1
|
Jin MY, Weaver TE, Farris A, Gupta M, Abd-Elsayed A. Neuromodulation for Peripheral Nerve Regeneration: Systematic Review of Mechanisms and In Vivo Highlights. Biomedicines 2023; 11:biomedicines11041145. [PMID: 37189763 DOI: 10.3390/biomedicines11041145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
While denervation can occur with aging, peripheral nerve injuries are debilitating and often leads to a loss of function and neuropathic pain. Although injured peripheral nerves can regenerate and reinnervate their targets, this process is slow and directionless. There is some evidence supporting the use of neuromodulation to enhance the regeneration of peripheral nerves. This systematic review reported on the underlying mechanisms that allow neuromodulation to aid peripheral nerve regeneration and highlighted important in vivo studies that demonstrate its efficacy. Studies were identified from PubMed (inception through September 2022) and the results were synthesized qualitatively. Included studies were required to contain content related to peripheral nerve regeneration and some form of neuromodulation. Studies reporting in vivo highlights were subject to a risk of bias assessment using the Cochrane Risk of Bias tool. The results of 52 studies indicate that neuromodulation enhances natural peripheral nerve regeneration processes, but still requires other interventions (e.g., conduits) to control the direction of reinnervation. Additional human studies are warranted to verify the applicability of animal studies and to determine how neuromodulation can be optimized for the greatest functional restoration.
Collapse
Affiliation(s)
- Max Y Jin
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tristan E Weaver
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH 43214, USA
| | - Adam Farris
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH 43214, USA
| | - Mayank Gupta
- Kansas Pain Management & Neuroscience Research Center, Overland Park, KS 66210, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
2
|
Jiang Y, Tang X, Li T, Ling J, Yang Y. The success of biomaterial-based tissue engineering strategies for peripheral nerve regeneration. Front Bioeng Biotechnol 2022; 10:1039777. [PMID: 36329703 PMCID: PMC9622790 DOI: 10.3389/fbioe.2022.1039777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022] Open
Abstract
Peripheral nerve injury is a clinically common injury that causes sensory dysfunction and locomotor system degeneration, which seriously affects the quality of the patients' daily life. Long gapped defects in large nerve are difficult to repair via surgery and limited donor source of autologous nerve greatly challenges the successful nerve repair by transplantation. Significantly, remarkable progress has been made in repairing the peripheral nerve injury using artificial nerve grafts and a variety of products for peripheral nerve repair have emerged been approved globally in recent years. The raw materials of these commercial products includes natural/synthetic polymers, extracellular matrix. Despite a lot of effort, the desirable functional recovery still remains great challenges in long gapped nerve defects. Thus this review discusses the recent development of tissue engineering products for peripheral nerve repair and the design of bionic grafts improving the local microenvironment for accelerating nerve regeneration against locomotor disorder, which may provide potential strategies for the repair of long gaps or thick nerve defects by multifunctional biomaterials.
Collapse
Affiliation(s)
- Yuhui Jiang
- Medical School of Nantong University, Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Xiaoxuan Tang
- Medical School of Nantong University, Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Tao Li
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yumin Yang
- Medical School of Nantong University, Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| |
Collapse
|
3
|
Trueman RP, Ahlawat AS, Phillips JB. A Shock to the (Nervous) System: Bioelectricity Within Peripheral Nerve Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1137-1150. [PMID: 34806913 DOI: 10.1089/ten.teb.2021.0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The peripheral nervous system has the remarkable ability to regenerate in response to injury. However, this is only successful over shorter nerve gaps and often provides poor outcomes for patients. Currently, the gold standard of treatment is the surgical intervention of an autograft, whereby patient tissue is harvested and transplanted to bridge the nerve gap. Despite being the gold standard, more than half of patients have dissatisfactory functional recovery after an autograft. Peripheral nerve tissue engineering aims to create biomaterials that can therapeutically surpass the autograft. Current tissue-engineered constructs are designed to deliver a combination of therapeutic benefits to the regenerating nerve, such as supportive cells, alignment, extracellular matrix, soluble factors, immunosuppressants, and other therapies. An emerging therapeutic opportunity in nerve tissue engineering is the use of electrical stimulation (ES) to modify and enhance cell function. ES has been shown to positively affect four key cell types, such as neurons, endothelial cells, macrophages, and Schwann cells, involved in peripheral nerve repair. Changes elicited include faster neurite extension, cellular alignment, and changes in cell phenotype associated with improved regeneration and functional recovery. This review considers the relevant modes of administration and cellular responses that could underpin incorporation of ES into nerve tissue engineering strategies. Impact Statement Tissue engineering is becoming increasingly complex, with multiple therapeutic modalities often included within the final tissue-engineered construct. Electrical stimulation (ES) is emerging as a viable therapeutic intervention to be included within peripheral nerve tissue engineering strategies; however, to date, there have been no review articles that collate the information regarding the effects of ES on key cell within peripheral nerve injury. This review article aims to inform the field on the different therapeutic effects that may be achieved by using ES and how they may become incorporated into existing strategies.
Collapse
Affiliation(s)
- Ryan P Trueman
- Center for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
| | - Ananya S Ahlawat
- Center for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
| | - James B Phillips
- Center for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
4
|
Sturny M, Karakus S, Fraga-Silva R, Stergiopulos N, Burnett AL. Low-Intensity Electrostimulation Enhances Neuroregeneration and Improves Erectile Function in a Rat Model of Cavernous Nerve Injury. J Sex Med 2022; 19:686-696. [PMID: 35288047 DOI: 10.1016/j.jsxm.2022.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Neurogenic erectile dysfunction (ED) following radical prostatectomy (RP) is a frequent complication often leading to erectile tissue remodeling and permanent ED. Low-intensity electrostimulation (LIES) has been shown to enhance peripheral nerve regeneration, however, its application on cavernous nerves (CN) has never been investigated. AIMS To investigate whether LIES enhances CN regeneration, improves erectile function (EF) recovery, and prevents corpora cavernosal remodeling after CN injury, which is a principal factor for ED following RP. METHODS Adult male Sprague-Dawley rats were divided into Sham, Bilateral Cavernous Nerve Injury (BCNI), and BCNI + LIES (1V, 0.1ms, 12Hz, 1h/day). After 7days, EF was assessed (ICP measurement). Penes and CN were collected for molecular analyses of TGF-β1, Il-6, CRP, eNOS, ERK and AKT protein levels in corpus cavernosum (CC), and immunohistological analysis of DHE, total collagen and α-SMA in CC and S-100, Tub-III, DAPI, TUNEL, and nNOS in CN. OUTCOMES Effects of LIES on EF, erectile tissue remodeling and CN structure. RESULTS EF was decreased (P < .05) 7 days after BCNI and increased (P < .05) by LIES. Intracavernosal reactive oxygen species (DHE) was increased (P < .05) after BCNI and normalized by LIES. Protein expressions of TGF-β1, IL-6, and CRP were increased in the penis (P < .05) after BCNI and normalized by LIES. The α-SMA and/or total collagen ratio was decreased (P < .05) after BCNI in the penis and normalized by LIES. Protein expression ratio of p-ERK/ERK and p-AKT/AKT did not change after BCNI but increased (P < .05) in LIES group. Myelination and number of nNOS positive cells in the CN were decreased (P < .05) after BCNI and normalized by LIES. The number of apoptotic nerve cells within the dorsal penile nerve was increased (P < .05) after BCNI and decreased (P < .05) by LIES compared to the BCNI group. There were no differences in eNOS expression in the penis between study groups. CLINICAL TRANSLATION LIES may offer a potential new tool for penile rehabilitation and ED management following RP, potentially enhancing EF recovery and minimizing the side effects of this surgery. STRENGTHS & LIMITATIONS This study provides evidence of the protective effect of LIES on EF and tissue remodeling following CN injury; nevertheless, this study has been conducted on animals and the translation to humans remains to be demonstrated. Further research to identify the underlying mechanisms of action is required. CONCLUSION This study demonstrates that LIES of the CN after CN injury protects CN structure, enhances EF recovery, and prevents corpora cavernosal remodeling. Sturny M, Karakus S, Fraga-Silva R, et al. Low-Intensity Electrostimulation Enhances Neuroregeneration and Improves Erectile Function in a Rat Model of Cavernous Nerve Injury. J Sex Med 2022;19:686-696.
Collapse
Affiliation(s)
- Mikael Sturny
- Ecole Polytechnique Fédérale de Lausanne, Department of Bioengineering, Laboratory of Hemodynamics and Cardiovascular Technology, Lausanne, Switzerland; Johns Hopkins School of Medicine, The James Buchanan Brady Urological Institute and Department of Urology, Baltimore, MD, USA
| | - Serkan Karakus
- Johns Hopkins School of Medicine, The James Buchanan Brady Urological Institute and Department of Urology, Baltimore, MD, USA
| | - Rodrigo Fraga-Silva
- Ecole Polytechnique Fédérale de Lausanne, Department of Bioengineering, Laboratory of Hemodynamics and Cardiovascular Technology, Lausanne, Switzerland
| | - Nikolaos Stergiopulos
- Ecole Polytechnique Fédérale de Lausanne, Department of Bioengineering, Laboratory of Hemodynamics and Cardiovascular Technology, Lausanne, Switzerland
| | - Arthur L Burnett
- Johns Hopkins School of Medicine, The James Buchanan Brady Urological Institute and Department of Urology, Baltimore, MD, USA.
| |
Collapse
|
5
|
Ghorbani M, Shahabi P, Karimi P, Soltani-Zangbar H, Morshedi M, Bani S, Jafarzadehgharehziaaddin M, Sadeghzadeh-Oskouei B, Ahmadalipour A. Impacts of epidural electrical stimulation on Wnt signaling, FAAH, and BDNF following thoracic spinal cord injury in rat. J Cell Physiol 2020; 235:9795-9805. [PMID: 32488870 DOI: 10.1002/jcp.29793] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022]
Abstract
Electrical stimulation (ES) has been shown to improve some of impairments after spinal cord injury (SCI), but the underlying mechanisms remain unclear. The Wnt signaling pathways and the endocannabinoid system appear to be modulated in response to SCI. This study aimed to investigate the effect of ES therapy on the activity of canonical/noncanonical Wnt signaling pathways, brain-derived neurotrophic factor (BDNF), and fatty-acid amide hydrolase (FAAH), which regulate endocannabinoids levels. Forty male Wistar rats were randomly divided into four groups: (a) Sham, (b) laminectomy + epidural subthreshold ES, (c) SCI, and (d) SCI + epidural subthreshold ES. A moderate contusion SCI was performed at the thoracic level (T10). Epidural subthreshold ES was delivered to upper the level of T10 segment every day (1 hr/rat) for 2 weeks. Then, animals were killed and immunoblotting was used to assess spinal cord parameters. Results revealed that ES intervention for 14 days could significantly increase wingless-type3 (Wnt3), Wnt7, β-catenin, Nestin, and cyclin D1 levels, as well as phosphorylation of glycogen synthase kinase 3β and Jun N-terminal kinase. Additionally, SCI reduced BDNF and FAAH levels, and ES increased BDNF and FAAH levels in the injury site. We propose that ES therapy may improve some of impairments after SCI through Wnt signaling pathways. Outcomes also suggest that BDNF and FAAH are important players in the beneficial impacts of ES therapy. However, the precise mechanism of BDNF, FAAH, and Wnt signaling pathways on SCI requires further investigation.
Collapse
Affiliation(s)
- Meysam Ghorbani
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soltani-Zangbar
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Morshedi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Bani
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Skoufias S, Sturny M, Fraga-Silva R, Papaioannou TG, Stergiopoulos N, Adamakis I, Constantinides CA. Novel Concept Enabling an Old Idea: A Flexible Electrode Array to Treat Neurogenic Erectile Dysfunction. J Sex Med 2019; 15:1558-1569. [PMID: 30415811 DOI: 10.1016/j.jsxm.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/25/2018] [Accepted: 09/04/2018] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Many studies have shown that electrostimulation of the cavernosal nerve can induce and maintain penile erection. Based on these discoveries, neurostimulation to activate the erectile response has been considered a potential solution to treat erectile dysfunction (ED). However, despite recognized potential, this technology has not been further developed. The barrier is the complex anatomy of the human cavernous nerve, which challenges the intraoperative identification of the cavernosal nerves for electrode placement. AIM To overcome this major barrier, we proposed a practical solution: a 2-dimensional flexible electrode array that can cover the entire plexus area, ensuring that at least 1 of the electrodes will be in optimal contact with the cavernosal nerve, without the need of intraoperative identification. The present study aims to evaluate this concept intraoperatively. METHODS 24 patients enrolled for open radical prostatectomy were recruited. During the surgical procedures, the electrode array was positioned on the pelvic plexus (on the prostatic apex or pelvic wall) and electrical stimulation was applied to induce penile erection. Penile erectile response was assessed by (i) visual change of penile tumescence and (ii) by a penile plethysmograph system. MAIN OUTCOME MEASURE Ability and success rate of evoking penile response were measured by applying electrical stimulation using the developed electrode array. RESULTS Electrical stimulation produced immediate penile response in all cases when tested before (on prostatic apex) or after prostate removal (on pelvic wall). Clear visual penile engorgement was observed in 75% of the cases, whereas 25% showed minimal to moderate penile tumescence. As expected, patients with lower International Index of Erectile Function-5 score presented a reduced response, whereas stimulation before prostate removal showed greater response than following removal. Interestingly, erectile response was potentiated by bilateral stimulation (circumference increase [mm]: 2.7 ± 1.02 vs. 8.2 ± 1.9, P = .01). CLINICAL IMPLICATIONS These data bring sufficient proof of concept of a conceivable novel medical implant for the treatment of ED caused by mechanical nerve injury, such as prostatectomy and spinal cord injury. STRENGTH & LIMITATIONS This is the first approach that can ensure the optimal site stimulation of the erectogenic neuronal path within the lower pelvic area and overcome the major barrier of individual anatomic variability. However, because this study was performed intraoperatively in an acute scenario, further studies are needed to evaluate its chronic efficacy for clinical practice. CONCLUSION The flexible electrode array concept can ensure the electrostimulation of erectogenic neuronal path when positioned on the prostate apex or pelvic floor. Skoufias S, Sturny M, Fraga-Silva R, et al. Novel concept enabling an old idea: A flexible electrode array to treat neurogenic erectile dysfunction. J Sex Med 2018;15:1558-1569.
Collapse
Affiliation(s)
- Spyridon Skoufias
- National and Kapodistrian University of Athens, Medical School, 1st Urology Department, Laikon Hospital, Athens, Greece
| | - Mikaël Sturny
- Ecole Polytechnique Fédérale De Lausanne, Institute of Bioengineering, Lausanne, Switzerland
| | - Rodrigo Fraga-Silva
- Ecole Polytechnique Fédérale De Lausanne, Institute of Bioengineering, Lausanne, Switzerland
| | - Theodore G Papaioannou
- National and Kapodistrian University of Athens, Medical School, 1st Cardiology Department, Biomedical Engineering Unit, Hippokration Hospital, Athens, Greece
| | - Nikolaos Stergiopoulos
- Ecole Polytechnique Fédérale De Lausanne, Institute of Bioengineering, Lausanne, Switzerland.
| | - Ioannis Adamakis
- National and Kapodistrian University of Athens, Medical School, 1st Urology Department, Laikon Hospital, Athens, Greece
| | - Constantinos A Constantinides
- National and Kapodistrian University of Athens, Medical School, 1st Urology Department, Laikon Hospital, Athens, Greece
| |
Collapse
|
7
|
Krueger E, Magri LMS, Botelho AS, Bach FS, Rebellato CLK, Fracaro L, Fragoso FYI, Villanova JA, Brofman PRS, Popović-Maneski L. Effects of low-intensity electrical stimulation and adipose derived stem cells transplantation on the time-domain analysis-based electromyographic signals in dogs with SCI. Neurosci Lett 2018; 696:38-45. [PMID: 30528708 DOI: 10.1016/j.neulet.2018.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/12/2018] [Accepted: 12/03/2018] [Indexed: 01/13/2023]
Abstract
INTRODUCTION The application of low-intensity electrical stimulation (LIES) to neural tissue increases neurochemical factors responsible for regeneration as nerve growth factor. Stem cell (SC) therapy for patients with Spinal cord injury (SCI) promote some increase functional improvement. OBJECTIVE Investigate the electromyographic response in paraplegic dogs undergoing LIES and SC transplantation. METHODS 27 dogs paraplegics with SCI were divided into three groups with different types of therapy. GADSC: two SC transplants (n = 9); GLIES: LIES (n = 8); GCOMB: two SC transplants and LIES (n = 10). Adipose derived mesenchymal stem cells (ADSCs) were transplanted by lumbar puncture in the amount of 1.2 × 106 cells/50 μL. Acupuncture needles positioned in the interspinous space were used for stimulation. The electrical stimulation was applied with a mean voltage ∼30 mV and four consecutive modulated frequencies (5 Hz, 10 Hz, 15 Hz and 20 Hz) within 5 min each. The patients motor performance was evaluated before (Pre) the procedure and after 30 (Post30) and 60 (Post60) days, from electromyography root mean square (EMGRMS) registered with subcutaneous electrodes in the vastus lateralis muscle, while the animals were in quadrupedal position. RESULTS All three groups showed a significant intra-group increase of EMGRMS (Pre vs. Post30 or Pre vs. Post60). However, there were no statistically significant differences between Post30 and Post60. The inter-group test (GADSC X GLIES X GCOMB) did not present significance when compared the instants Pre (p = 0.34), Post30 (p = 0.78) and Post60 (p = 0.64). CONCLUSION Some dogs recovered motor activity, expressed by the EMGRMS, in all groups, in pre vs. post (30 or 60 days) comparisons.
Collapse
Affiliation(s)
- E Krueger
- Neural Engineering and Rehabilitation Laboratory, Master and Doctoral Program in Rehabilitation Sciences UEL-UNOPAR, Anatomy Department, State University of Londrina, Londrina, Brazil; Graduate Program in Biomedical Engineering, Technological Federal University - Paraná, Curitiba, Brazil.
| | - L M S Magri
- Graduate Program in Biomedical Engineering, Technological Federal University - Paraná, Curitiba, Brazil
| | | | - F S Bach
- Pontificial Catholical University of Paraná, Curitiba, Brazil
| | - C L K Rebellato
- Pontificial Catholical University of Paraná, Curitiba, Brazil
| | - L Fracaro
- Pontificial Catholical University of Paraná, Curitiba, Brazil
| | - F Y I Fragoso
- Pontificial Catholical University of Paraná, Curitiba, Brazil
| | - J A Villanova
- Pontificial Catholical University of Paraná, Curitiba, Brazil
| | - P R S Brofman
- Pontificial Catholical University of Paraná, Curitiba, Brazil
| | - L Popović-Maneski
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
8
|
Arteshi Y, Aghanejad A, Davaran S, Omidi Y. Biocompatible and electroconductive polyaniline-based biomaterials for electrical stimulation. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Uz M, Das SR, Ding S, Sakaguchi DS, Claussen JC, Mallapragada SK. Advances in Controlling Differentiation of Adult Stem Cells for Peripheral Nerve Regeneration. Adv Healthc Mater 2018; 7:e1701046. [PMID: 29656561 DOI: 10.1002/adhm.201701046] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/08/2018] [Indexed: 01/01/2023]
Abstract
Adult stems cells, possessing the ability to grow, migrate, proliferate, and transdifferentiate into various specific phenotypes, constitute a great asset for peripheral nerve regeneration. Adult stem cells' ability to undergo transdifferentiation is sensitive to various cell-to-cell interactions and external stimuli involving interactions with physical, mechanical, and chemical cues within their microenvironment. Various studies have employed different techniques for transdifferentiating adult stem cells from distinct sources into specific lineages (e.g., glial cells and neurons). These techniques include chemical and/or electrical induction as well as cell-to-cell interactions via co-culture along with the use of various 3D conduit/scaffold designs. Such scaffolds consist of unique materials that possess controllable physical/mechanical properties mimicking cells' natural extracellular matrix. However, current limitations regarding non-scalable transdifferentiation protocols, fate commitment of transdifferentiated stem cells, and conduit/scaffold design have required new strategies for effective stem cells transdifferentiation and implantation. In this progress report, a comprehensive review of recent advances in the transdifferentiation of adult stem cells via different approaches along with multifunctional conduit/scaffolds designs is presented for peripheral nerve regeneration. Potential cellular mechanisms and signaling pathways associated with differentiation are also included. The discussion with current challenges in the field and an outlook toward future research directions is concluded.
Collapse
Affiliation(s)
- Metin Uz
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
| | - Suprem R. Das
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
- Division of Materials Science and Engineering Ames Laboratory Ames IA 50011 USA
| | - Shaowei Ding
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
| | - Donald S. Sakaguchi
- Neuroscience Program Iowa State University Ames IA 50011 USA
- Department of Genetics Development and Cell Biology Iowa State University Ames IA 50011 USA
| | - Jonathan C. Claussen
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
- Division of Materials Science and Engineering Ames Laboratory Ames IA 50011 USA
| | - Surya K. Mallapragada
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
- Department of Genetics Development and Cell Biology Iowa State University Ames IA 50011 USA
| |
Collapse
|
10
|
Chow YT, Man T, Acosta‐Vélez GF, Zhu X, Wen X, Chung P, Liu T“L, Wu BM, Chiou P. Liquid Metal-Based Multifunctional Micropipette for 4D Single Cell Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700711. [PMID: 30027027 PMCID: PMC6051373 DOI: 10.1002/advs.201700711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/12/2018] [Indexed: 05/30/2023]
Abstract
A novel manufacturing approach to fabricate liquid metal-based, multifunctional microcapillary pipettes able to provide electrodes with high electrical conductivity for high-frequency electrical stimulation and measurement is proposed. 4D single cell manipulation is realized by applying multifrequency, multiamplitude, and multiphase electrical signals to the microelectrodes near the pipette tip to create 3D dielectrophoretic trap and 1D electrorotation, simultaneously. Functions such as single cell trapping, patterning, transfer, and rotation are accomplished. Cell viability and multiday proliferation characterization has confirmed the biocompatibility of this approach. This is a simple, low-cost, and fast fabrication process that requires no cleanroom and photolithography step to manufacture 3D microelectrodes and microchannels for easy access to a wide user base for broad applications.
Collapse
Affiliation(s)
- Yu Ting Chow
- Mechanical and Aerospace Engineering DepartmentUniversity of CaliforniaLos AngelesCA90095USA
| | - Tianxing Man
- Mechanical and Aerospace Engineering DepartmentUniversity of CaliforniaLos AngelesCA90095USA
| | | | - Xiongfeng Zhu
- Mechanical and Aerospace Engineering DepartmentUniversity of CaliforniaLos AngelesCA90095USA
| | - Ximiao Wen
- Mechanical and Aerospace Engineering DepartmentUniversity of CaliforniaLos AngelesCA90095USA
| | - Pei‐Shan Chung
- Mechanical and Aerospace Engineering DepartmentUniversity of CaliforniaLos AngelesCA90095USA
| | - Tingyi “Leo” Liu
- Mechanical and Aerospace Engineering DepartmentUniversity of CaliforniaLos AngelesCA90095USA
| | - Benjamin M. Wu
- Bioengineering DepartmentUniversity of CaliforniaLos AngelesCA90095USA
- School of DentistryUniversity of CaliforniaLos AngelesCA90095USA
| | - Pei‐Yu Chiou
- Mechanical and Aerospace Engineering DepartmentUniversity of CaliforniaLos AngelesCA90095USA
| |
Collapse
|
11
|
Biasiotta A, D'Arcangelo D, Passarelli F, Nicodemi EM, Facchiano A. Ion channels expression and function are strongly modified in solid tumors and vascular malformations. J Transl Med 2016; 14:285. [PMID: 27716384 PMCID: PMC5050926 DOI: 10.1186/s12967-016-1038-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022] Open
Abstract
Background Several cellular functions relate to ion-channels activity. Physiologically relevant chains of events leading to angiogenesis, cell cycle and different forms of cell death, require transmembrane voltage control. We hypothesized that the unordered angiogenesis occurring in solid cancers and vascular malformations might associate, at least in part, to ion-transport alteration. Methods The expression level of several ion-channels was analyzed in human solid tumor biopsies. Expression of 90 genes coding for ion-channels related proteins was investigated within the Oncomine database, in 25 independent patients-datasets referring to five histologically-different solid tumors (namely, bladder cancer, glioblastoma, melanoma, breast invasive-ductal cancer, lung carcinoma), in a total of 3673 patients (674 control-samples and 2999 cancer-samples). Furthermore, the ion-channel activity was directly assessed by measuring in vivo the electrical sympathetic skin responses (SSR) on the skin of 14 patients affected by the flat port-wine stains vascular malformation, i.e., a non-tumor vascular malformation clinical model. Results Several ion-channels showed significantly increased expression in tumors (p < 0.0005); nine genes (namely, CACNA1D, FXYD3, FXYD5, HTR3A, KCNE3, KCNE4, KCNN4, CLIC1, TRPM3) showed such significant modification in at least half of datasets investigated for each cancer type. Moreover, in vivo analyses in flat port-wine stains patients showed a significantly reduced SSR in the affected skin as compared to the contralateral healthy skin (p < 0.05), in both latency and amplitude measurements. Conclusions All together these data identify ion-channel genes showing significantly modified expression in different tumors and cancer-vessels, and indicate a relevant electrophysiological alteration in human vascular malformations. Such data suggest a possible role and a potential diagnostic application of the ion–electron transport in vascular disorders underlying tumor neo-angiogenesis and vascular malformations.
Collapse
Affiliation(s)
| | - Daniela D'Arcangelo
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, via Monti di Creta 104, 00167, Rome, Italy
| | - Francesca Passarelli
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, via Monti di Creta 104, 00167, Rome, Italy
| | - Ezio Maria Nicodemi
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, via Monti di Creta 104, 00167, Rome, Italy.
| | - Antonio Facchiano
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, via Monti di Creta 104, 00167, Rome, Italy.
| |
Collapse
|
12
|
Lee JY, Park HJ, Kim JH, Cho BP, Cho SR, Kim SH. Effects of low- and high-frequency repetitive magnetic stimulation on neuronal cell proliferation and growth factor expression: A preliminary report. Neurosci Lett 2015; 604:167-72. [PMID: 26235239 DOI: 10.1016/j.neulet.2015.07.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 01/19/2023]
Abstract
Repetitive magnetic stimulation is a neuropsychiatric and neurorehabilitation tool that can be used to investigate the neurobiology of sensory and motor functions. Few studies have examined the effects of repetitive magnetic stimulation on the modulation of neurotrophic/growth factors and neuronal cells in vitro. Therefore, the current study examined the differential effects of repetitive magnetic stimulation on neuronal cell proliferation as well as various growth factor expression. Immortalized mouse neuroblastoma cells were used as the cell model in this study. Dishes of cultured cells were randomly divided into control, sham, low-frequency (0.5Hz, 1Tesla) and high-frequency (10Hz, 1Tesla) groups (n=4 dishes/group) and were stimulated for 3 days. Expression of neurotrophic/growth factors, Akt and Erk was investigated by Western blotting analysis 3 days after repetitive magnetic stimulation. Neuroblastoma cell proliferation was determined with a cell counting assay. There were differences in cell proliferation based on stimulus frequency. Low-frequency stimulation did not alter proliferation relative to the control, while high-frequency stimulation elevated proliferation relative to the control group. The expression levels of brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3) and platelet-derived growth factor (PDGF) were elevated in the high-frequency magnetic stimulation group. Akt and Erk expression was also significantly elevated in the high-frequency stimulation group, while low-frequency stimulation decreased the expression of Akt and Erk compared to the control. In conclusion, we determined that different frequency magnetic stimulation had an influence on neuronal cell proliferation via regulation of Akt and ERK signaling pathways and the expression of growth factors such as BDNF, GDNF, NT-3 and PDGF. These findings represent a promising opportunity to gain insight into how different frequencies of repetitive magnetic stimulation may mediate cell proliferation.
Collapse
Affiliation(s)
- Ji Yong Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyung Joong Park
- Department of Rehabilitation Medicine, The Graduate School Yonsei University Wonju College of Medicine, South Korea
| | - Ji Hyun Kim
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Byung Pil Cho
- Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju, South Korea; Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 PLUS Project for Medical Science and Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Korea.
| | - Sung Hoon Kim
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea.
| |
Collapse
|
13
|
Yang CC, Wang J, Chen SC, Jan YM, Hsieh YL. Enhanced functional recovery from sciatic nerve crush injury through a combined treatment of cold-water swimming and mesenchymal stem cell transplantation. Neurol Res 2015; 37:816-26. [DOI: 10.1179/1743132815y.0000000060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|