1
|
Cao Y, Ren Q, Chang S, Cui W, Zhao P, Wang Y. N6-methyladenosine RNA methylation modification regulates the transcription of viral-derived E (XSR) miRNAs to promote ALV-J replication. Vet Microbiol 2024; 298:110218. [PMID: 39159504 DOI: 10.1016/j.vetmic.2024.110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
The E (XSR) element located in the 3'UTR of the ALV-J genome has the capability to transcribe and generate viral-derived E (XSR) miRNA. However, the biological function and transcriptional regulation mechanism of this process remain unclear. In this study, the impact of E (XSR) miRNA on ALV-J replication and the regulatory effect of N6-methyladenosine (m6A) methylation on its transcription were investigated. The results demonstrated that E (XSR) miRNA could stimulate ALV-J replication and suppress apoptosis in DF-1 cells in vitro. E (XSR) miRNA's promotion of ALV-J replication was not associated with the type I interferon pathway, but achieved by suppressing the expression of the host GPC5 gene. The transcription of E (XSR) miRNA could be promoted by m6A methylation modification, where m6A modification was found at the A6880 and A7016 sites of ALV-J gRNA. This study provides a new perspective on the transcription of ALV-J E (XSR) miRNA and its regulatory function in ALV-J replication.
Collapse
Affiliation(s)
- Yuqing Cao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China
| | - Qingling Ren
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China
| | - Wenping Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China.
| | - Yixin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China.
| |
Collapse
|
2
|
Palaniappan A, Muthamilselvan S, Sarathi A. COADREADx: A comprehensive algorithmic dissection of colorectal cancer unravels salient biomarkers and actionable insights into its discrete progression. PeerJ 2024; 12:e18347. [PMID: 39484215 PMCID: PMC11526798 DOI: 10.7717/peerj.18347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Background Colorectal cancer is a common condition with an uncommon burden of disease, heterogeneity in manifestation, and no definitive treatment in the advanced stages. Renewed efforts to unravel the genetic drivers of colorectal cancer progression are paramount. Early-stage detection contributes to the success of cancer therapy and increases the likelihood of a favorable prognosis. Here, we have executed a comprehensive computational workflow aimed at uncovering the discrete stagewise genomic drivers of colorectal cancer progression. Methods Using the TCGA COADREAD expression data and clinical metadata, we constructed stage-specific linear models as well as contrast models to identify stage-salient differentially expressed genes. Stage-salient differentially expressed genes with a significant monotone trend of expression across the stages were identified as progression-significant biomarkers. The stage-salient genes were benchmarked using normals-augmented dataset, and cross-referenced with existing knowledge. The candidate biomarkers were used to construct the feature space for learning an optimal model for the digital screening of early-stage colorectal cancers. The candidate biomarkers were also examined for constructing a prognostic model based on survival analysis. Results Among the biomarkers identified are: CRLF1, CALB2, STAC2, UCHL1, KCNG1 (stage-I salient), KLHL34, LPHN3, GREM2, ADCY5, PLAC2, DMRT3 (stage-II salient), PIGR, HABP2, SLC26A9 (stage-III salient), GABRD, DKK1, DLX3, CST6, HOTAIR (stage-IV salient), and CDH3, KRT80, AADACL2, OTOP2, FAM135B, HSP90AB1 (top linear model genes). In particular the study yielded 31 genes that are progression-significant such as ESM1, DKK1, SPDYC, IGFBP1, BIRC7, NKD1, CXCL13, VGLL1, PLAC1, SPERT, UPK2, and interestingly three members of the LY6G6 family. Significant monotonic linear model genes included HIGD1A, ACADS, PEX26, and SPIB. A feature space of just seven biomarkers, namely ESM1, DHRS7C, OTOP3, AADACL2, LPHN3, GABRD, and LPAR1, was sufficient to optimize a RandomForest model that achieved > 98% balanced accuracy (and performant recall) of cancer vs. normal on external validation. Design of an optimal multivariate model based on survival analysis yielded a prognostic panel of three stage-IV salient genes, namely HOTAIR, GABRD, and DKK1. Based on the above sparse signatures, we have developed COADREADx, a web-server for potentially assisting colorectal cancer screening and patient risk stratification. COADREADx provides uncertainty measures for its predictions and needs clinical validation. It has been deployed for experimental non-commercial use at: https://apalanialab.shinyapps.io/coadreadx/.
Collapse
Affiliation(s)
- Ashok Palaniappan
- Systems Computational Biology Lab, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Sangeetha Muthamilselvan
- Systems Computational Biology Lab, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Arjun Sarathi
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Joladarashi D, Thej C, Mallaredy V, Magadum A, Cimini M, Gonzalez C, Truongcao M, Nigro JT, Sethi MK, Gibb AA, Benedict C, Koch WJ, Kishore R. GPC3-mediated metabolic rewiring of diabetic mesenchymal stromal cells enhances their cardioprotective functions via PKM2 activation. iScience 2024; 27:111021. [PMID: 39429777 PMCID: PMC11490746 DOI: 10.1016/j.isci.2024.111021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/02/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Mesenchymal stromal cells (MSC) are promising stem cell therapy for treating cardiovascular and other degenerative diseases. Diabetes affects the functional capability of MSC and impedes cell-based therapy. Despite numerous studies, the impact of diabetes on MSC myocardial reparative activity, metabolic fingerprint, and the mechanism of dysfunction remains inadequately perceived. We demonstrated that the transplantation of diabetic-MSC (db/db-MSC) into the ischemic myocardium of mice does not confer cardiac benefit post-MI. Metabolomic studies identified defective energy metabolism in db/db-MSC. Furthermore, we found that glypican-3 (GPC3), a heparan sulfate proteoglycan, is highly upregulated in db/db-MSC and is involved in metabolic alterations in db/db-MSC via pyruvate kinase M2 (PKM2) activation. GPC3-knockdown reprogrammed-db/db-MSC restored their energy metabolic rates, immunomodulation, angiogenesis, and cardiac reparative activities. Together, these data indicate that GPC3-metabolic reprogramming in diabetic MSC may represent a strategy to enhance MSC-based therapeutics for myocardial repair in diabetic patients.
Collapse
Affiliation(s)
- Darukeshwara Joladarashi
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Charan Thej
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Vandana Mallaredy
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ajit Magadum
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Maria Cimini
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Carolina Gonzalez
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - May Truongcao
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Joseph T. Nigro
- Center for Biomedical Mass Spectrometry, Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Manveen K. Sethi
- Center for Biomedical Mass Spectrometry, Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Andrew A. Gibb
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, 580 South Preston Street, Louisville, KY, USA
| | - Cindy Benedict
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Walter J. Koch
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
4
|
Wang F, Li Y, Li Z, Zou Z, Lu Y, Xu C, Zhao Z, Wang H, Wang Y, Guo S, Jin L, Wang J, Li Q, Jiang G, Xia F, Shen B, Wu J. Prognostic value of GPC5 polymorphism rs2352028 and clinical characteristics in Chinese lung cancer patients. Future Oncol 2022; 18:3165-3177. [PMID: 36165234 DOI: 10.2217/fon-2022-0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: GPC5 rs2352028 is associated with the risk of lung cancer, but its relationship with lung cancer prognosis is unclear. Materials & methods: The authors collected blood samples from 888 patients with lung cancer and used a Cox proportional hazards model to analyze the association between prognosis and GPC5 polymorphism rs2352028. Results: GPC5 rs2352028 C > T was associated with a better prognosis. Patients with CT genotype had longer overall survival than those with CC genotype. Additionally, older and early-stage patients with CT + TT genotype had a lower risk of death than those with CC genotype. Conclusion: GPC5 rs2352028 C > T may play a protective role in patients with lung cancer and GPC5 rs2352028 may be a potential genetic marker for lung cancer prognosis.
Collapse
Affiliation(s)
- Fan Wang
- Company 1 of Basic Medical Science, Navy Military Medical University, Shanghai, 200433, China
| | - Yutao Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zhengxing Li
- Company 6 of Basic Medical Science, Navy Military Medical University, Shanghai, 200433, China
| | - Zixiu Zou
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yongming Lu
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, 571199, China
| | - Chang Xu
- Clinical College of Xiangnan University, Chenzhou, 423000, China
| | - ZongXu Zhao
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, 571199, China
| | - HuaiZhou Wang
- Department of Laboratory Diagnosis, Navy Military Medical University Affiliated Changhai Hospital, Shanghai, 200433, China
| | - Yi Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Shicheng Guo
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qiang Li
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, TongJi University, Shanghai, 200120, China
| | - GengXi Jiang
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai, 200433, China
| | - Fan Xia
- Department of Respiratory Disease, Navy 905 Hospital, Shanghai, 200235, China
| | - Bo Shen
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Nanjing, 210009, China
| | - Junjie Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Department of Pulmonary and Critical Care Medicine, Shanghai Geriatric Medical Center, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
5
|
Yang X, Chen Y, Zhou Y, Wu C, Li Q, Wu J, Hu WW, Zhao WQ, Wei W, Wu CP, Jiang JT, Ji M. GPC5 suppresses lung cancer progression and metastasis via intracellular CTDSP1/AhR/ARNT signaling axis and extracellular exosome secretion. Oncogene 2021; 40:4307-4323. [PMID: 34079082 DOI: 10.1038/s41388-021-01837-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 04/09/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Glypican-5 (GPC5) is a member of heparan sulfate proteoglycans, and its biological importance in initiation and progression of lung cancer remains controversial. In the present study, we revealed that GPC5 transcriptionally enhanced the expression of CTDSP1 (miR-26b host gene) via AhR-ARNT pathway, and such up-regulation of CTDSP1 intracellularly contributed to the inhibited proliferation of lung cancer cells. Moreover, exosomes derived from GPC5-overexpressing human lung cancer cells (GPC5-OE-derived exosomes) had an extracellular repressive effect on human lymphatic endothelial cells (hLECs), leading to decreased tube formation and migration. Comparison between GPC5-WT- and GPC5-OE-derived exosomes showed that miR-26b (embedded within introns of CTDSP1 gene) was significantly up-regulated in GPC5-OE-derived exosomes and critical to the influence on hLECs. On the mechanism, we demonstrated that miR-26b transferred into hLECs directly targeted to PTK2 3'-UTR and led to PTK2 down-regulation, resulting in defects in tube formation and migration of hLECs. By uncovering the regulation network among GPC5, miR-26b, miR-26b host gene (CTDSP1), and target gene (PTK2), our findings demonstrated that GPC5 functioned as a tumor suppressor in human lung cancer.
Collapse
Affiliation(s)
- Xin Yang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China. .,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, P.R. China. .,Institute of Cell Therapy, Soochow University, Changzhou, P.R. China.
| | - Yan Chen
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - You Zhou
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, P.R. China.,Institute of Cell Therapy, Soochow University, Changzhou, P.R. China.,Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Chen Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Qing Li
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Jun Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Wen Wei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Wei Qing Zhao
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Wei Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Chang Ping Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Jing Ting Jiang
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, P.R. China. .,Institute of Cell Therapy, Soochow University, Changzhou, P.R. China. .,Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China.
| | - Mei Ji
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China.
| |
Collapse
|
6
|
de Moraes GFA, Listik E, Justo GZ, Vicente CM, Toma L. The Glypican proteoglycans show intrinsic interactions with Wnt-3a in human prostate cancer cells that are not always associated with cascade activation. BMC Mol Cell Biol 2021; 22:26. [PMID: 33947326 PMCID: PMC8097805 DOI: 10.1186/s12860-021-00361-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/01/2021] [Indexed: 01/12/2023] Open
Abstract
Background Prostate cancer occurs through multiple steps until advanced metastasis. Signaling pathways studies can result in the identification of targets to interrupt cancer progression. Glypicans are cell surface proteoglycans linked to the membrane through glycosylphosphatidylinositol. Their interaction with specific ligands has been reported to trigger diverse signaling, including Wnt. In this study, prostate cancer cell lines PC-3, DU-145, and LNCaP were compared to normal prostate RWPE-1 cell line to investigate glypican family members and the activation of the Wnt signaling pathway. Results Glypican-1 (GPC1) was highly expressed in all the examined cell lines, except for LNCaP, which expressed glypican-5 (GPC5). The subcellular localization of GPC1 was detected on the cell surface of RWPE-1, PC-3, and DU-145 cell lines, while GPC5 suggested cytoplasm localization in LNCaP cells. Besides glypican, flow cytometry analysis in these prostate cell lines confirmed the expression of Wnt-3a and unphosphorylated β-catenin. The co-immunoprecipitation assay revealed increased levels of binding between Wnt-3a and glypicans in cancer cells, suggesting a relationship between these proteoglycans in this pathway. A marked increase in nuclear β-catenin was observed in tumor cells. However, only PC-3 cells demonstrated activation of canonical Wnt signaling, according to the TOPFLASH assay. Conclusions GPC1 was the majorly expressed gene in all the studied cell lines, except for LNCaP, which expressed GPC5. We assessed by co-immunoprecipitation that these GPCs could interact with Wnt-3a. However, even though nuclear β-catenin was found increased in the prostate cancer cells (i.e., PC-3, DU-145 and LNCaP), activation of Wnt pathway was only found in PC-3 cells. In these PC-3 cells, GPC1 and Wnt-3a revealed high levels of colocalization, as assessed by confocal microscopy studies. This suggests a localization at the cellular surface, where Frizzled receptor is required for downstream activation. The interaction of Wnt-3a with GPCs in DU-145 and LNCaP cells, which occurs in absence of Wnt signaling activation, requires further studies. Once non-TCF-LEF proteins can also bind β-catenin, another signaling pathway may be involved in these cells with regulatory function. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00361-x.
Collapse
Affiliation(s)
- Gabrielle Ferrante Alves de Moraes
- Departamento de Bioquímica (Campus São Paulo), Universidade Federal de São Paulo, Rua Três de Maio, P.O. Box: 04044-020, São Paulo, SP, 100, Brazil
| | - Eduardo Listik
- Departamento de Bioquímica (Campus São Paulo), Universidade Federal de São Paulo, Rua Três de Maio, P.O. Box: 04044-020, São Paulo, SP, 100, Brazil
| | - Giselle Zenker Justo
- Departamento de Bioquímica (Campus São Paulo), Universidade Federal de São Paulo, Rua Três de Maio, P.O. Box: 04044-020, São Paulo, SP, 100, Brazil.,Departamento de Ciências Biológicas (Campus Diadema), Universidade Federal de São Paulo, Rua Três de Maio, P.O. Box: 04044-020, São Paulo, SP, 100, Brazil
| | - Carolina Meloni Vicente
- Departamento de Bioquímica (Campus São Paulo), Universidade Federal de São Paulo, Rua Três de Maio, P.O. Box: 04044-020, São Paulo, SP, 100, Brazil
| | - Leny Toma
- Departamento de Bioquímica (Campus São Paulo), Universidade Federal de São Paulo, Rua Três de Maio, P.O. Box: 04044-020, São Paulo, SP, 100, Brazil.
| |
Collapse
|
7
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Heparan Sulfate Proteoglycan Signaling in Tumor Microenvironment. Int J Mol Sci 2020; 21:ijms21186588. [PMID: 32916872 PMCID: PMC7554799 DOI: 10.3390/ijms21186588] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
In the last few decades, heparan sulfate (HS) proteoglycans (HSPGs) have been an intriguing subject of study for their complex structural characteristics, their finely regulated biosynthetic machinery, and the wide range of functions they perform in living organisms from development to adulthood. From these studies, key roles of HSPGs in tumor initiation and progression have emerged, so that they are currently being explored as potential biomarkers and therapeutic targets for cancers. The multifaceted nature of HSPG structure/activity translates in their capacity to act either as inhibitors or promoters of tumor growth and invasion depending on the tumor type. Deregulation of HSPGs resulting in malignancy may be due to either their abnormal expression levels or changes in their structure and functions as a result of the altered activity of their biosynthetic or remodeling enzymes. Indeed, in the tumor microenvironment, HSPGs undergo structural alterations, through the shedding of proteoglycan ectodomain from the cell surface or the fragmentation and/or desulfation of HS chains, affecting HSPG function with significant impact on the molecular interactions between cancer cells and their microenvironment, and tumor cell behavior. Here, we overview the structural and functional features of HSPGs and their signaling in the tumor environment which contributes to tumorigenesis and cancer progression.
Collapse
|
9
|
Guan Y, Liu L, Jia Q, Jin X, Pang Y, Meng F, Zhang X, Shen H. The Role of Cell Growth-Related Gene Copy Number Variation in Autoimmune Thyroid Disease. Biol Trace Elem Res 2020; 195:409-416. [PMID: 31494809 DOI: 10.1007/s12011-019-01880-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/20/2019] [Indexed: 01/05/2023]
Abstract
Autoimmune thyroid disease (AITD) is a recurrent and refractory clinical endocrine disease. Some studies have shown that the incidence of AITD is not only related to iodine, a kind of environmental factor, but that susceptibility genes also play a crucial role in its pathogenesis. Since research on susceptibility genes is still underway, the aims of this study were to assess the association between copy number variations (CNVs) and AITD, to identify genes related to susceptibility to AITD, and to explore the risk factors in the occurrence of AITD. Blood samples from five AITD patients and five controls from each area were assessed by chromosome microarray to identify candidate genes. The copy number (CN) of the candidate genes and urinary iodine levels were determined in adults, including 158 AITD patients and 181 controls, from areas having different iodine statuses. The cell growth-related genes, glypican 5 (GPC5), B9 domain containing 2 (B9D2), and ankyrin repeat and suppressor of cytokine signaling [SOCS] box-containing protein family 11 (ASB11), were selected as the candidate genes. The distribution of GPC5, B9D2, and ASB11 CNVs in AITD patients and controls was significantly different, and high urinary iodine levels and GPC5 CNVs are risk factors for AITD. There was no significant association between urinary iodine level and CNVs of the candidate genes. High urinary iodine levels and GPC5 CNVs are risk factors for AITD, but an association with the occurrence of AITD was not found.
Collapse
Affiliation(s)
- Yunfeng Guan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Harbin Center for Disease Control and Prevention, Harbin, China
| | - Lixiang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Qingzhen Jia
- Institute for Endemic Disease Prevention and Treatment of Shanxi Province, Linfen, Shanxi, China
| | - Xing Jin
- Department of Epidemiology, School of Public Health, Dalian Medical University, Dalian, China
| | - Yi Pang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Fangang Meng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Xiaoye Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Hongmei Shen
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China.
- Key Laboratory of Etiology and Epidemiology, National Health and Family Planning Commission, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China.
| |
Collapse
|
10
|
Hong X, Zhang Z, Pan L, Ma W, Zhai X, Gu C, Zhang Y, Bi X, Huang W, Pei H, Liu Z. MicroRNA-301b promotes the proliferation and invasion of glioma cells through enhancing activation of Wnt/β-catenin signaling via targeting Glypican-5. Eur J Pharmacol 2019; 854:39-47. [PMID: 30951720 DOI: 10.1016/j.ejphar.2019.03.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/14/2019] [Accepted: 03/28/2019] [Indexed: 02/08/2023]
Abstract
Accumulating evidence has suggested that Glypican-5 (GPC5) is a tumor suppressor gene in many types of cancers. However, whether GPC5 is involved in glioma remains unknown. This study was designed to explore the expression, biological function and regulatory mechanism of GPC5 in glioma. Our results demonstrated that GPC5 expression was significantly decreased in multiple glioma cell lines. Gain-of-function experiments showed that the ectopic expression of GPC5 markedly inhibited the proliferation, invasion and Wnt/β-catenin signaling of glioma cell lines. GPC5 was identified as a target gene of microRNA-301b (miR-301b). Further data showed that miR-301b expression was significantly up-regulated in glioma tissues and cell lines. In addition, miR-301b expression was inversely correlated with GPC5 expression in clinical glioma tissues. The overexpression of miR-301b promoted the proliferation, invasion and Wnt/β-catenin signaling of glioma cell lines, whereas the inhibition of miR-301b showed the opposite effect. However, the silencing of GPC5 significantly reversed the antitumor effect of miR-301b inhibition. Overall, our results revealed a tumor suppressive role of GPC5 in glioma and suggested that GPC5 expression was regulated by miR-301b. Our study indicates that the inhibition of miR-301b represses the proliferation and invasion of glioma cells by up-regulating GPC5 expression.
Collapse
Affiliation(s)
- Xin Hong
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Zhengliang Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Longfei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Wei Ma
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Xu Zhai
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Changwei Gu
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Yaru Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Xiaoju Bi
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Wan Huang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Honghong Pei
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China.
| | - Zhong Liu
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China.
| |
Collapse
|
11
|
Xie M, Li JP. Heparan sulfate proteoglycan - A common receptor for diverse cytokines. Cell Signal 2018; 54:115-121. [PMID: 30500378 DOI: 10.1016/j.cellsig.2018.11.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/04/2023]
Abstract
Heparan sulfate proteoglycans (HSPG) are macromolecular glyco-conjugates expressed ubiquitously on the cell surface and in the extracellular matrix where they interact with a wide range of ligands to regulate many aspects of cellular function. The capacity of the side glycosaminoglycan chain heparan sulfate (HS) being able to interact with diverse protein ligands relies on its complex structure that is generated by a controlled biosynthesis process, involving the actions of glycosyl-transferases, sulfotransferases and the glucuronyl C5-epimerase. It is believed that activities of the modification enzymes control the HS structures that are designed to serve the biological functions in a given cell or biological status. In this review, we briefly discuss recent understandings on the roles of HSPG in cytokine stimulated cellular signaling, focusing on FGF, TGF-β, Wnt, Hh, HGF and VEGF.
Collapse
Affiliation(s)
- Meng Xie
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
12
|
Huang WQ, Yi KH, Li Z, Wang H, Li ML, Cai LL, Lin HN, Lin Q, Tzeng CM. DNA Methylation Profiling Reveals the Change of Inflammation-Associated ZC3H12D in Leukoaraiosis. Front Aging Neurosci 2018; 10:143. [PMID: 29875652 PMCID: PMC5974056 DOI: 10.3389/fnagi.2018.00143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/27/2018] [Indexed: 01/04/2023] Open
Abstract
Leukoaraiosis (LA) is neuroimaging abnormalities of the cerebral white matter in elderly people. However, the molecular mechanisms underlying the cerebral white matter lesions remain unclear. Here, we reported an epigenetic basis and potential pathogenesis for this complex illness. 317 differentially methylated genes were identified to distinguish the mechanism of occurrence and progression of LA. Gene-Ontology pathway analysis highlighted that those genes with epigenetic changes are mostly involved in four major signaling pathways including inflammation and immune response-associated processes (antigen processing and presentation, T cell costimulation and interferon-γ-mediated signaling pathway), synapse assembly, synaptic transmission and cell adhesion. Moreover, immune response seems to be specific to LA occurrence and subsequent disruption of nervous system functions could drive the progression of LA. The significant change of inflammation-associated ZC3H12D in promoter methylation and mRNA expression was implicated in the occurrence of LA, suggesting its potential functions in the molecular mechanism of LA. Our results suggested that inflammation-associated signaling pathways were involved in the pathogenesis of LA and ZC3H12D may contribute to such inflammatory process underlying LA, and further echoed it as a neuroinflammatory disorder in central nervous system (CNS).
Collapse
Affiliation(s)
- Wen-Qing Huang
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Key Laboratory for Cancer T-Cell Theranostics and Clinical Translation, Xiamen University, Fujian, China.,Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ke-Hui Yi
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Department of Neurology, The First Clinical College of Fujian Medical University, Fuzhou, China
| | - Zhi Li
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Key Laboratory for Cancer T-Cell Theranostics and Clinical Translation, Xiamen University, Fujian, China
| | - Han Wang
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Key Laboratory for Cancer T-Cell Theranostics and Clinical Translation, Xiamen University, Fujian, China
| | - Ming-Li Li
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Key Laboratory for Cancer T-Cell Theranostics and Clinical Translation, Xiamen University, Fujian, China
| | - Liang-Liang Cai
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Key Laboratory for Cancer T-Cell Theranostics and Clinical Translation, Xiamen University, Fujian, China
| | - Hui-Nuan Lin
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Key Laboratory for Cancer T-Cell Theranostics and Clinical Translation, Xiamen University, Fujian, China
| | - Qing Lin
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Department of Neurology, The First Clinical College of Fujian Medical University, Fuzhou, China
| | - Chi-Meng Tzeng
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Key Laboratory for Cancer T-Cell Theranostics and Clinical Translation, Xiamen University, Fujian, China.,INNOVA Cell: TDx/Clinics and TRANSLA Health Group, Yangzhou, China.,College of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China.,Jiansu Provincial Institute of Translation Medicine and Women-Child Health Care Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Wang S, Qiu M, Xia W, Xu Y, Mao Q, Wang J, Dong G, Xu L, Yang X, Yin R. Glypican-5 suppresses Epithelial-Mesenchymal Transition of the lung adenocarcinoma by competitively binding to Wnt3a. Oncotarget 2018; 7:79736-79746. [PMID: 27806326 PMCID: PMC5346747 DOI: 10.18632/oncotarget.12945] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/14/2016] [Indexed: 12/14/2022] Open
Abstract
We previously demonstrated that Glypican-5 (GPC5), one of the members of heparan sulfate proteoglycan, was a novel tumor metastasis suppressor in lung adenocarcinoma (LAC). However, it remains unclear how GPC5 suppresses lung cancer metastasis. Here, we found over-expression GPC5 induced significant Epithelial-Mesenchymal Transition (EMT) process of A549 cells in vitro. Bioinformatic analysis of RNA sequencing data indicated that GPC5 was co-expressed with EMT related markers, E-cadherin and Vimentin. Wnt/β-catenin signaling pathway was also significantly enriched after overexpressing GPC5. Further in vitro experiments demonstrated that overexpressing GPC5 could block the translocation of β-catenin from cytoplasm to nucleus and therefore inactivate the Wnt/β-catenin signaling pathway by competitively binding to Wnt3a. Subsequent rescue experiments demonstrated that GPC5-induced metastatic phenotype and EMT process suppression were significantly reversed when cells cultured in Wnt3a conditioned media. By establishing the metastatic model in severe combined immune deficiency (SCID) mice, we also demonstrated that overexpressing GPC5 suppressed LAC migration and accordingly alerted EMT related markers, which including up-regulated E-cadherin and down-regulated Vimentin in both lung and liver metastasis. Finally, clinical samples of LAC further validated that GPC5 expression was positively correlated with E-cadherin, and negatively correlated with both Twist1 and MMP2. Taken together, these data suggested that GPC5 is able to suppress the LAC metastasis by competitively binding to Wnt3a and inactivating the Wnt/β-catenin signaling pathway. Our findings expanded the role and the molecular mechanism of GPC5 on malignant bionomics of LAC.
Collapse
Affiliation(s)
- Siwei Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210000, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210000, China
| | - Wenjia Xia
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210000, China
| | - Youtao Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Qixing Mao
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210000, China
| | - Jie Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Gaochao Dong
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Xin Yang
- Department of Oncology, The Third Hospital of Soochow University, Changzhou, 213003, China
| | - Rong Yin
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| |
Collapse
|
14
|
Yuan Q, Zhang Y, Li J, Cao G, Yang W. High expression of microRNA-4295 contributes to cell proliferation and invasion of pancreatic ductal adenocarcinoma by the down-regulation of Glypican-5. Biochem Biophys Res Commun 2018; 497:73-79. [PMID: 29407175 DOI: 10.1016/j.bbrc.2018.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/03/2018] [Indexed: 12/21/2022]
Abstract
A growing amount of evidence has documented that Glypican-5 (GPC5) is an important regulator of tumor progression. However, little is known about the role of GPC5 in pancreatic ductal adenocarcinoma (PDAC). In this study, we aimed to investigate the potential function and regulatory mechanism of GPC5 in PDAC. We found that GPC5 expression was significantly down-regulated in PDAC cell lines. The overexpression of GPC5 inhibited cell proliferation and the invasion of PDAC cells. In addition, the overexpression of GPC5 suppressed Wnt/β-catenin signaling in PDAC cells. Bioinformatic analysis predicted that GPC5 was a target gene of microRNA-4295 (miR-4295). The inhibition of miR-4295 significantly up-regulated the expression of GPC5. Moreover, the inhibition of miR-4295 inhibited the proliferation, invasion and Wnt/β-catenin signaling in PDAC cells. Notably, the knockdown of GPC5 partially reversed the anti-tumor effect of miR-4295 inhibition. Taken together, our results suggest GPC5 as a tumor suppressor in PDAC and its expression is possibly regulated by miR-4295. Our study indicates that the miR-4295/GPC5 axis may play an important role in the pathogenesis of PADC and has potential applications for the development of PDAC therapy.
Collapse
Affiliation(s)
- Qinggong Yuan
- Department of General Surgery, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an 710004, China
| | - Yan Zhang
- Department of General Surgery, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an 710004, China
| | - Junhui Li
- Department of General Surgery, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an 710004, China
| | - Gang Cao
- Department of General Surgery, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an 710004, China
| | - Wenbin Yang
- Department of General Surgery, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
15
|
Sun Y, Zhao J, Yin X, Yuan X, Guo J, Bi J. miR-297 acts as an oncogene by targeting GPC5 in lung adenocarcinoma. Cell Prolif 2016; 49:636-43. [PMID: 27554041 DOI: 10.1111/cpr.12288] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/23/2016] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Emerging studies have demonstrated that microRNAs (miRNAs) play crucial roles in carcinogenesis of many developing human tumours. However, the functions and mechanisms of miR-297 in lung cancer have, up to now, been largely undefined. MATERIALS AND METHODS Here, miR-297 expression was measured in lung adenocarcinoma tissues and cell lines, using qRT-PCR. Lung adenocarcinoma cell line was treated with an miR-297 mimic. MTT and colony analysis were performed to detect cell proliferation and colony formation. The direct target gene of miR-297 was assessed by qRT-PCR, Western blotting and luciferase assays. RESULTS We demonstrated that miR-297 expression was upregulated in lung adenocarcinomas compared to adjacent normal tissues. Expression of miR-297 was also upregulated in tested lung adenocarcinoma cell lines. Ectopic expression of miR-297 enhanced lung adenocarcinoma cell proliferation and colony formation. Furthermore, overexpression of miR-297 promoted cell migration and invasion. In addition, we identified Glypican-5 (GPC5) as a direct target gene of miR-297 in lung adenocarcinoma cells. Expression of GPC5 was downregulated in both lung adenocarcinoma tissues and cell lines. Moreover, expression of GPC5 was inversely associated with expression of miR-297 in lung adenocarcinoma tissues. CONCLUSIONS These results suggest that miR-297 acted as an oncogenic miRNA, partly by targeting GPC5, adenocarcinoma of the lung.
Collapse
Affiliation(s)
- Yunchuan Sun
- Department of Radiation and Chemotherapy, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, Hebei, 061000, China
| | - Jianyong Zhao
- Department of Radiation and Chemotherapy, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, Hebei, 061000, China
| | - Xiaoming Yin
- Department of Radiation and Chemotherapy, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, Hebei, 061000, China
| | - Xiangkun Yuan
- Department of Radiation and Chemotherapy, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, Hebei, 061000, China
| | - Jianfei Guo
- Department of Radiation and Chemotherapy, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, Hebei, 061000, China
| | - Jianqiang Bi
- Department of Radiation and Chemotherapy, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, Hebei, 061000, China.
| |
Collapse
|
16
|
Zhang H, Wang G, Yang X, Qiu M, Xu L. [Investigation of Gene Expression Profile of A549 Cells after Overexpression of GPC5
by High Throughput Transcriptome Sequencing]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:545-9. [PMID: 27561806 PMCID: PMC5972980 DOI: 10.3779/j.issn.1009-3419.2016.08.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
背景与目的 磷脂酰肌醇蛋白聚糖-5(glypican-5, GPC5)是一个重要的抑癌基因, 然而GPC5对肺腺癌细胞增殖能力和基因表达的影响目前研究甚少。本研究拟在肺腺癌A549细胞中过表达GPC5以研究细胞增殖能力和基因表达变化情况。 方法 通过慢病毒载体构建稳定过表达GPC5的A549细胞株, 通过Cell Counter Kit 8 (CCK8)、平板克隆和EdU实验检测细胞增殖能力; 通过高通量转录组测序研究基因表达变化。 结果 相对于空白载体组, CCK8实验发现过表达GPC5可以明显抑制A549细胞的增殖速率; 平板克隆实验结果显示, 过表达GPC5之后A549细胞克隆形成能力下降(181±17 vs 278±23);EdU染色结果显示过表达GPC5后阳性染色细胞比例下降。转录组测序结果提示过表达GPC5之后, 2, 108个基因表达发生明显变化, 其中具有正性调节细胞增殖作用的基因明显下调。 结论 过表达GPC5可以明显抑制肺腺癌细A549的增殖能力, 而且过表达GPC5后具有正性调节细胞增殖作用的基因表达下调。
Collapse
Affiliation(s)
- Haitian Zhang
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China
| | - Guoxiang Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Xin Yang
- Department of Oncology, the First People's Hospital of Changzhou, Changzhou 213003, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| |
Collapse
|
17
|
Abstract
Glypican-5 (GPC5) belongs to the glypican family of proteoglycans that have been implicated in a variety of physiological processes, ranging from cell proliferation to morphogenesis. However, the role of GPC5 in human cancer remains poorly understood. We report that knockdown of GPC5 in bronchial epithelial cells promoted, and forced expression of GPC5 in non-small lung cancer (NSCLC) cells suppressed, the anchorage-independent cell growth. In vivo, expression of GPC5 inhibited xenograft tumor growth of NSCLC cells. Furthermore, we found that GPC5 was expressed predominantly as a membrane protein, and its expression led to diminished phosphorylation of several oncogenic receptor tyrosine kinases, including the ERBB family members ERBB2 and ERBB3, which play critical roles in lung tumorigenesis. Collectively, our results suggest that GPC5 may act as a tumor suppressor, and reagents that activate GPC5 may be useful for treating NSCLC. GPC5 suppresses anchorage-independent growth of lung cancer cells. GPC5 suppresses xenograft growth of lung cancer cells. GPC5 is localized to the membrane and suppresses oncogenic RTKs.
Collapse
|
18
|
Zhao D, Liu S, Sun L, Zhao Z, Liu S, Kuang X, Shu J, Luo B. Glypican-4 gene polymorphism (rs1048369) and susceptibility to Epstein-Barr virus-associated and -negative gastric carcinoma. Virus Res 2016; 220:52-6. [DOI: 10.1016/j.virusres.2016.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/03/2016] [Accepted: 04/04/2016] [Indexed: 12/14/2022]
|
19
|
Yuan S, Yu Z, Liu Q, Zhang M, Xiang Y, Wu N, Wu L, Hu Z, Xu B, Cai T, Ma X, Zhang Y, Liao C, Wang L, Yang P, Bai L, Li Y. GPC5, a novel epigenetically silenced tumor suppressor, inhibits tumor growth by suppressing Wnt/β-catenin signaling in lung adenocarcinoma. Oncogene 2016; 35:6120-6131. [DOI: 10.1038/onc.2016.149] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 03/19/2016] [Accepted: 03/25/2016] [Indexed: 02/06/2023]
|
20
|
Wang H, Dong X, Gu X, Qin R, Jia H, Gao J. The MicroRNA-217 Functions as a Potential Tumor Suppressor in Gastric Cancer by Targeting GPC5. PLoS One 2015; 10:e0125474. [PMID: 26098560 PMCID: PMC4476558 DOI: 10.1371/journal.pone.0125474] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/24/2015] [Indexed: 01/09/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. Emerging evidence has shown that aberrant expression of microRNAs (miRNAs) plays important roles in cancer progression. However, little is known about the potential role of miR-217 in GC. In this study, we investigated the role of miR-217 on GC cell proliferation and invasion. The expression of miR-217 was down-regulated in GC cells and human GC tissues. Enforced expression of miR-217 inhibited GC cells proliferation and invasion. Moreover, Glypican-5 (GPC5), a new ocncogene, was identified as the potential target of miR-217. In addition, overexpression of miR-217 impaired GPC5-induced promotion of proliferation and invasion in GC cells. In conclusion, these findings revealed that miR-217 functioned as a tumor suppressor and inhibited the proliferation and invasion of GC cells by targeting GPC5, which might consequently serve as a therapeutic target for GC patients.
Collapse
Affiliation(s)
- Hui Wang
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Xiaolin Dong
- Department of neurology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Xin Gu
- Department of General Surgery, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Rong Qin
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Hongping Jia
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Jianpeng Gao
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, 650051, Yunnan, China
- * E-mail:
| |
Collapse
|
21
|
Transcriptional Dynamics of Immortalized Human Mesenchymal Stem Cells during Transformation. PLoS One 2015; 10:e0126562. [PMID: 25978455 PMCID: PMC4433180 DOI: 10.1371/journal.pone.0126562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 04/03/2015] [Indexed: 12/23/2022] Open
Abstract
Comprehensive analysis of alterations in gene expression along with neoplastic transformation in human cells provides valuable information about the molecular mechanisms underlying transformation. To further address these questions, we performed whole transcriptome analysis to the human mesenchymal stem cell line, UE6E7T-3, which was immortalized with hTERT and human papillomavirus type 16 E6/E7 genes, in association with progress of transformation in these cells. At early stages of culture, UE6E7T-3 cells preferentially lost one copy of chromosome 13, as previously described; in addition, tumor suppressor genes, DNA repair genes, and apoptosis-activating genes were overexpressed. After the loss of chromosome 13, additional aneuploidy and genetic alterations that drove progressive transformation, were observed. At this stage, the cell line expressed oncogenes as well as genes related to anti-apoptotic functions, cell-cycle progression, and chromosome instability (CIN); these pro-tumorigenic changes were concomitant with a decrease in tumor suppressor gene expression. At later stages after prolong culture, the cells exhibited chromosome translocations, acquired anchorage-independent growth and tumorigenicity in nude mice, (sarcoma) and exhibited increased expression of genes encoding growth factor and DNA repair genes, and decreased expression of adhesion genes. In particular, glypican-5 (GPC5), which encodes a cell-surface proteoglycan that might be a biomarker for sarcoma, was expressed at high levels in association with transformation. Patched (Ptc1), the cell surface receptor for hedgehog (Hh) signaling, was also significantly overexpressed and co-localized with GPC5. Knockdown of GPC5 expression decreased cell proliferation, suggesting that it plays a key role in growth in U3-DT cells (transformants derived from UE6E7T-3 cells) through the Hh signaling pathway. Thus, the UE6E7T-3 cell culture model is a useful tool for assessing the functional contribution of genes showed by expression profiling to the neoplastic transformation of human fibroblasts and human mesenchymal stem cells (hMSC).
Collapse
|
22
|
Polymorphisms in C-reactive protein and Glypican-5 are associated with lung cancer risk and Gartrokine-1 influences Cisplatin-based chemotherapy response in a Chinese Han population. DISEASE MARKERS 2015; 2015:824304. [PMID: 25999661 PMCID: PMC4426656 DOI: 10.1155/2015/824304] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/24/2014] [Accepted: 01/15/2015] [Indexed: 11/17/2022]
Abstract
The role of genetics in progression of cancer is an established fact, and susceptibility risk and difference in outcome to chemotherapy may be caused by the variation in low-penetrance alleles of risk genes. We selected seven genes (CRP, GPC5, ACTA2, AGPHD1, SEC14L5, RBMS3, and GKN1) that previously reported link to lung cancer (LC) and genotyped single nucleotide polymorphisms (SNPs) of these genes in a case-control study. A protective allele "C" was found in rs2808630 of the C-reactive protein (CRP). Model association analysis found genotypes "T/C" and "C/C" in the dominant model and genotype "T/C" in the overdominant model of rs2808630 associated with reduced LC risk. Gender-specific analysis in each model showed that genotypes "T/T" and "C/C" in rs2352028 of the Glypican 5 (GPC5) were associated with increased LC risk in males. Logistic regression analysis showed "C/T" genotype carriers of rs4254535 in the Gastrokine 1 (GKN1) had less likelihood to have chemotherapy response. Our results suggest a potential association between CRP and GPC5 variants with LC risk; variation in GKN1 is associated with chemotherapy response in the Chinese Han population.
Collapse
|
23
|
Dinccelik-Aslan M, Gumus-Akay G, Elhan AH, Unal E, Tukun A. Diagnostic and prognostic significance of glypican 5 and glypican 6 gene expression levels in gastric adenocarcinoma. Mol Clin Oncol 2015; 3:584-590. [PMID: 26137271 DOI: 10.3892/mco.2015.486] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 12/09/2014] [Indexed: 12/26/2022] Open
Abstract
Gastric Cancer is one of the most common malignancies worldwide and the second most common cause of cancer-related mortality. Previous studies revealed several genetic alterations specific to gastric cancer. In this study, we aimed to investigate the diagnostic and prognostic significance of the expression levels of the glypican 5 and glypican 6 genes (GPC5 and GPC6, respectively) in gastric cancer. For this purpose, GPC5 and GPC6 expression was quantitatively determined by quantitative polymerase chain reaction method in normal gastric mucosa and intestinal type gastric adenocarcinoma samples from 35 patients. The expression levels of GPC5 and GPC6 were compared between normal and tumor tissues. Additionally, the association of the expression levels in tumor tissues with several clinicopathological parameters was evaluated. Although GPC5 was not expressed in any of the samples, the expression of GPC6, which was detected in both groups, was found to be significantly higher in tumor tissues compared to that in normal samples (P=0.039). However, there was no statistically significant association between GPC6 expression and any of the clinicopathological parameters investigated (P>0.05). Our findings suggested that an increase in GPC6 expression levels may be implicated in gastric cancer development, but not in cancer progression.
Collapse
Affiliation(s)
| | - Guvem Gumus-Akay
- Brain Research Centre, Ankara University, Mamak, Ankara 06900, Turkey
| | - Atilla Halil Elhan
- Department of Biostatistics, Faculty of Medicine, Ankara University, Sihhiye, Ankara 06100, Turkey
| | - Ekrem Unal
- Department of Surgical Oncology, Research and Training Hospital, Faculty of Medicine, Ankara University, Cebeci, Ankara 06580, Turkey
| | - Ajlan Tukun
- Department of Medical Genetics, Faculty of Medicine, Ankara University, Sihhiye, Ankara 06100, Turkey
| |
Collapse
|
24
|
Liu L, Zhong R, Zou L, Fu J, Zhu B, Chen W, Ye X, Gao Y, Yang Y, Christiani DC, Chen S, Miao X. Variants in the 5′-upstream region of GPC5 confer risk of lung cancer in never smokers. Cancer Epidemiol 2014; 38:66-72. [DOI: 10.1016/j.canep.2013.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 12/23/2013] [Accepted: 12/28/2013] [Indexed: 11/17/2022]
|
25
|
Shin JG, Kim HJ, Park BL, Bae JS, Kim LH, Cheong HS, Shin HD. Putative association of GPC5 polymorphism with the risk of inflammatory demyelinating diseases. J Neurol Sci 2013; 335:82-8. [DOI: 10.1016/j.jns.2013.08.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 11/27/2022]
|
26
|
Yang X, Zhang Z, Qiu M, Hu J, Fan X, Wang J, Xu L, Yin R. Glypican-5 is a novel metastasis suppressor gene in non-small cell lung cancer. Cancer Lett 2013; 341:265-73. [DOI: 10.1016/j.canlet.2013.08.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/12/2013] [Accepted: 08/13/2013] [Indexed: 01/10/2023]
|
27
|
Gailey MP, Bellizzi AM. Immunohistochemistry for the novel markers glypican 3, PAX8, and p40 (ΔNp63) in squamous cell and urothelial carcinoma. Am J Clin Pathol 2013; 140:872-80. [PMID: 24225756 DOI: 10.1309/ajcp4nskw5tlgtds] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES To examine squamous cell carcinomas (SCCs) from diverse anatomic sites and invasive urothelial carcinomas (UCs) for expression of the oncofetal antigen glypican 3 (GPC3), the paired box transcription factor PAX8, and the ΔN isoform of p63 (p40). METHODS Immunohistochemistry for GPC3, PAX8, and p40 was performed on whole sections of 107 SCCs from 11 anatomic sites and 49 UCs; evaluation included extent and intensity of staining. RESULTS GPC3 was detected in 20% of SCCs and 12% of UCs and PAX8 in 3% of SCCs, limited to the uterine cervix, and 10% of UCs. p40 Was found in 99% of SCCs and 96% of UCs. CONCLUSIONS GPC3 expression is frequent in SCC/UC, awareness of which should guard against an incorrect diagnosis of hepatocellular carcinoma, while PAX8, limited in distribution, may have some use in suggesting a cervical or urothelial tract origin in a metastatic squamotransitional carcinoma of unknown primary. There is no drop-off in sensitivity for the diagnoses of SCC or UC with ΔNp63-specific immunohistochemistry, and if this performance can be extended to other applications, p40 may supplant the dominant "pan-p63" antibody clone.
Collapse
Affiliation(s)
- Michael P. Gailey
- Department of Pathology, University of Iowa Hospitals and Clinics, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Andrew M. Bellizzi
- Department of Pathology, University of Iowa Hospitals and Clinics, University of Iowa Carver College of Medicine, Iowa City, IA
| |
Collapse
|
28
|
Li Y, Miao L, Cai H, Ding J, Xiao Y, Yang J, Zhang D. The overexpression of glypican-5 promotes cancer cell migration and is associated with shorter overall survival in non-small cell lung cancer. Oncol Lett 2013; 6:1565-1572. [PMID: 24260047 PMCID: PMC3833948 DOI: 10.3892/ol.2013.1622] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/30/2013] [Indexed: 11/19/2022] Open
Abstract
Although the correlation between glypican-5 (GPC5) and lung cancer is well known, the effect of GPC5 expression on non-small cell lung cancer (NSCLC) survival remains to be determined. In the present study, GPC5 expression in A549, H3255, and SPC-A1 NSCLC cell lines was evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis. GPC5 mRNA and protein expression levels were found to be higher in A549 and H3255 cells compared with SPC-A1 cells. The role of GPC5 in NSCLC cell migration was evaluated in vitro by shRNA-mediated knockdown or the overexpression of GPC5 through scratch and transwell assays. The mean migration rates of cancer cells transfected with pRNAT-shRNA-GPC5-1 were reduced compared with the controls in A549 (P<0.001) and H3255 (P=0.001), while the migration rate of SPC-A1 with GPC5 overexpression was higher than that of the control (P=0.001). The downregulation of GPC5 impeded the transmigration of A549 and H3255 while the upregulation of GPC5 expression promoted the transmembrane invasion of SPC-A1. Furthermore, a panel of formalin-fixed paraffin-embedded NSCLC tissues from 127 patients undergoing curative resection (stages I, II and III) between January, 2003 and December, 2008 were obtained in order to investigate the correlation between GPC5 expression and clinicopathological factors using immunohistochemical methods. The results demonstrated that high GPC5 expression levels in NSCLC were associated with respiratory symptoms in lung cancer diagnosis, poor differentiation, vascular invasion, regional lymph node metastasis and a higher TNM stage. Using the Kaplan-Meier method, NSCLC patients with high levels of GPC5 expression demonstrated a significantly shorter overall survival time compared with those with low GPC5 expression levels (median postsurgical survival time: 14.0 months vs. 59.0 months, P=0.001). GPC5 expression was also identified as an independent prognostic factor by Cox regression analysis [adjusted hazard ratio: 2.18; 95% confidence interval (CI): 1.35–3.52; P=0.001]. This study suggested that increased levels of GPC5 expression are a poor prognostic marker for NSCLC.
Collapse
Affiliation(s)
- Yan Li
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | | | | | | | | | | | | |
Collapse
|
29
|
Zheng Y, Kan M, Yu L, Niu X, Zhou D, He L, Lu S, Liu Y. GPC5 rs2352028 polymorphism and risk of lung cancer in Han Chinese. Cancer Invest 2012; 30:13-9. [PMID: 22236185 DOI: 10.3109/07357907.2011.630052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
rs2352028 in GPC5 has been reported to be associated with the risk of lung cancer in never-smokers. We performed a replication study in 1,045 lung cancer patients and 1,094 controls of Han Chinese origin. We found no association between rs2352028 and lung cancer/adenocarcinoma in never-smokers, but a p value of .04 (under the recessive model) was obtained between this SNP and overall lung cancer/adenocarcinoma. Our data and a recent meta-analysis suspected the possibility of rs2352028 being a risk variant of lung cancer risk in never-smokers. Our findings suggested that rs2352028 might confer a slight risk to lung cancer/adenocarcinoma.
Collapse
Affiliation(s)
- Yonglan Zheng
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang C, Zhang S, Zhang D, Zhang Z, Xu Y, Liu S. A lung cancer gene GPC5 could also be crucial in breast cancer. Mol Genet Metab 2011; 103:104-5. [PMID: 21396872 DOI: 10.1016/j.ymgme.2011.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 02/06/2011] [Indexed: 10/18/2022]
|
31
|
GPC5 Gene and its Related Pathways in Lung Cancer: Erratum. J Thorac Oncol 2011. [DOI: 10.1097/jto.0b013e318214ebb0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|