST-1 and Matrigel assay, respectively. EphrinA1 activation induced several fold increases in let-7a1, let-7a3, let-7f1 and let-7f2 miRNA expression in MMCs. In contrast, EphrinA1 activation significantly downregulated H-RAS, K-RAS and N-RAS expression and inhibited MMC proliferation and tumor growth. In MMCs transfected with 2'-O-methyl antisense oligonucleotides to let-7 miRNA, EphrinA1 activation failed to inhibit the proliferative response and tumor growth. In mismatch antisense oligonucleotide-treated MMCs, the proliferation and tumor growth were comparable to untreated proliferating cells. Furthermore, the transfection of MMCs with let-7a miRNA precursor inhibited RAS expression and attenuated MMC tumor growth. Our data revealed that EphrinA1 signaling induces let-7 miRNA expression and attenuates MM tumor growth by targeting RAS proto-oncogene in MMCs.
Collapse
|
24
|
Wang H, Gillis A, Zhao C, Lee E, Wu J, Zhang F, Ye F, Zhang DY. Crocidolite asbestos-induced signal pathway dysregulation in mesothelial cells. Mutat Res 2011; 723:171-6. [PMID: 21570478 DOI: 10.1016/j.mrgentox.2011.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/25/2011] [Accepted: 04/26/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND Malignant mesothelioma is a rare cancer caused by exposure to asbestos. Current therapies have limited efficacy and the prognosis is dismal. A better understanding of the underlying mechanism of asbestos-induced malignant transformation will help to identify molecular markers that can be used for diagnosis, prognosis or therapeutic targets. OBJECTIVES The objectives of this study are (1) to identify altered levels of proteins and phosphoproteins and (2) to establish the interactive network among those proteins in crocidolite-treated benign mesothelial cells and in malignant mesothelial cells. METHODS Total cellular proteins were extracted from benign mesothelial cells, crocidolite-treated mesothelial cells and malignant mesothelial cells. The expression levels of 112 proteins and phosphoproteins were analyzed using a multiplex immunoblot-based assay followed by computational analysis (Protein Pathway Array). RESULTS A total of 16 proteins/phosphoproteins (7 down-regulated and 9 up-regulated) were altered after exposure of benign mesothelial cells to crocidolite asbestos and the majority of them are involved in DNA damage repair and cell cycle regulation. In malignant mesothelial cells, 21 proteins/phosphoproteins (5 down-regulated and 16 up-regulated) were dysregulated and majority of them are involved in EGFR/ERK and PI3K/Akt pathways. Within the regulatory network affected by crocidolite, p53 and NF-κB complex are the most important regulators. There was substantial overlap in the regulatory networks between the asbestos-treated cells and malignant mesothelial cells. CONCLUSIONS Asbestos exposure has extensive effects on regulatory pathways and networks. These altered proteins may be used in the future to identify those with a high risk for developing malignant mesothelioma and as targets for preventing this deadly malignancy.
Collapse
Affiliation(s)
- Hongxia Wang
- Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kim YY, Von Weymarn L, Larsson O, Fan D, Underwood JM, Peterson MS, Hecht SS, Polunovsky VA, Bitterman PB. Eukaryotic initiation factor 4E binding protein family of proteins: sentinels at a translational control checkpoint in lung tumor defense. Cancer Res 2009; 69:8455-62. [PMID: 19843855 DOI: 10.1158/0008-5472.can-09-1923] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The usurping of translational control by sustained activation of translation initiation factors is oncogenic. Here, we show that the primary negative regulators of these oncogenic initiation factors--the 4E-BP protein family--operate as guardians of a translational control checkpoint in lung tumor defense. When challenged with the tobacco carcinogen 4-(methylnitrosamino)-I-(3-pyridyl)-1-butanone (NNK), 4ebp1(-/-)/4ebp2(-/-) mice showed increased sensitivity to tumorigenesis compared with their wild-type counterparts. The 4E-BP-deficient state per se creates pro-oncogenic, genome-wide skewing of the molecular landscape, with translational activation of genes governing angiogenesis, growth, and proliferation, and translational activation of the precise cytochrome p450 enzyme isoform (CYP2A5) that bioactivates NNK into mutagenic metabolites. Our study provides in vivo proof for a translational control checkpoint in lung tumor defense.
Collapse
Affiliation(s)
- Yong Y Kim
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jacobson BA, De A, Kratzke MG, Patel MR, Jay-Dixon J, Whitson BA, Sadiq AA, Bitterman PB, Polunovsky VA, Kratzke RA. Activated 4E-BP1 represses tumourigenesis and IGF-I-mediated activation of the eIF4F complex in mesothelioma. Br J Cancer 2009; 101:424-31. [PMID: 19603014 PMCID: PMC2720234 DOI: 10.1038/sj.bjc.6605184] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/17/2009] [Accepted: 06/17/2009] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Insulin-like growth factor (IGF)-I signalling stimulates proliferation, survival, and invasion in malignant mesothelioma and other tumour types. Studies have found that tumourigenesis is linked to dysregulation of cap-dependent protein translation. METHODS The effect of IGF stimulation on cap-mediated translation activation in mesothelioma cell lines was studied using binding assays to a synthetic 7-methyl GTP-cap analogue. In addition, cap-mediated translation was genetically repressed in these cells with a dominant active motive of 4E-BP1. RESULTS In most mesothelioma cell lines, IGF-I stimulation resulted in a hyperphosphorylation-mediated inactivation of 4E-BP1 compared with that in normal mesothelial cells. An inhibitor of Akt diminished IGF-I-mediated phosphorylation of 4E-BP1, whereas inhibiting MAPK signalling had no such effect. IGF-I stimulation resulted in the activation of the cap-mediated translation complex as indicated by an increased eIF4G/eIF4E ratio in cap-affinity assays. Akt inhibition reversed the eIF4G/eIF4E ratio. Mesothelioma cells transfected with an activated 4E-BP1 protein (4E-BP1(A37/A46)) were resistant to IGF-I-mediated growth, motility, and colony formation. In a murine xenograft model, mesothelioma cells expressing the dominant active 4E-BP1(A37/A46) repressor protein showed abrogated tumourigenicity compared with control tumours. CONCLUSION IGF-I signalling in mesothelioma cells drives cell proliferation, motility, and tumourigenesis through its ability to activate cap-mediated protein translation complex through PI3K/Akt/mTOR signalling.
Collapse
Affiliation(s)
- B A Jacobson
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Research Service, Minneapolis Veterans Affairs Medical Center, Minneapolis, MN, 55417, USA
| | - A De
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - M G Kratzke
- Research Service, Minneapolis Veterans Affairs Medical Center, Minneapolis, MN, 55417, USA
| | - M R Patel
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - J Jay-Dixon
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - B A Whitson
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - A A Sadiq
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - P B Bitterman
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - V A Polunovsky
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - R A Kratzke
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Research Service, Minneapolis Veterans Affairs Medical Center, Minneapolis, MN, 55417, USA
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
27
|
Sadiq AA, Patel MR, Jacobson BA, Escobedo M, Ellis K, Oppegard LM, Hiasa H, Kratzke RA. Anti-proliferative effects of simocyclinone D8 (SD8), a novel catalytic inhibitor of topoisomerase II. Invest New Drugs 2009; 28:20-5. [PMID: 19132295 DOI: 10.1007/s10637-008-9209-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 12/09/2008] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Simocyclinone D-8 (SD8), a semi-synthetic compound derived from yeast, has been shown to decrease the proliferation of MCF-7 breast cancer cells. It has been shown to be a potent bacterial DNA gyrase inhibitor, a homologue of human topoisomerase II (hTopoII). We tested SD8 activity alone and in combination with cisplatin against malignant mesothelioma (MM) and non-small cell cancer (NSCLC) cell lines. METHODS Inhibition of hTopoII supercoiling function by SD8 and a known hTopoII poison, etoposide, were done by in vitro assay using purified hTopoII and kinetoplast DNA as the substrate. The DNA products were analyzed by agarose gel electrophoresis after treatment with increasing concentrations of each drug. Mesothelioma cell lines (H2373, H2461 and H2596) and NSCLC cell lines (H2030, H460, and H2009) grown in RPMI with 10% calf serum were used. Non-malignant mesothelial cells, LP9, were grown in 1:1 ratio of MCDB:199E medium supplemented with 15% calf serum, 0.4 microg/mL hydrocortisone, and 15 ng/mL epidermal grown factor. Cell proliferation assays were performed in 96-well plates using the CCK-8 kit (Dojindo inc.). Cells were treated for 72 h with various SD8 concentrations and controls containing equal volume of the vehicle, DMSO. Treated cells were assayed for the induction of apoptosis with poly ADP-ribose polymerase-1 (PARP) cleavage assay. RESULTS Biochemical assays revealed that the IC(50) for hTopoII inhibition was 100 microM for SD8 and 400 microM for etoposide. SD8 inhibited hTopoII function without inducing DNA cleavage events. SD8 inhibited the growth of NSCLC and Mesothelioma cells with IC(50) ranging from 75-125 microM. Furthermore, SD8 was not toxic to non-transformed primary mesothelial cell line, LP9 at the IC(50) doses. SD8 induced apoptosis in all cell lines tested. CONCLUSIONS SD8 inhibits hTopoII in vitro without inducing DNA strands breaks and has significant activity against NSCLC and MM cell lines. While doses required for SD8 anticancer activity are unlikely to be achieved in vivo, chemical modifications to SD8 to increase its potency could lead to improved therapies for these diseases.
Collapse
Affiliation(s)
- Ahad A Sadiq
- Division of Hematology-Oncology-Transplant, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Stenzinger A, Schreiner D, Koch P, Hofer HW, Wimmer M. Cell and molecular biology of the novel protein tyrosine-phosphatase-interacting protein 51. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 275:183-246. [PMID: 19491056 DOI: 10.1016/s1937-6448(09)75006-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This chapter examines the current state of knowledge about the expression profile, as well as biochemical properties and biological functions of the evolutionarily conserved protein PTPIP51. PTPIP51 is apparently expressed in splice variants and shows a particularly high expression in epithelia, skeletal muscle, placenta, and germ cells, as well as during mammalian development and in cancer. PTPIP51 is an in vitro substrate of Src- and protein kinase A, the PTP1B/TCPTP protein tyrosine phosphatases and interacts with 14-3-3 proteins, the Nuf2 kinetochore protein, the ninein-interacting CGI-99 protein, diacylglycerol kinase alpha, and also with itself forming dimers and trimers. Although the precise cellular function remains to be elucidated, the current data implicate PTPIP51 in signaling cascades mediating proliferation, differentiation, apoptosis, and motility.
Collapse
Affiliation(s)
- Albrecht Stenzinger
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | | | | | | | | |
Collapse
|