1
|
Pennington-FitzGerald W, Waring NA, Hamiter M, Kuhlmey M, Kim AH. Impact of Cochlear Implant Electrode Array Design on Post-Op Speech Perception. Otolaryngol Head Neck Surg 2024. [PMID: 39369438 DOI: 10.1002/ohn.995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/01/2024] [Accepted: 09/14/2024] [Indexed: 10/08/2024]
Abstract
OBJECTIVE Electrode array design may impact hearing outcomes in patients who receive cochlear implants. The goal of this work was to assess differences in post operative speech perception among patients who received cochlear implants of differing designs and lengths. STUDY DESIGN Retrospective chart review. SETTING Tertiary Care Hospital. METHODS Patients (n = 129) received 1 of 9 electrode arrays, which were categorized by design: Lateral wall electrodes (n = 36) included CI522, CI622 (Cochlear Americas), Flex24, and Flex28 (Med El). Midscala electrodes (n = 16) included HiRes Ultra 3D (Advanced Bionics). Perimodiolar electrodes (n = 77) included CI512, CI532, CI612, and CI632 (Cochlear Americas). Speech perception was evaluated using consonant-nucleus-consonant (CNC) tests and at 3, 6, 12, and 24 months postimplantation. RESULTS Perimodiolar electrodes showed significantly higher CNC scores compared to lateral wall electrodes at 6 and 24 months. Perimodiolar electrodes also outperformed midscala electrodes at 12 months. An inverse relationship was observed between electrode length and CNC scores noted at 6, 12, and 24 months. CONCLUSION Perimodiolar electrode arrays, which tend to be shorter, demonstrated better speech perception outcomes compared to the longer lateral wall and midscala arrays at some timepoints. These findings suggest a potential advantages of perimodiolar electrodes for optimizing hearing outcomes.
Collapse
Affiliation(s)
| | - Nicholas A Waring
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Mickie Hamiter
- Department of Otolaryngology-Head & Neck Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Megan Kuhlmey
- Department of Otolaryngology-Head & Neck Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Ana H Kim
- Department of Otolaryngology-Head & Neck Surgery, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
2
|
Hallin K, Larsson U, Schart-Morén N. Do different types of cochlear implant electrode influence hearing preservation and speech perception? Acta Otolaryngol 2024; 144:552-557. [PMID: 39351976 DOI: 10.1080/00016489.2024.2407395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Hearing can be preserved in patients with considerable low-frequency hearing implanted with cochlear implants. However, the most favorable electrode type for hearing preservation and speech perception has been debated. OBJECTIVE The aim was to evaluate hearing preservation and speech discrimination one year post-implantation for all types of cochlear implant electrode used for adult patients implanted between 2014 and 2022. METHODS The HEARING group formula was used to calculate the degree of hearing preservation, which was defined as minimal (0-25%), partial (25-75%) or complete (≥ 75%). Speech perception was measured by monosyllabic words. RESULTS Analysis of hearing preservation for the various electrode types revealed that FLEX 24 preserved hearing statistically significantly better (p < 0.05) than FLEX 28, FLEX soft, and contour advance. Also, FLEX 20 preserved hearing statistically significantly better (p < 0.05) than contour advance. No statistically significant difference was found for the monosyllabic word score for the different electrode types. DISCUSSION There was a statistically significant difference between the electrode types in terms of hearing preservation but not for speech perception. The result of this study contributes important information about hearing preservation and speech perception that can be used for pre-surgery patient counselling.
Collapse
Affiliation(s)
- Karin Hallin
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Ulrika Larsson
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Nadine Schart-Morén
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Micuda A, Li H, Rask-Andersen H, Ladak HM, Agrawal SK. Morphologic Analysis of the Scala Tympani Using Synchrotron: Implications for Cochlear Implantation. Laryngoscope 2024; 134:2889-2897. [PMID: 38189807 DOI: 10.1002/lary.31263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVES To use synchrotron radiation phase-contrast imaging (SR-PCI) to visualize and measure the morphology of the entire cochlear scala tympani (ST) and assess cochlear implant (CI) electrode trajectories. METHODS SR-PCI images were used to obtain geometric measurements of the cochlear scalar diameter and area at 5-degree increments in 35 unimplanted and three implanted fixed human cadaveric cochleae. RESULTS The cross-sectional diameter and area of the cochlea were found to decrease from the base to the apex. This study represents a wide variability in cochlear morphology and suggests that even in the smallest cochlea, the ST can accommodate a 0.4 mm diameter electrode up to 720°. Additionally, all lateral wall array trajectories were within the anatomically accommodating insertion zone. CONCLUSION This is the first study to use SR-PCI to visualize and quantify the entire ST morphology, from the round window to the apical tip, and assess the post-operative trajectory of electrodes. These high-resolution anatomical measurements can be used to inform the angular insertion depth that can be accommodated in CI patients, accounting for anatomical variability. LEVEL OF EVIDENCE N/A. Laryngoscope, 134:2889-2897, 2024.
Collapse
Affiliation(s)
- Ashley Micuda
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Hao Li
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Hanif M Ladak
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- School of Biomedical Engineering, Western University, London, Ontario, Canada
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
- Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
| | - Sumit K Agrawal
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- School of Biomedical Engineering, Western University, London, Ontario, Canada
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
- Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
| |
Collapse
|
4
|
Beck RL, Aschendorff A, Arndt S, Hildenbrand T, Ketterer MC. Is the Position of the Basal-Most Electrode Depending on Electrode Array Design and Influencing Postoperative Speech Perception? A Retrospective Analysis of 495 Ears. Otol Neurotol 2024; 45:502-506. [PMID: 38509805 DOI: 10.1097/mao.0000000000004165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
OBJECTIVE The objective of this study is to examine the influence of electrode array design on the position of the basal-most electrode in cochlear implant (CI) surgery and therefore the stimulability of the basal cochlea. Specifically, we evaluated the angular insertion depth of the basal-most electrode in perimodiolar and straight electrode arrays in relation to postoperative speech perception. MATERIALS AND METHODS We conducted a retrospective analysis of 495 patients between 2013 and 2018 using the Cochlear™ Contour Advance® (CA), Cochlear™ Slim Straight® (SSA), or Cochlear™ Slim Modiolar® (SMA) electrode arrays, as well as the MED-EL Flex24 (F24), MED-EL Flex28 (F28), and MED-EL FlexSoft (F31.5) electrode arrays. Cochlear size and the position of the basal-most electrode were measured using rotational tomography or cone beam computed tomography, and the results were compared with postoperative speech perception in monosyllables and numbers. RESULTS The straight electrode arrays, specifically the F31.5 (31.5 mm length) and the F28 (28 mm length), exhibited a significantly greater angular insertion depth of the basal-most electrode. No significant correlation was found between cochlear morphology measurements and the position of the basal-most electrode artifact. Cochleostomy-inserted electrode arrays showed a significantly higher insertion depth of the basal-most electrode. Nevertheless, the position of the basal-most electrode did not have a significant impact on postoperative speech perception. CONCLUSION Straight electrode arrays with longer lengths achieved deeper angular insertion depths of the basal-most electrode. Cochlear morphology does not have a substantial influence on the position of basal-most electrode. The study confirms that the basal area of the cochlea, responsible for high-frequency range during acoustic stimulation, is not the primary region for speech understanding via electrical stimulation with CI.
Collapse
Affiliation(s)
- Rainer Linus Beck
- Department of Otorhinolaryngology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | | | | | | | | |
Collapse
|
5
|
Sturm JJ, Ma C, McRackan TR, Schvartz-Leyzac KC. Frequency-to-Place Mismatch Impacts Cochlear Implant Quality of Life, But Not Speech Recognition. Laryngoscope 2024; 134:2898-2905. [PMID: 38214299 PMCID: PMC11078615 DOI: 10.1002/lary.31264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To retrospectively compare frequency-place mismatch among adult cochlear implant (CI) recipients with lateral wall (LW) and perimodiolar/Mid Scala (PM/MS) arrays, and to quantify the impact of these factors on early post-activation (3 months) speech recognition abilities and CI-specific quality of life. METHODS One hundred and twenty-six adult participants were separated into two groups: (1) 83 participants who underwent CI with a PM/MS array and 43 patients who underwent CI with a LW array. All participants completed the Cochlear Implant Quality of Life Profile (CIQOL-35 Profile) instrument. Angular insertion depth and semitone mismatch, which contribute to frequency-place mismatch, were assessed using post-operative CT scans. Word and speech recognition in quiet were determined using the Consonant-Nucleus-Consonant (CNC) and the AzBio tests, respectively (n = 82 patients). RESULTS LW arrays were more deeply inserted and exhibited less semitone mismatch compared to PM/MS arrays. No significant relationship was found between semitone mismatch and early post-operative speech perception scores for either PM/MS or LW arrays. However, greater degrees of semitone mismatch were associated with lower CIQOL-35 profile scores for PM/MS arrays. CONCLUSIONS AND RELEVANCE The results of this study indicate that both the degree of frequency-place mismatch, and its impact on CI-specific quality of life, vary by CI array design. LEVEL OF EVIDENCE 4 Laryngoscope, 134:2898-2905, 2024.
Collapse
Affiliation(s)
- Joshua J Sturm
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, U.S.A
| | - Cheng Ma
- Department of Otolaryngology-Head and Neck Surgery, Penn State College of Medicine, Hershey, Pennsylvania, U.S.A
| | - Theodore R McRackan
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, U.S.A
| | - Kara C Schvartz-Leyzac
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, U.S.A
| |
Collapse
|
6
|
Thompson NJ, Dillon MT, Nix EP, Overton AB, Selleck AM, Dedmon MM, Brown KD. Variables Affecting Cochlear Implant Performance After Loss of Residual Hearing. Laryngoscope 2024; 134:1868-1873. [PMID: 37767794 DOI: 10.1002/lary.31066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/15/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
OBJECTIVE Determine variables that influence post-activation performance for cochlear implant (CI) recipients who lost low-frequency acoustic hearing. METHODS A retrospective review evaluated CNC word recognition for adults with normal to moderately severe low-frequency hearing (preoperative unaided thresholds of ≤70 dB HL at 250 Hz) who were implanted between 2012 and 2021 at a tertiary academic center, lost functional acoustic hearing, and were fit with a CI-alone device. Performance scores were queried from the 1, 3, 6, 12, and 24-month post-activation visits. A linear mixed model evaluated the effects of age at implantation, array length (long vs. mid/short), and preoperative low-frequency hearing (normal to mild, moderate, and moderately severe) on speech recognition with a CI alone. RESULTS 113 patients met the inclusion criteria. There was a significant main effect of interval (p < 0.001), indicating improved word recognition post-activation despite loss of residual hearing. There were significant main effects of age (p = 0.029) and array length (p = 0.038), with no effect of preoperative low-frequency hearing (p = 0.171). There was a significant 2-way interaction between age and array length (p = 0.018), indicating that older adults with mid/short arrays performed more poorly than younger adults with long lateral wall arrays when functional acoustic hearing was lost. CONCLUSION CI recipients with preoperative functional low-frequency hearing experience a significant improvement in speech recognition with a CI alone as compared to preoperative performance-despite the loss of low-frequency hearing. Age and electrode array length may play a role in post-activation performance. These data have implications for the preoperative counseling and device selection for hearing preservation candidates. LEVEL OF EVIDENCE 4 Laryngoscope, 134:1868-1873, 2024.
Collapse
Affiliation(s)
- Nicholas J Thompson
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A
| | - Margaret T Dillon
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A
| | - Evan P Nix
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A
| | - Andrea B Overton
- Audiology Department, UNC Health, Chapel Hill, North Carolina, U.S.A
| | - A Morgan Selleck
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A
| | - Matthew M Dedmon
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A
| | - Kevin D Brown
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A
| |
Collapse
|
7
|
Spahn B, Ilgen L, Neun T, Müller-Graff FT, Schendzielorz P, Hagen R, Althoff D, Zabler S, Rak K. Dependence of Cochlear Duct Length Measurement on the Resolution of the Imaging Dataset. Otol Neurotol 2024; 45:e234-e240. [PMID: 38238926 DOI: 10.1097/mao.0000000000004088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
HYPOTHESIS Measurements of the cochlear duct length (CDL) are dependent on the resolution of the imaging dataset. BACKGROUND Previous research has shown highly precise cochlear measurements using 3D-curved multiplanar reconstruction (MPR) and flat-panel volume computed tomography (fpVCT). Thus far, however, there has been no systematic evaluation of the imaging dataset resolution required for optimal CDL measurement. Therefore, the aim of this study was to evaluate the dependence of CDL measurement on the resolution of the imaging dataset to establish a benchmark for future CDL measurements. METHODS fpVCT scans of 10 human petrous bone specimens were performed. CDL was measured using 3D-curved MPR with secondary reconstruction of the fpVCT scans (fpVCT SECO ) and increasing resolution from 466 to 99 μm. In addition, intraobserver variability was evaluated. A best-fit function for calculation of the CDL was developed to provide a valid tool when there are no measurements done with high-resolution imaging datasets. RESULTS Comparison of different imaging resolution settings showed significant differences for CDL measurement in most of the tested groups ( p < 0.05), except for the two groups with the highest resolution. Imaging datasets with a resolution lower than 200 μm showed lower intraobserver variability than the other resolution settings, although there were no clinically unacceptable errors with respect to the Bland-Altman plots. The developed best-fit function showed high accuracy for CDL calculation using resolution imaging datasets of 300 μm or lower. CONCLUSION 3D-curved MPR in fpVCT with a resolution of the imaging dataset of 200 μm or higher revealed the most precise CDL measurement. There was no benefit of using a resolution higher than 200 μm with regard to the accuracy of the CDL measurement.
Collapse
Affiliation(s)
- Bjoern Spahn
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center
| | - Lukas Ilgen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center
| | - Tilmann Neun
- Institute for Diagnostic and Interventional Neuroradiology, University of Wuerzburg
| | - Franz-Tassilo Müller-Graff
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center
| | - Philipp Schendzielorz
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center
| | - Daniel Althoff
- Fraunhofer Development Center for X-ray Technology, Wuerzburg
| | - Simon Zabler
- Deggendorf Institute of Technology, Faculty of Applied Computer Science, Deggendorf, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center
| |
Collapse
|
8
|
Beck R, Aschendorff A, Arndt S, Hildenbrand T, Rauch AK, Ketterer MC. Evaluation of insertion quality of a slim perimodiolar electrode array. Eur Arch Otorhinolaryngol 2024; 281:1215-1220. [PMID: 37773530 PMCID: PMC10858093 DOI: 10.1007/s00405-023-08212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/25/2023] [Indexed: 10/01/2023]
Abstract
OBJECTIVES The influence of cochlear morphology and electrode array design on scalar position and dislocation rates is of great interest in CI surgery. The aim of this study is to evaluate scalar position and specific points of dislocation in relation to cochlear morphology in patients implanted with a new slim perimodiolar electrode array. MATERIALS AND METHODS Patients were implanted using the slim modiolar electrode array (= SMA) (= 532/632 electrode array of Cochlear™). Postoperative imaging was performed via cone beam computed tomography (CBCT) and the scans were analyzed regarding cochlear morphology (distances A and B and cochlear height), scalar location of the electrode array, basal insertion depth and apical insertion angle. Furthermore, electrode array design and surgical protocols were evaluated. RESULTS 81 ears implanted with the SMA were retrospectively included. We evaluated 3 electrode array tip fold over intraoperatively via X-ray imaging and performed revision during the same surgery. The CBCT scans showed 76 initial scala tympani (ST) insertions without dislocation. Two ears showed a dislocated array, one at 77° and the other at 163°. Three arrays were inserted into scala vestibuli (SV) via cochleostomy. These patients showed no signs of obliteration. Cochlear morphology showed no influence on angular insertion depth and scalar position. CONCLUSIONS The SMA showed a very low rate of scalar dislocations due to its slim electrode array design (2.7%). We could find a learning curve regarding the handling and the risk of dislocation and tip fold over with this electrode array. The rate of intraoperative tip fold over detection via X-ray imaging was 3.7%. Therefore, we highly recommend X-ray imaging and transimpedance matrix measurements within the surgery protocol. Scala vestibuli insertions happened in patients with cochleostomy only. We could identify two specific points of dislocation depending on electrode array design.
Collapse
Affiliation(s)
- R Beck
- Faculty of Medicine, Department of Otorhinolaryngology, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - A Aschendorff
- Faculty of Medicine, Department of Otorhinolaryngology, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - S Arndt
- Faculty of Medicine, Department of Otorhinolaryngology, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - T Hildenbrand
- Faculty of Medicine, Department of Otorhinolaryngology, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - A K Rauch
- Faculty of Medicine, Department of Otorhinolaryngology, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - M C Ketterer
- Faculty of Medicine, Department of Otorhinolaryngology, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany.
| |
Collapse
|
9
|
Collins A, Foghsgaard S, Druce E, Margani V, Mejia O, O'Leary S. The Effect of Electrode Position on Behavioral and Electrophysiologic Measurements in Perimodiolar Cochlear Implants. Otol Neurotol 2024; 45:238-244. [PMID: 38238914 DOI: 10.1097/mao.0000000000004080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
BACKGROUND The shape and position of cochlear implant electrodes could potentially influence speech perception, as this determines the proximity of implant electrodes to the spiral ganglion. However, the literature to date reveals no consistent association between speech perception and either the proximity of electrode to the medial cochlear wall or the depth of insertion. These relationships were explored in a group of implant recipients receiving the same precurved electrode. METHODS This was a retrospective study of adults who underwent cochlear implantation with Cochlear Ltd.'s Slim Perimodiolar electrode at the Royal Victorian Eye and Ear Hospital between 2015 and 2018 (n = 52). Postoperative images were obtained using cone beam computed tomography (CBCT) and analyzed by multi-planar reconstruction to identify the position of the electrode contacts within the cochlea, including estimates of the proximity of the electrodes to the medial cochlear wall or modiolus and the angular depth of insertion. Consonant-vowel-consonant (CVC) monosyllabic phonemes were determined preoperatively, and at 3 and 12 months postoperatively. Electrically evoked compound action potential (ECAP) thresholds and impedance were measured from the implant array immediately after implantation. The relationships between electrode position and speech perception, electrode impedance, and ECAP threshold were an analyzed by Pearson correlation. RESULTS Age had a negative impact on speech perception at 3 months but not 12 months. None of the electrode-wide measures of proximity between electrode contacts and the modiolus, nor measures of proximity to the medial cochlear wall, nor the angular depth of insertion of the most apical electrode correlated with speech perception. However, there was a moderate correlation between speech perception and the position of the most basal electrode contacts; poorer speech perception was associated with a greater distance to the modiolus. ECAP thresholds were inversely related to the distance between electrode contacts and the modiolus, but there was no clear association between this distance and impedance. CONCLUSIONS Speech perception was significantly affected by the proximity of the most basal electrodes to the modiolus, suggesting that positioning of these electrodes may be important for optimizing speech perception. ECAP thresholds might provide an indication of this proximity, allowing for its optimization during surgery.
Collapse
Affiliation(s)
- Aaron Collins
- Department of Otolaryngology, The University of Melbourne, Melbourne, Australia
| | - Søren Foghsgaard
- Department of Otorhinolaryngology Head & Neck Surgery and Audiology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Edgar Druce
- Department of Otolaryngology, The University of Melbourne, Melbourne, Australia
| | - Valerio Margani
- Department of Neuroscience, Mental Health, and Sense Organs (NEMOS), Sant' Andrea University Hospital, Sapienza University, Rome, Italy
| | - Olivia Mejia
- sENTro Head and Neck Clinic, Manila, Philippines
| | | |
Collapse
|
10
|
Hasan Z, Key S, Lee M, Da Cruz M. Systematic Review of Intracochlear Measurements and Effect on Postoperative Auditory Outcomes after Cochlear Implant Surgery. Otol Neurotol 2024; 45:e1-e17. [PMID: 38013462 DOI: 10.1097/mao.0000000000004044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
OBJECTIVE Quality and adequacy of the electrode neuron interface (ENI) is postulated to be a determining factor in affecting auditory outcomes after cochlear implantation. This study aims to review radiological parameters affecting ENI, including angular insertion (AngI), wrapping factor (WF), scalar translocation (ScaT), and electrode-modiolar distance (EMD) and their effect on auditory outcomes. DATABASES REVIEWED PubMed, MEDLINE, Embase, Scopus, OpenGrey, and Google Scholar from inception to 01 September 2022. METHODS Inclusion criteria were (i) all humans with any cochlear implant (CI); (ii) postoperative cross-sectional imaging with electrode position factors of AngI, ScaT, EMD, and/or WF; and (iii) associated auditory outcomes. Search was restricted to English-language literature. Two independent reviewers performed title and abstract screening, data extraction, and ROBINS-I risk of bias assessment. Formal statistical analysis not performed due to data heterogeneity. PROSPERO (CRD42022359198). RESULTS Thirty-one studies (n = 2,887 patients, 3,091 electrodes) underwent qualitative synthesis. Higher AngI (n = 1921 patients) demonstrated positive correlation in 11 studies, no correlation in eight studies, and negative correlation in four studies. ScaT (n = 2,115 patients) demonstrated negative correlation in 12 studies, none in six studies, and one unclear correlation. Larger EMD (n = 240 patients) showed negative correlation in two studies, no correlation in one, and unclear correlation in one study. Smaller WF (n = 369 patients) demonstrated no correlation in three studies and positive correlation in one study. CONCLUSIONS Our study finds variable reported relationship between AngI and auditory outcomes. CI electrodes with a ScaT or larger EMD are more likely to exhibit poorer outcomes, and WF does not correlate with outcomes.
Collapse
Affiliation(s)
| | - Seraphina Key
- Faculty of Medicine and Health, University of Sydney, Australia
| | - Michael Lee
- Department of Otolaryngology Head and Neck Surgery, Westmead Hospital, Sydney, Australia
| | | |
Collapse
|
11
|
Creff G, Lambert C, Coudert P, Pean V, Laurent S, Godey B. Comparison of Tonotopic and Default Frequency Fitting for Speech Understanding in Noise in New Cochlear Implantees: A Prospective, Randomized, Double-Blind, Cross-Over Study. Ear Hear 2024; 45:35-52. [PMID: 37823850 DOI: 10.1097/aud.0000000000001423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
OBJECTIVES While cochlear implants (CIs) have provided benefits for speech recognition in quiet for subjects with severe-to-profound hearing loss, speech recognition in noise remains challenging. A body of evidence suggests that reducing frequency-to-place mismatch may positively affect speech perception. Thus, a fitting method based on a tonotopic map may improve speech perception results in quiet and noise. The aim of our study was to assess the impact of a tonotopic map on speech perception in noise and quiet in new CI users. DESIGN A prospective, randomized, double-blind, two-period cross-over study in 26 new CI users was performed over a 6-month period. New CI users older than 18 years with bilateral severe-to-profound sensorineural hearing loss or complete hearing loss for less than 5 years were selected in the University Hospital Centre of Rennes in France. An anatomical tonotopic map was created using postoperative flat-panel computed tomography and a reconstruction software based on the Greenwood function. Each participant was randomized to receive a conventional map followed by a tonotopic map or vice versa. Each setting was maintained for 6 weeks, at the end of which participants performed speech perception tasks. The primary outcome measure was speech recognition in noise. Participants were allocated to sequences by block randomization of size two with a ratio 1:1 (CONSORT Guidelines). Participants and those assessing the outcomes were blinded to the intervention. RESULTS Thirteen participants were randomized to each sequence. Two of the 26 participants recruited (one in each sequence) had to be excluded due to the COVID-19 pandemic. Twenty-four participants were analyzed. Speech recognition in noise was significantly better with the tonotopic fitting at all signal-to-noise ratio (SNR) levels tested [SNR = +9 dB, p = 0.002, mean effect (ME) = 12.1%, 95% confidence interval (95% CI) = 4.9 to 19.2, standardized effect size (SES) = 0.71; SNR = +6 dB, p < 0.001, ME = 16.3%, 95% CI = 9.8 to 22.7, SES = 1.07; SNR = +3 dB, p < 0.001 ME = 13.8%, 95% CI = 6.9 to 20.6, SES = 0.84; SNR = 0 dB, p = 0.003, ME = 10.8%, 95% CI = 4.1 to 17.6, SES = 0.68]. Neither period nor interaction effects were observed for any signal level. Speech recognition in quiet ( p = 0.66) and tonal audiometry ( p = 0.203) did not significantly differ between the two settings. 92% of the participants kept the tonotopy-based map after the study period. No correlation was found between speech-in-noise perception and age, duration of hearing deprivation, angular insertion depth, or position or width of the frequency filters allocated to the electrodes. CONCLUSION For new CI users, tonotopic fitting appears to be more efficient than the default frequency fitting because it allows for better speech recognition in noise without compromising understanding in quiet.
Collapse
Affiliation(s)
- Gwenaelle Creff
- Department of Otolaryngology-Head and Neck Surgery (HNS), University Hospital, Rennes, France
- MediCIS, LTSI (Image and Signal Processing Laboratory), INSERM, U1099, Rennes, France
| | - Cassandre Lambert
- Department of Otolaryngology-Head and Neck Surgery (HNS), University Hospital, Rennes, France
| | - Paul Coudert
- Department of Otolaryngology-Head and Neck Surgery (HNS), University Hospital, Rennes, France
| | | | | | - Benoit Godey
- Department of Otolaryngology-Head and Neck Surgery (HNS), University Hospital, Rennes, France
- MediCIS, LTSI (Image and Signal Processing Laboratory), INSERM, U1099, Rennes, France
- Hearing Aid Academy, Javene, France
| |
Collapse
|
12
|
Kaul VF, Brannan Z, Keith J, Hittle B, Riggs W, Hiss M, Varadarajan V, Zhan K, Powell K, Wiet GJ, Adunka OF. Post-operative evaluation of computed tomography imaging following cochlear implantation. Am J Otolaryngol 2024; 45:104081. [PMID: 37820391 DOI: 10.1016/j.amjoto.2023.104081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE This study utilized an automated segmentation algorithm to assess the cochlear implant electrode array within the cochlea and investigate its impact on audiologic outcomes as measured by post-operative speech perception scores. Furthermore, manual evaluations of electrode placement were compared to automatic segmentation methods to determine their accuracy in predicting post-operative audiologic outcomes. MATERIALS AND METHODS This retrospective chart review was conducted at a tertiary care referral center involving adult post-lingually deafened cochlear implant recipients implanted from 2015 to 2019. Patients with appropriate postoperative imaging and speech testing were included. Patients were excluded if non-English speaking, had a cognitive deficit, or a labyrinthine malformation. Automated and manual methods were used to analyze computed tomography (CT) scans and correlate the findings with post-operative speech perception scores and detection of electrode translocation. RESULTS Among the 47 patients who met inclusion criteria, 15 had electrode translocations confirmed by automatic segmentation methods. Controlling for CI usage and pre-operative AzBio scores, patients with translocation exhibited significantly lower consonant-nucleus consonant (CNC) and AzBio scores at 6-months post-implantation compared to patients with ST insertions. Moreover, the number of translocated electrode contacts was significantly associated with post-operative CNC scores. Manual evaluations of electrode location were predictive but less sensitive to electrode translocations when compared with automated 3D segmentation. CONCLUSIONS Placement of CI electrode contacts within ST without translocation into SV, leads to improved audiologic outcomes. Manual assessment of electrode placement via temporal bone CT, without 3D reconstruction, provides a less sensitive method to determine electrode placement than automated methods. LEVEL OF EVIDENCE Level 4. LAY SUMMARY This study investigated the impact of electrode placement on speech outcomes for cochlear implant recipients. Using advanced imaging techniques, the researchers compared automated and manual methods for evaluating electrode position and examined the relationship between electrode translocation and audiologic outcomes. The findings revealed that proper placement within the cochlea without translocation into inappropriate compartments inside the cochlea improves speech understanding. Manual evaluations were somewhat accurate but less sensitive in detecting translocations compared to automated methods, which offer more precise predictions of patient outcomes. These results contribute to our understanding of factors influencing cochlear implant success and highlight the importance of optimizing electrode placement for improved speech outcomes.
Collapse
Affiliation(s)
- Vivian F Kaul
- The Ohio State Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, United States of America.
| | - Zachary Brannan
- The Ohio State University College of Medicine, 370 W 9th Ave, Columbus, OH 43210, United States of America
| | - Jason Keith
- Ohio State University College of Engineering, 2070 Neil Ave, Columbus, OH 43210, United States of America.
| | - Bradley Hittle
- The Ohio State University College of Medicine, 370 W 9th Ave, Columbus, OH 43210, United States of America.
| | - William Riggs
- The Ohio State Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, United States of America
| | - Meghan Hiss
- The Ohio State Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, United States of America.
| | - Varun Varadarajan
- Associates of Otolaryngology Colorado, 850 E Harvard Ave # 505, Denver, CO 80210, United States of America
| | - Kevin Zhan
- Northwestern Medical Group, 251 East Huron Street, Chicago, IL 60611, United States of America.
| | - Kimerly Powell
- The Ohio State Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, United States of America.
| | - Gregory J Wiet
- The Ohio State Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, United States of America; Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH 43205, United States of America.
| | - Oliver F Adunka
- The Ohio State Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, United States of America; Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH 43205, United States of America.
| |
Collapse
|
13
|
Breitsprecher TM, Baumgartner WD, Brown K, Dazert S, Doyle U, Dhanasingh A, Großmann W, Hagen R, Van de Heyning P, Mlynski R, Neudert M, Rajan G, Rak K, Van Rompaey V, Schmutzhard J, Volkenstein S, Völter C, Wimmer W, Zernotti M, Weiss NM. Effect of Cochlear Implant Electrode Insertion Depth on Speech Perception Outcomes: A Systematic Review. OTOLOGY & NEUROTOLOGY OPEN 2023; 3:e045. [PMID: 38516541 PMCID: PMC10950166 DOI: 10.1097/ono.0000000000000045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/29/2023] [Indexed: 03/23/2024]
Abstract
Objective The suitable electrode array choice is broadly discussed in cochlear implantation surgery. Whether to use a shorter electrode length under the aim of structure preservation versus choosing a longer array to achieve a greater cochlear coverage is a matter of debate. The aim of this review is to identify the impact of the insertion depth of a cochlear implant (CI) electrode array on CI users' speech perception outcomes. Databases Reviewed PubMed was searched for English-language articles that were published in a peer-reviewed journal from 1997 to 2022. Methods A systematic electronic search of the literature was carried out using PubMed to find relevant literature on the impact of insertion depth on speech perception. The review was conducted according to the preferred reporting items for systematic reviews and meta-analyses guidelines of reporting. Studies in both, children and adults with pre- or postlingual hearing loss, implanted with a CI were included in this study. Articles written in languages other than English, literature reviews, meta-analyses, animal studies, histopathological studies, or studies pertaining exclusively to imaging modalities without reporting correlations between insertion depth and speech outcomes were excluded. The risk of bias was determined using the "Risk of Bias in Nonrandomized Studies of Interventions" tool. Articles were extracted by 2 authors independently using predefined search terms. The titles and abstracts were screened manually to identify studies that potentially meet the inclusion criteria. The extracted information included: the study population, type of hearing loss, outcomes reported, devices used, speech perception outcomes, insertion depth (linear insertion depth and/or the angular insertion depth), and correlation between insertion depth and the speech perception outcomes. Results A total of 215 relevant studies were assessed for eligibility. Twenty-three studies met the inclusion criteria and were analyzed further. Seven studies found no significant correlation between insertion depth and speech perception outcomes. Fifteen found either a significant positive correlation or a positive effect between insertion depth and speech perception. Only 1 study found a significant negative correlation between insertion depth and speech perception outcomes. Conclusion Although most studies reported a positive effect of insertion depth on speech perception outcomes, one-third of the identified studies reported no correlation. Thus, the insertion depth must be considered as a contributing factor to speech perception rather than as a major decisive criterion. Registration This review has been registered in PROSPERO, the international prospective register of systematic reviews (CRD42021257547), available at https://www.crd.york.ac.uk/PROSPERO/.
Collapse
Affiliation(s)
- Tabita M. Breitsprecher
- Department of Otorhinolaryngology-Head and Neck Surgery, Ruhr-University Bochum, St. Elisabeth-Hospital Bochum, Bochum, Germany
| | - Wolf-Dieter Baumgartner
- Universitätsklinik für Hals-, Nasen- und Ohrenkrankheiten, Medizinische Universität Wien, Wien, Austria
| | - Kevin Brown
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Stefan Dazert
- Department of Otorhinolaryngology-Head and Neck Surgery, Ruhr-University Bochum, St. Elisabeth-Hospital Bochum, Bochum, Germany
| | - Una Doyle
- MED-EL Elektromedizinische Geraete Gesellschaft m.b.H., Innsbruck, Austria
| | - Anandhan Dhanasingh
- MED-EL Elektromedizinische Geraete Gesellschaft m.b.H., Innsbruck, Austria
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Wilma Großmann
- Department of Otorhinolaryngology, Head and Neck Surgery, “Otto Körner,” Rostock University Medical Center, Rostock, Germany
| | - Rudolf Hagen
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Paul Van de Heyning
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Robert Mlynski
- Department of Otorhinolaryngology, Head and Neck Surgery, “Otto Körner,” Rostock University Medical Center, Rostock, Germany
| | - Marcus Neudert
- Department of Otorhinolaryngology Head and Neck Surgery, Technische Universität Dresden (oder TU Dresden), Faculty of Medicine (and University Hospital) Carl Gustav Carus, Dresden, Germany
| | - Gunesh Rajan
- Otolaryngology, Head and Neck Surgery, Medical School, University of Western Australia, Perth, Australia
- Faculty of Health Sciences and Medicine, University of Lucerne, Luzern, Switzerland
| | - Kristen Rak
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Vincent Van Rompaey
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Joachim Schmutzhard
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - Stefan Volkenstein
- Department of Otorhinolaryngology, Head and Neck Surgery, Ruhr-University Bochum, Johannes Wesling Klinikum Minden, Bochum, Germany
| | - Christiane Völter
- Department of Otorhinolaryngology-Head and Neck Surgery, Ruhr-University Bochum, St. Elisabeth-Hospital Bochum, Bochum, Germany
| | - Wilhelm Wimmer
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Department of Otorhinolaryngology, TUM School of Medicine, Klinikum Rechts der Isar, Munich, Germany
| | - Mario Zernotti
- Division of Otolaryngology and Head and Neck Surgery, Sanatorio Allende, Catholic University of Córdoba and National University of Córdoba, Córdoba, Argentina
| | - Nora M. Weiss
- Department of Otorhinolaryngology-Head and Neck Surgery, Ruhr-University Bochum, St. Elisabeth-Hospital Bochum, Bochum, Germany
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Department of Otorhinolaryngology, TUM School of Medicine, Klinikum Rechts der Isar, Munich, Germany
- International Graduate School of Neuroscience, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
14
|
Dillon MT, Helpard L, Brown KD, Selleck AM, Richter ME, Rooth MA, Thompson NJ, Dedmon MM, Ladak HM, Agrawal S. Influence of the Frequency-to-Place Function on Recognition with Place-Based Cochlear Implant Maps. Laryngoscope 2023; 133:3540-3547. [PMID: 37078508 DOI: 10.1002/lary.30710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVE Comparison of acute speech recognition for cochlear implant (CI) alone and electric-acoustic stimulation (EAS) users listening with default maps or place-based maps using either a spiral ganglion (SG) or a new Synchrotron Radiation-Artificial Intelligence (SR-AI) frequency-to-place function. METHODS Thirteen adult CI-alone or EAS users completed a task of speech recognition at initial device activation with maps that differed in the electric filter frequency assignments. The three map conditions were: (1) maps with the default filter settings (default map), (2) place-based maps with filters aligned to cochlear SG tonotopicity using the SG function (SG place-based map), and (3) place-based maps with filters aligned to cochlear Organ of Corti (OC) tonotopicity using the SR-AI function (SR-AI place-based map). Speech recognition was evaluated using a vowel recognition task. Performance was scored as the percent correct for formant 1 recognition due to the rationale that the maps would deviate the most in the estimated cochlear place frequency for low frequencies. RESULTS On average, participants had better performance with the OC SR-AI place-based map as compared to the SG place-based map and the default map. A larger performance benefit was observed for EAS users than for CI-alone users. CONCLUSION These pilot data suggest that EAS and CI-alone users may experience better performance with a patient-centered mapping approach that accounts for the variability in cochlear morphology (OC SR-AI frequency-to-place function) in the individualization of the electric filter frequencies (place-based mapping procedure). LEVEL OF EVIDENCE 3 Laryngoscope, 133:3540-3547, 2023.
Collapse
Affiliation(s)
- Margaret T Dillon
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Luke Helpard
- School of Biomedical Engineering, Western University, London, Ontario, Canada
| | - Kevin D Brown
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - A Morgan Selleck
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Margaret E Richter
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Meredith A Rooth
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nicholas J Thompson
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew M Dedmon
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hanif M Ladak
- School of Biomedical Engineering, Western University, London, Ontario, Canada
- Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada
| | - Sumit Agrawal
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada
| |
Collapse
|
15
|
Heuninck E, Van de Heyning P, Van Rompaey V, Mertens G, Topsakal V. Audiological outcomes of robot-assisted cochlear implant surgery. Eur Arch Otorhinolaryngol 2023; 280:4433-4444. [PMID: 37043021 DOI: 10.1007/s00405-023-07961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/03/2023] [Indexed: 04/13/2023]
Abstract
PURPOSE The main objective of this study is to evaluate the short-term and long-term audiological outcomes in patients who underwent cochlear implantation with a robot-assisted system to enable access to the cochlea, and to compare outcomes with a matched control group of patients who underwent cochlear implantation with conventional access to the cochlea. METHODS In total, 23 patients were implanted by robot-assisted cochlear implant surgery (RACIS). To evaluate the effectiveness of robotic surgery in terms of audiological outcomes, a statistically balanced control group of conventionally implanted patients was created. Minimal outcome measures (MOM), consisting of pure-tone audiometry, speech understanding in quiet and speech understanding in noise were performed pre-operatively and at 3 months, 6 months, 12 months and 2 years post-activation of the audioprocessor. RESULTS There was no statistically significant difference in pure-tone audiometry, speech perception in quiet and speech perception in noise between robotically implanted and conventionally implanted patients pre-operatively, 3 months, 6 months, 12 months and 2 years post-activation. A significant improvement in pure-tone hearing thresholds, speech understanding in quiet and speech understanding in noise with the cochlear implant has been quantified as of the first measurements at 3 months and this significant improvement remained stable over a time period of 2 years for HEARO implanted patients. CONCLUSION Clinical outcomes in robot-assisted cochlear implant surgery are comparable to conventional cochlear implantation. CLINICALTRAILS. GOV TRAIL REGISTRATION NUMBERS NCT03746613 (date of registration: 19/11/2018), NCT04102215 (date of registration: 25/09/2019).
Collapse
Affiliation(s)
- Emilie Heuninck
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Brussels, Vrije Universiteit Brussel, Brussels Health Campus, Brussels, Belgium.
| | - Paul Van de Heyning
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
- Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
- Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Griet Mertens
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
- Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Vedat Topsakal
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Brussels, Vrije Universiteit Brussel, Brussels Health Campus, Brussels, Belgium
| |
Collapse
|
16
|
Jia G, Song Z, Wu L, Sun Q, Sheng Y, Ni Y, Li H, Li W. An Accurate and Individualized Preoperative Estimation Method for the Linear Insertion Depth of Cochlear Implant Electrode Arrays Based on Computed Tomography. Ear Hear 2023; 44:1036-1042. [PMID: 36864593 DOI: 10.1097/aud.0000000000001346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
OBJECTIVES Cochlear implantation or auditory brainstem implantation is currently the only accepted method for improving severe or profound sensorineural hearing loss. The length of the electrodes implanted during cochlear implantation is closely related to the degree of hearing improvement of hearing after the surgery. We aimed to explore new methods to accurately estimate the electrode array (EA) linear insertion depth based on computed tomography (CT) images prior surgery, which could help surgeons select the appropriate EA length for each patient. DESIGN Previous studies estimated the linear insertion depth by measuring the length of the lateral wall of the cochlea rather than the electrode's path in the cochlea duct. Here, we determined the actual position of the EA on the CT image after cochlear surgery in order to predict the path of the EA, and the length of the predicted EA path was measured by the contouring technique (CoT) to estimate the linear insertion depth of the EA. Because CoT can only measure the length of the estimated EA path on a two-dimensional plane, we further modified the measurement by weighting the height of the cochlea and the length of the EA tail (the length of the last stimulating electrode to the end, which cannot be displayed on the CT image), which we termed the modified CoT + height + tail (MCHT) measurement. RESULTS Based on our established method, MCHT could reduce the error to the submillimeter range (0.67 ± 0.37 mm) when estimating the linear insertion depth of various kinds of EAs compared with the actual implant length. The correlation coefficient between the linear insertion depth as predicted by MCHT and the actual was 0.958. The linear insertion depth estimated by this method was more accurate than that estimated using the classical CoT technique ( R = 0.442) and using the modified Escudé's method ( R = 0.585). CONCLUSIONS MCHT is a method based on CT images that can accurately predict the linear insertion depth of cochlear implants preoperatively. This is the first report that we are aware of a method for predicting linear insertion depth before cochlear implantation with only submillimeter errors and that is tailored to different types of EAs.
Collapse
Affiliation(s)
- Gaogan Jia
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, People's Republic of China
- These authors contributed equally to this work
| | - Zijun Song
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, People's Republic of China
- These authors contributed equally to this work
| | - Lingjie Wu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, People's Republic of China
| | - Qiushi Sun
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Yaru Sheng
- Radiology Department of Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yusu Ni
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, People's Republic of China
| | - Huawei Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, People's Republic of China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, People's Republic of China
| | - Wenyan Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, People's Republic of China
| |
Collapse
|
17
|
Yoshimura H, Watanabe K, Nishio SY, Takumi Y, Usami SI. Determining optimal cochlear implant electrode array with OTOPLAN. Acta Otolaryngol 2023; 143:748-752. [PMID: 37737708 DOI: 10.1080/00016489.2023.2256790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND To achieve better speech performance following cochlear implantation (CI), measuring the patient's cochlear duct length (CDL) and determining the appropriate length of the CI array are important. OBJECTIVE To investigate the CDL in CI patients after using the OTOPLAN software preoperatively and compare the results of angular insertion depth (AID) estimation by OTOPLAN and postoperative radiography. MATERIALS AND METHODS The study included 105 Japanese CI patients with normal cochleae. We measured the CDL using OTOPLAN and the position of the tip channel of the electrode for each selected electrode array, and estimated the AID using the software. RESULTS The mean CDL was 35.1 ± 1.6 mm. Preoperatively, the mean estimated AID was 580.3 ± 57.8°. Postoperative radiography revealed a mean AID of 583.0 ± 56.7°, demonstrating a strong linear correlation between the two measurements (R2 = 0.635). CONCLUSION AND SIGNIFICANCE Our findings revealed that CDL varies widely, which is consistent with previous studies. To achieve better speech perception, surgeons should select the appropriate length of CI electrode array based on the individual's CDL. Preoperative measurement of each CDL by OTOPLAN, which is clinically feasible and comparable to postoperative evaluation, can be used to ensure selection of the appropriate electrode array length.
Collapse
Affiliation(s)
- Hidekane Yoshimura
- Department of Otorhinolaryngology - Head and Neck Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kizuki Watanabe
- Department of Otorhinolaryngology - Head and Neck Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shin-Ya Nishio
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yutaka Takumi
- Department of Otorhinolaryngology - Head and Neck Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shin-Ichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
18
|
Weller T, Timm ME, Lenarz T, Büchner A. Cochlear coverage with lateral wall cochlear implant electrode arrays affects post-operative speech recognition. PLoS One 2023; 18:e0287450. [PMID: 37437046 DOI: 10.1371/journal.pone.0287450] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 06/06/2023] [Indexed: 07/14/2023] Open
Abstract
OBJECTIVES The goal was to investigate the relationship between the insertion angle/cochlear coverage of cochlear implant electrode arrays and post-operative speech recognition scores in a large cohort of patients implanted with lateral wall electrode arrays. METHODS Pre- and post-operative cone beam computed tomography scans of 154 ears implanted with lateral wall electrode arrays were evaluated. Traces of lateral wall and electrode arrays were combined into a virtual reconstruction of the implanted cochlea. This reconstruction was used to measure insertion angles and proportional cochlear coverage. Word recognition scores and sentence recognition scores measured 12 months after implantation using electric-only stimulation were used to examine the relationship between cochlear coverage/insertion angle and implantation outcomes. RESULTS Post-operative word recognition scores and the difference between post- and pre-operative word recognition scores were positively correlated with both cochlear coverage and insertion angle, however sentence recognition scores were not. A group-wise comparison of word recognition scores revealed that patients with cochlear coverage below 70% performed significantly worse than patients with coverage between 79%-82% (p = 0.003). Performance of patients with coverage above 82% was on average poorer than between 79%-82, although this finding was not statistically significant (p = 0.84). Dividing the cohort into groups based on insertion angle quadrants revealed that word recognition scores were highest above 450° insertion angle, sentence recognition scores were highest between 450° and 630° and the difference between pre- and post-operative word recognition scores was largest between 540° and 630°, however none of these differences reached statistical significance. CONCLUSIONS The results of this study show that cochlear coverage has an effect on post-operative word recognition abilities and the benefit patients receive from their implant. Generally, higher coverage led to better outcomes, however there were results indicating that insertion past 82% cochlear coverage may not provide an additional benefit for word recognition. These findings can be useful for choosing the optimal electrode array and thereby improving cochlear implantation outcomes on a patient-individual basis.
Collapse
Affiliation(s)
- Tobias Weller
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- German Hearing Center (DHZ), Hannover, Germany
- Cluster of Excellence "Hearing4All", Oldenburg, Germany
| | - Max Eike Timm
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- German Hearing Center (DHZ), Hannover, Germany
- Cluster of Excellence "Hearing4All", Oldenburg, Germany
| | - Andreas Büchner
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- German Hearing Center (DHZ), Hannover, Germany
- Cluster of Excellence "Hearing4All", Oldenburg, Germany
| |
Collapse
|
19
|
Skarzynski PH, Lorens A, Gos E, Kolodziejak A, Obrycka A, Skarżyńska MB, Czajka N, Porowski M, Skarzynski H. Outcomes of Cochlear Implantation Using FLEX26 Electrode: Audiological Results and Quality of Life after 12 Months. Audiol Neurootol 2023; 28:458-465. [PMID: 37315543 DOI: 10.1159/000530883] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/04/2023] [Indexed: 06/16/2023] Open
Abstract
INTRODUCTION The electrode length is one of the many factors impacted on results of cochlear implantation. Among lateral wall flexible electrode arrays the latest one is FLEX26 (MED-EL GmbH, Innsbruck, Austria). The main aim of the study was to evaluate the preservation of residual hearing, the level of speech understanding, and quality of life after cochlear implantation with FLEX26 electrode array. METHODS The study was conducted in a tertiary referral centre. Fifty-two patients implanted unilaterally with FLEX26, including 10 EAS patients (electric acoustic stimulation) and 42 ES patients (electric stimulation). The intervention was minimally invasive cochlear implantation via the round window. Pure-tone audiometry (0.125-8 kHz) was performed preoperatively and at 1, 6, and 12 months postoperatively. Twelve-month hearing preservation was established using HEARRING group formula. Quality of life was measured with AQoL-8D (Assessment of Quality of Life-8 Dimensions) pre- and postoperatively. RESULTS Residual hearing was preserved in 88.8% EAS patients. Quality of life was significantly better postoperatively in comparison to preoperative period (the effect size for overall quality of life was 0.49). Especially, it increased in relationships and senses dimensions (the effect sizes 0.47 and 0.44, respectively). CONCLUSION Preservation of residual hearing can be achieved in the majority of patients implanted with FLEX26. Improvement of quality of life was also documented. FLEX26 seems to be an option for surgeons who seek an electrode providing sufficient cochlear coverage.
Collapse
Affiliation(s)
| | - Artur Lorens
- Implant and Auditory Perception Department, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Elzbieta Gos
- Teleaudiology and Screening Department, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Aleksandra Kolodziejak
- Teleaudiology and Screening Department, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Anita Obrycka
- Implant and Auditory Perception Department, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Magdalena B Skarżyńska
- Institute of Sensory Organs, Warsaw, Poland
- Center of Hearing and Speech Medincus, Warsaw, Poland
- Pharmacy Department, Department of Pharmacotherapy and Pharmaceutical Care, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Czajka
- Teleaudiology and Screening Department, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Marek Porowski
- Otorhinolaryngosurgery Clinic, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Henryk Skarzynski
- Otorhinolaryngosurgery Clinic, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| |
Collapse
|
20
|
Paouris D, Kunzo S, Goljerová I. Validation of Automatic Cochlear Measurements Using OTOPLAN ® Software. J Pers Med 2023; 13:jpm13050805. [PMID: 37240975 DOI: 10.3390/jpm13050805] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
INTRODUCTION Electrode length selection based on case-related cochlear parameters is becoming a standard pre-operative step for cochlear implantation. The manual measurement of the parameters is often time-consuming and may lead to inconsistencies. Our work aimed to evaluate a novel, automatic measurement method. MATERIALS AND METHODS A retrospective evaluation of pre-operative HRCT images of 109 ears (56 patients) was conducted, using a development version of the OTOPLAN® software. Inter-rater (intraclass) reliability and execution time were assessed for manual (surgeons R1 and R2) vs. automatic (AUTO) results. The analysis included A-Value (Diameter), B-Value (Width), H-Value (Height), and CDLOC-length (Cochlear Duct Length at Organ of Corti/Basilar membrane). RESULTS The measurement time was reduced from approximately 7 min ± 2 (min) (manual) to 1 min (AUTO). Cochlear parameters in mm (mean ± SD) for R1, R2 and AUTO, respectively, were A-value: 9.00 ± 0.40, 8.98 ± 0.40 and 9.16 ± 0.36; B-value: 6.81 ± 0.34, 6.71 ± 0.35 and 6.70 ± 0.40; H-value: 3.98 ± 0.25, 3.85 ± 0.25 and 3.76 ± 0.22; and the mean CDLoc-length: 35.64 ± 1.70, 35.20 ± 1.71 and 35.47 ± 1.87. AUTO CDLOC measurements were not significantly different compared to R1 and R2 (H0: Rx CDLOC = AUTO CDLOC: p = 0.831, p = 0.242, respectively), and the calculated intraclass correlation coefficient (ICC) for CDLOC was 0.9 (95% CI: 0.85, 0.932) for R1 vs. AUTO; 0.90 (95% CI: 0.85, 0.932) for R2 vs. AUTO; and 0.893 (95% CI: 0.809, 0.935) for R1 vs. R2. CONCLUSIONS We observed excellent inter-rater reliability, a high agreement of outcomes, and reduced execution time using the AUTO method.
Collapse
Affiliation(s)
- Dimitrios Paouris
- Clinic of Pediatric Otorhinolaryngology of the Medical Faculty, National Institute of Children's Diseases, Comenius University, 83340 Bratislava, Slovakia
| | - Samuel Kunzo
- Clinic of Pediatric Otorhinolaryngology of the Medical Faculty, National Institute of Children's Diseases, Comenius University, 83340 Bratislava, Slovakia
| | - Irina Goljerová
- Clinic of Pediatric Otorhinolaryngology of the Medical Faculty, National Institute of Children's Diseases, Comenius University, 83340 Bratislava, Slovakia
| |
Collapse
|
21
|
Thomas JP, Klein H, Haubitz I, Dazert S, Völter C. Intra- and Interrater Reliability of CT- versus MRI-Based Cochlear Duct Length Measurement in Pediatric Cochlear Implant Candidates and Its Impact on Personalized Electrode Array Selection. J Pers Med 2023; 13:jpm13040633. [PMID: 37109019 PMCID: PMC10142378 DOI: 10.3390/jpm13040633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023] Open
Abstract
Background: Radiological high-resolution computed tomography-based evaluation of cochlear implant candidates’ cochlear duct length (CDL) has become the method of choice for electrode array selection. The aim of the present study was to evaluate if MRI-based data match CT-based data and if this impacts on electrode array choice. Methods: Participants were 39 children. CDL, length at two turns, diameters, and height of the cochlea were determined via CT and MRI by three raters using tablet-based otosurgical planning software. Personalized electrode array length, angular insertion depth (AID), intra- and interrater differences, and reliability were calculated. Results: Mean intrarater difference of CT- versus MRI-based CDL was 0.528 ± 0.483 mm without significant differences. Individual length at two turns differed between 28.0 mm and 36.6 mm. Intrarater reliability between CT versus MRI measurements was high (intra-class correlation coefficient (ICC): 0.929–0.938). Selection of the optimal electrode array based on CT and MRI matched in 90.1% of cases. Mean AID was 629.5° based on the CT and 634.6° based on the MRI; this is not a significant difference. ICC of the mean interrater reliability was 0.887 for the CT-based evaluation and 0.82 for the MRI-based evaluation. Conclusion: MRI-based CDL measurement shows a low intrarater difference and a high interrater reliability and is therefore suitable for personalized electrode array selection.
Collapse
Affiliation(s)
- Jan Peter Thomas
- Department of Otorhinolaryngology, Head and Neck Surgery, St. Johannes Hospital, Cath. St. Paulus Society, Academic Teaching Hospital of the University of Münster, Johannesstr. 9-17, 44137 Dortmund, Germany
| | - Hannah Klein
- Department of Otorhinolaryngology, Head and Neck Surgery, Katholisches Klinikum, Ruhr University Bochum, Bleichstr. 15, 44787 Bochum, Germany
| | - Imme Haubitz
- Department of Otorhinolaryngology, Head and Neck Surgery, Katholisches Klinikum, Ruhr University Bochum, Bleichstr. 15, 44787 Bochum, Germany
| | - Stefan Dazert
- Department of Otorhinolaryngology, Head and Neck Surgery, Katholisches Klinikum, Ruhr University Bochum, Bleichstr. 15, 44787 Bochum, Germany
| | - Christiane Völter
- Department of Otorhinolaryngology, Head and Neck Surgery, Katholisches Klinikum, Ruhr University Bochum, Bleichstr. 15, 44787 Bochum, Germany
| |
Collapse
|
22
|
Iso-Mustajärvi M, Silvast T, Heikka T, Tervaniemi J, Calixto R, Linder PH, Dietz A. Trauma After Cochlear Implantation: The Accuracy of Micro-Computed Tomography and Cone-Beam Fusion Computed Tomography Compared With Histology in Human Temporal Bones. Otol Neurotol 2023; 44:339-345. [PMID: 36843083 PMCID: PMC10022666 DOI: 10.1097/mao.0000000000003835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
HYPOTHESIS Micro-computed tomography (micro-CT) and cone-beam computed tomography (CBCT), in conjunction with the image fusion technique, may provide similar results for trauma assessment after cochlear implantation, with respect to the trauma evaluation in preclinical cochlear implant (CI) studies, as the histology. BACKGROUND Before clinical use, novel cochlear implant (CI) designs are tested in temporal bone (TB) studies for usability and risk evaluation. The criterion standard for evaluating intracochlear insertion trauma and electrode location has historically been with histological samples. Progress of modern imaging technology has created alternatives to classic histology. This study compares the micro-CT and CBCT fusion images between histological samples in a preclinical CI study. METHODS Fourteen freshly frozen TBs were inserted with a lateral wall research CI electrode. All TBs were scanned with CBCT preoperatively and postoperatively. After insertion, the TBs were prepared for micro-CT and histology. Twelve TBs underwent first a micro-CT and then the histological process. The CBCTs were used for image fusion, and all three different methods were used for intracochlear trauma evaluation. The results were compared between methods. RESULTS There were 4 of 14 translocations detected with the fusion image method and 3 of 12 with the micro-CT and histology. When compared, the trauma grades converged and were not statistically significant. CONCLUSION The trauma grading based on micro-CT is comparable to the histology. The image fusion technique based on CBCT is less accurate because it relies on an empirical assumption of the basal membrane localization, but it is clinically applicable.
Collapse
Affiliation(s)
| | - Tuomo Silvast
- SIB Labs Infrastructure Unit, Faculty of Science and Forestry, University of Eastern Finland
| | - Tuomas Heikka
- Department of Otorhinolaryngology, Kuopio University Hospital
| | - Jyrki Tervaniemi
- Department of Radiology, Kuopio University Hospital, Kuopio, Finland
| | | | - Pia H. Linder
- Department of Otorhinolaryngology, Kuopio University Hospital
| | - Aarno Dietz
- Department of Otorhinolaryngology, Kuopio University Hospital
| |
Collapse
|
23
|
Chen YS, Cabrera E, Tucker BJ, Shin TJ, Moawad JV, Totten DJ, Booth KT, Nelson RF. TMPRSS3 expression is limited in spiral ganglion neurons: implication for successful cochlear implantation. J Med Genet 2022; 59:1219-1226. [PMID: 35961784 DOI: 10.1136/jmg-2022-108654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/15/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND It is well established that biallelic mutations in transmembrane protease, serine 3 (TMPRSS3) cause hearing loss. Currently, there is controversy regarding the audiological outcomes after cochlear implantation (CI) for TMPRSS3-associated hearing loss. This controversy creates confusion among healthcare providers regarding the best treatment options for individuals with TMPRSS3-related hearing loss. METHODS A literature review was performed to identify all published cases of patients with TMPRSS3-associated hearing loss who received a CI. CI outcomes of this cohort were compared with published adult CI cohorts using postoperative consonant-nucleus-consonant (CNC) word performance. TMPRSS3 expression in mouse cochlea and human auditory nerves (HAN) was determined by using hybridisation chain reaction and single-cell RNA-sequencing analysis. RESULTS In aggregate, 27 patients (30 total CI ears) with TMPRSS3-associated hearing loss treated with CI, and 85% of patients reported favourable outcomes. Postoperative CNC word scores in patients with TMPRSS3-associated hearing loss were not significantly different than those seen in adult CI cohorts (8 studies). Robust Tmprss3 expression occurs throughout the mouse organ of Corti, the spindle and root cells of the lateral wall and faint staining within <5% of the HAN, representing type II spiral ganglion neurons. Adult HAN express negligible levels of TMPRSS3. CONCLUSION The clinical features after CI and physiological expression of TMPRSS3 suggest against a major role of TMPRSS3 in auditory neurons.
Collapse
Affiliation(s)
- Yuan-Siao Chen
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ernesto Cabrera
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brady J Tucker
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Timothy J Shin
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jasmine V Moawad
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Douglas J Totten
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kevin T Booth
- Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rick F Nelson
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
24
|
Association between lateral wall electrode array insertion parameters and audiological outcomes in bilateral cochlear implantation. Eur Arch Otorhinolaryngol 2022; 280:2707-2714. [PMID: 36436080 PMCID: PMC10175364 DOI: 10.1007/s00405-022-07756-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 11/15/2022] [Indexed: 11/28/2022]
Abstract
Abstract
Purpose
The aims of this study were to compare speech recognition at different postoperative times for both ears in bilaterally implanted patients and to assess the influence of the time of deafness, frequency-to-place mismatch, angular insertion depth (AID) and angular separation between neighbouring electrode contacts on audiometric outcomes.
Methods
This study was performed at an academic tertiary referral centre. A total of 19 adult patients (6 men, 13 women), who received sequential bilateral implantation with lateral wall electrode arrays, were analysed in retrospective. Statistical analysis was performed using two-sided t test, Wilcoxon test, median test, and Spearman’s correlation.
Results
Postlingually deafened patients (deafness after the age of 10) had a significantly better speech perception (WRS65[CI]) than the perilingually deafened subjects (deafness at the age of 1–10 years) (p < 0.001). Comparison of cochlear duct length between peri- and postlingually deafened subjects showed a slightly significantly smaller cochleae in perilingual patients (p = 0.045). No association between frequency-to-place mismatch as well as angular separation and speech perception could be detected. There was even no significant difference between the both ears in the intraindividual comparison, even if insertion parameters differed.
Conclusion
The exact electrode position seems to have less influence on the speech comprehension of CI patients than already established parameters as preoperative speech recognition or duration of deafness.
Collapse
|
25
|
Hrncirik F, Roberts IV, Swords C, Christopher PJ, Chhabu A, Gee AH, Bance ML. Impact of Scala Tympani Geometry on Insertion Forces during Implantation. BIOSENSORS 2022; 12:999. [PMID: 36354508 PMCID: PMC9688204 DOI: 10.3390/bios12110999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 11/05/2022] [Indexed: 05/07/2023]
Abstract
(1) Background: During a cochlear implant insertion, the mechanical trauma can cause residual hearing loss in up to half of implantations. The forces on the cochlea during the insertion can lead to this mechanical trauma but can be highly variable between subjects which is thought to be due to differing anatomy, namely of the scala tympani. This study presents a systematic investigation of the influence of different geometrical parameters of the scala tympani on the cochlear implant insertion force. The influence of these parameters on the insertion forces were determined by testing the forces within 3D-printed, optically transparent models of the scala tympani with geometric alterations. (2) Methods: Three-dimensional segmentations of the cochlea were characterised using a custom MATLAB script which parametrised the scala tympani model, procedurally altered the key shape parameters (e.g., the volume, vertical trajectory, curvature, and cross-sectional area), and generated 3D printable models that were printed using a digital light processing 3D printer. The printed models were then attached to a custom insertion setup that measured the insertion forces on the cochlear implant and the scala tympani model during a controlled robotic insertion. (3) Results: It was determined that the insertion force is largely unaffected by the overall size, curvature, vertical trajectory, and cross-sectional area once the forces were normalised to an angular insertion depth. A Capstan-based model of the CI insertion forces was developed and matched well to the data acquired. (4) Conclusion: By using accurate 3D-printed models of the scala tympani with geometrical alterations, it was possible to demonstrate the insensitivity of the insertion forces to the size and shape of the scala tympani, after controlling for the angular insertion depth. This supports the Capstan model of the cochlear implant insertion force which predicts an exponential growth of the frictional force with an angular insertion depth. This concludes that the angular insertion depth, rather than the length of the CI inserted, should be the major consideration when evaluating the insertion force and associated mechanical trauma caused by cochlear implant insertion.
Collapse
Affiliation(s)
- Filip Hrncirik
- Cambridge Hearing Group, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Iwan V. Roberts
- Cambridge Hearing Group, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Chloe Swords
- Cambridge Hearing Group, Cambridge, UK
- Department of Physiology, Development and Neurosciences, University of Cambridge, Cambridge CB2 3DY, UK
| | | | - Akil Chhabu
- Clinical School, University of Cambridge, Cambridge CB2 0SP, UK
| | - Andrew H. Gee
- Department of Physiology, Development and Neurosciences, University of Cambridge, Cambridge CB2 3DY, UK
| | - Manohar L. Bance
- Cambridge Hearing Group, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
26
|
Hoffmann JAC, Warnecke A, Timm ME, Kludt E, Prenzler NK, Gärtner L, Lenarz T, Salcher RB. Cochlear Implantation in Obliterated Cochlea: A Retrospective Analysis and Comparison between the IES Stiff Custom-Made Device and the Split-Array and Regular Electrodes. J Clin Med 2022; 11:jcm11206090. [PMID: 36294411 PMCID: PMC9605638 DOI: 10.3390/jcm11206090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
Anatomical malformations, obliterations of the cochlea, or re-implantations pose particular challenges in cochlear implantation. Treatment methods rely on radiological and intraoperative findings and include incomplete insertion, the implantation of a double array, and radical cochleostomy. In addition, a stiff electrode array, e.g., the IE stiff (IES) custom-made device (CMD, MED-EL), was prescribed individually for those special cases and pre-inserted prior to facilitate cochlear implantation in challenging cases. Data on outcomes after implantation in obliterated cochleae are usually based on individual case reports since standardised procedures are lacking. A retrospective analysis was conducted to analyse our cases on obliterated cochleae treated with MED-EL devices in order to allow the different cases to be compared. Impedances and speech perception data of patients treated with the IES CMD and the double array were retrospectively compared to patients treated with a STANDARD or FLEX electrode array (the REGULAR group). Patients with a Split-Array CMD had a poor speech perception when compared to patients treated with the IES CMD device. Thus, the IES CMD can successfully be used in patients with obliterated cochleae who would otherwise be non-users, candidates for a Split-Array CMD, or candidates for partial insertion with insufficient cochlear coverage.
Collapse
Affiliation(s)
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medial School, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover Medical School, 30625 Hannover, Germany
| | - Max Eike Timm
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medial School, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover Medical School, 30625 Hannover, Germany
| | - Eugen Kludt
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medial School, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover Medical School, 30625 Hannover, Germany
| | - Nils Kristian Prenzler
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medial School, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover Medical School, 30625 Hannover, Germany
| | - Lutz Gärtner
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medial School, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover Medical School, 30625 Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medial School, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover Medical School, 30625 Hannover, Germany
| | - Rolf Benedikt Salcher
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medial School, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover Medical School, 30625 Hannover, Germany
- Correspondence:
| |
Collapse
|
27
|
Image-Guided Cochlear Implant Programming: A Systematic Review and Meta-analysis. Otol Neurotol 2022; 43:e924-e935. [PMID: 35973035 DOI: 10.1097/mao.0000000000003653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To review studies evaluating clinically implemented image-guided cochlear implant programing (IGCIP) and to determine its effect on cochlear implant (CI) performance. DATA SOURCES PubMed, EMBASE, and Google Scholar were searched for English language publications from inception to August 1, 2021. STUDY SELECTION Included studies prospectively compared intraindividual CI performance between an image-guided experimental map and a patient's preferred traditional map. Non-English studies, cadaveric studies, and studies where imaging did not directly inform programming were excluded. DATA EXTRACTION Seven studies were identified for review, and five reported comparable components of audiological testing and follow-up times appropriate for meta-analysis. Demographic, speech, spectral modulation, pitch accuracy, and quality-of-life survey data were collected. Aggregate data were used when individual data were unavailable. DATA SYNTHESIS Audiological test outcomes were evaluated as standardized mean change (95% confidence interval) using random-effects meta-analysis with raw score standardization. Improvements in speech and quality-of-life measures using the IGCIP map demonstrated nominal effect sizes: consonant-nucleus-consonant words, 0.15 (-0.12 to 0.42); AzBio quiet, 0.09 (-0.05 to 0.22); AzBio +10 dB signal-noise ratio, 0.14 (-0.01 to 0.30); Bamford-Kowel-Bench sentence in noise, -0.11 (-0.35 to 0.12); Abbreviated Profile of Hearing Aid Benefit, -0.14 (-0.28 to 0.00); and Speech Spatial and Qualities of Hearing Scale, 0.13 (-0.02 to 0.28). Nevertheless, 79% of patients allowed to keep their IGCIP map opted for continued use after the investigational period. CONCLUSION IGCIP has potential to precisely guide CI programming. Nominal effect sizes for objective outcome measures fail to reflect subjective benefits fully given discordance with the percentage of patients who prefer to maintain their IGCIP map.
Collapse
|
28
|
Effect of Electrode Insertion Angle on Cochlear Implantation Outcomes in Adult and Children Patients with Sensorineural Hearing Loss. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9914716. [PMID: 36052159 PMCID: PMC9427248 DOI: 10.1155/2022/9914716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022]
Abstract
Purpose To determine the role played by electrode insertion angle in cochlear implantation (CI) outcomes in adult and children patients with sensorineural hearing loss (SNHL). Methods Adults (n = 10) and children (n = 19) with SNHL undergoing CI in a tertiary specialized hospital were retrospectively enrolled. The measurements were evaluated before and after CI surgery using sound field audiometry and speech recognition tests. Questionnaires were used to assess subjective benefits. Electrode insertion angles were determined using postoperative X-rays. Results Both adult and children patients showed significant improvements in hearing, speech performance, and audiology and speech-related quality of life after CI. The angular insertion depths of adult and children group were 323.70 ± 43.57° and 341.53 ± 57.07°, respectively, showing no significant difference. In the adult group, deeper insertion depths were found to be strongly linked to lower postoperative pure tone thresholds at 12 months and higher postoperative disyllabic Word Recognition and Sentence Recognition Scores at 6 months (all P < 0.05). In the children group, deeper insertion depth had a positive correlation with postoperative monosyllabic Word Recognition Scores 6 and 12 months after CI surgery (both P < 0.05). Multiple linear regression models were constructed to predict disyllabic Word Recognition Scores at 6 and 12 months postoperatively in the children group, in which insertion angle, duration of hearing loss, and preoperative questionnaire result were identified as dependent variables. Conclusions Greater angular insertion depths resulted in improved hearing and speech performances after CI. The benefits of greater angular insertion depths can be found in both adult and children patients and last for at least 12 months. Clinicians are expected to determine the optimal implantation direction during CI and ensure the insertion depth to improve the speech rehabilitation of patients.
Collapse
|
29
|
Scheunemann CWD, Taeger J, Brecht SV, Neun T, Hagen R, Lueth TC, Rak KJ. Concept and first Implementation of an intracochlearly navigated Electrode Array for Cochlear Implantation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2560-2564. [PMID: 36085908 DOI: 10.1109/embc48229.2022.9871850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cochlear implants (CI) are an established treatment for people with deafness or severe hearing loss. To restore patients' hearing an electrode array (EA) of the CI is inserted into the cochlea to stimulate the auditory nerve. Thereby, the exact positioning and gentle insertion of the EA is crucial for optimal hearing perception outcome. Currently, only microscopic vision is available for entering the cochlea, but the critical intracochlear process during EA insertion is like a "black box" and the surgeon has to rely on haptic feedback. Methods for visualizing the insertion process during surgery are inaccurate or not suitable for routine use due to radiation exposure. To address this problem, we developed a computer-assisted and image-guided cochlear implantation system with an exact real-time visualization of the EA position during the insertion process. The system is based on an electromagnetic tracking system that measures the position and orientation of a sensor integrated into the tip of a EA prototype and visualizes it in presurgical image data. A first experiment with our system showed that a EA prototype could be inserted into a cochlea of a human temporal bone and placed with an accuracy of [Formula: see text]. A maximum insertion angle of 120° was achieved.
Collapse
|
30
|
Dillon MT, O'Connell BP, Canfarotta MW, Buss E, Hopfinger J. Effect of Place-Based Versus Default Mapping Procedures on Masked Speech Recognition: Simulations of Cochlear Implant Alone and Electric-Acoustic Stimulation. Am J Audiol 2022; 31:322-337. [PMID: 35394798 DOI: 10.1044/2022_aja-21-00123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Cochlear implant (CI) recipients demonstrate variable speech recognition when listening with a CI-alone or electric-acoustic stimulation (EAS) device, which may be due in part to electric frequency-to-place mismatches created by the default mapping procedures. Performance may be improved if the filter frequencies are aligned with the cochlear place frequencies, known as place-based mapping. Performance with default maps versus an experimental place-based map was compared for participants with normal hearing when listening to CI-alone or EAS simulations to observe potential outcomes prior to initiating an investigation with CI recipients. METHOD A noise vocoder simulated CI-alone and EAS devices, mapped with default or place-based procedures. The simulations were based on an actual 24-mm electrode array recipient, whose insertion angles for each electrode contact were used to estimate the respective cochlear place frequency. The default maps used the filter frequencies assigned by the clinical software. The filter frequencies for the place-based maps aligned with the cochlear place frequencies for individual contacts in the low- to mid-frequency cochlear region. For the EAS simulations, low-frequency acoustic information was filtered to simulate aided low-frequency audibility. Performance was evaluated for the AzBio sentences presented in a 10-talker masker at +5 dB signal-to-noise ratio (SNR), +10 dB SNR, and asymptote. RESULTS Performance was better with the place-based maps as compared with the default maps for both CI-alone and EAS simulations. For instance, median performance at +10 dB SNR for the CI-alone simulation was 57% correct for the place-based map and 20% for the default map. For the EAS simulation, those values were 59% and 37% correct. Adding acoustic low-frequency information resulted in a similar benefit for both maps. CONCLUSIONS Reducing frequency-to-place mismatches, such as with the experimental place-based mapping procedure, produces a greater benefit in speech recognition than maximizing bandwidth for CI-alone and EAS simulations. Ongoing work is evaluating the initial and long-term performance benefits in CI-alone and EAS users. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.19529053.
Collapse
Affiliation(s)
- Margaret T. Dillon
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
- Division of Speech and Hearing Sciences, Department of Allied Health Sciences, University of North Carolina at Chapel Hill
| | - Brendan P. O'Connell
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
| | - Michael W. Canfarotta
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
| | - Emily Buss
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
| | - Joseph Hopfinger
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill
| |
Collapse
|
31
|
Landsberger DM, Stupak N, Spitzer ER, Entwisle L, Mahoney L, Waltzman SB, McMenomey S, Friedmann DR, Svirsky MA, Shapiro W, Roland JT. Stimulating the Cochlear Apex Without Longer Electrodes: Preliminary Results With a New Approach. Otol Neurotol 2022; 43:e578-e581. [PMID: 35283466 PMCID: PMC9149041 DOI: 10.1097/mao.0000000000003529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To investigate a new surgical and signal processing technique that provides apical stimulation of the cochlea using a cochlear implant without extending the length of the electrode array. PATIENTS Three adult patients who underwent cochlear implantation using this new technique. INTERVENTIONS The patients received a cochlear implant. The surgery differed from the standard approach in that a ground electrode was placed in the cochlear helicotrema via an apical cochleostomy rather than in its typical location underneath the temporalis muscle. Clinical fitting was modified such that low frequencies were represented using the apically placed electrode as a ground. MAIN OUTCOME MEASURES Pitch scaling and speech recognition. RESULTS All surgeries were successful with no complications. Pitch scaling demonstrated that use of the apically placed electrode as a ground lowered the perceived pitch of electric stimulation relative to monopolar stimulation. Speech understanding was improved compared with preoperative scores. CONCLUSIONS The new surgical approach and clinical fitting are feasible. A lower pitch is perceived when using the apically placed electrode as a ground relative to stimulation using an extracochlear ground (i.e., monopolar mode), suggesting that stimulation can be provided more apically without the use of a longer electrode array. Further work is required to determine potential improvements in outcomes and optimal signal processing for the new approach.
Collapse
Affiliation(s)
- David M Landsberger
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, New York
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dillon MT, Rooth MA, Canfarotta MW, Richter ME, Thompson NJ, Brown KD. Sound Source Localization by Cochlear Implant Recipients with Normal Hearing in the Contralateral Ear: Effects of Spectral Content and Duration of Listening Experience. Audiol Neurootol 2022; 27:437-448. [PMID: 35439753 DOI: 10.1159/000523969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Cochlear implant (CI) recipients with normal hearing (NH) in the contralateral ear experience a significant improvement in sound source localization when listening with the CI in combination with their NH-ear (CI + NH) as compared to with the NH-ear alone. The improvement in localization is primarily due to sensitivity to interaural level differences (ILDs). Sensitivity to interaural timing differences (ITDs) may be limited by auditory aging, frequency-to-place mismatches, the signal coding strategy, and duration of CI use. The present report assessed the sensitivity of ILD and ITD cues in CI + NH listeners who were recipients of long electrode arrays that provide minimal frequency-to-place mismatches and were mapped with a coding strategy that presents fine structure cues on apical channels. METHODS Sensitivity to ILDs and ITDs for localization was assessed using broadband noise (BBN), as well as high-pass (HP) and low-pass (LP) filtered noise for adult CI + NH listeners. Stimuli were 200-ms noise bursts presented from 11 speakers spaced evenly over an 180° arc. Performance was quantified in root-mean-squared error and response patterns were analyzed to evaluate the consistency, accuracy, and side bias of the responses. Fifteen listeners completed the task at the 2-year post-activation visit; seven listeners repeated the task at a later annual visit. RESULTS Performance at the 2-year visit was best with the BBN and HP stimuli and poorer with the LP stimulus. Responses to the BBN and HP stimuli were significantly correlated, consistent with the idea that CI + NH listeners primarily use ILD cues for localization. For the LP stimulus, some listeners responded consistently and accurately and with limited side bias, which may indicate sensitivity to ITD cues. Two of the 7 listeners who repeated the task at a later annual visit experienced a significant improvement in performance with the LP stimulus, which may indicate that sensitivity to ITD cues may improve with long-term CI use. CONCLUSIONS CI recipients with a NH-ear primarily use ILD cues for sound source localization, though some may use ITD cues as well. Sensitivity to ITD cues may improve with long-term CI listening experience.
Collapse
Affiliation(s)
- Margaret T Dillon
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Division of Speech and Hearing Sciences, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Meredith A Rooth
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael W Canfarotta
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Margaret E Richter
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Division of Speech and Hearing Sciences, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nicholas J Thompson
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kevin D Brown
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
33
|
Walia A, Shew MA, Ettyreddy A, Lefler SM, Jiramongkolchai P, Wick CC, Durakovic N, Buchman CA, Herzog JA. Early Hearing Preservation Outcomes Following Cochlear Implantation With New Slim Lateral Wall Electrode Using Electrocochleography. Otol Neurotol 2022; 43:443-451. [PMID: 35170555 PMCID: PMC8959404 DOI: 10.1097/mao.0000000000003475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Describe early hearing preservation (HP) cochlear implantation (CI) outcomes using a new slim lateral wall electrode (SLWE). STUDY DESIGN Prospective cohort study. SETTING Tertiary referral center. PATIENTS Adult CI candidates with preoperative low-frequency pure-tone average (LFPTA; 125, 250, 500 Hz) ≤60 dB HL. INTERVENTION CI with and without intracochlear real-time electrocochleography (RT-ECochG). MAIN OUTCOME MEASURE HP (LFPTA ≤80 dB HL), LFPTA shift, speech-perception performance measures, postoperative CT reconstruction. RESULTS Forty-two subjects were implanted with the SLWE. Thirty patients underwent full insertion without RT-ECochG feedback, and HP was maintained at 3-months postactivation for 7 (23.3%) patients with mean LFPTA shift of 57.5 ± 25.6 dB HL. RT-ECochG feedback was utilized on 12 patients, of whom 6 patients had full insertions and 6 patients had anywhere from 1 to 3 electrodes left outside of the cochlea based on RT-ECochG feedback. At 3 months postoperatively, HP was achieved on 10 (83.3%) patients and mean LFPTA shift was 18.9 c 11.7 dB HL. Mean difference between LFPTA threshold shift at 3-months postactivation with and without RT-ECochG was 38.6 dB HL (95% CI, 25.6-51.67). There was an improvement in delta CNC from preoperative to 3-months postactivation when using RT-ECochG, with mean difference 20.7% (95% CI, 3.3-38.1). CONCLUSIONS Use of RT-ECochG monitoring during SLWE placement results in fewer full electrode insertions and significantly better HP rates and speech-perception outcomes when compared with unmonitored insertions. Further investigation is needed to evaluate long-term audiologic outcomes to better understand the relationships among ECochG, cochlear trauma, functional outcomes, and HP.
Collapse
Affiliation(s)
- Amit Walia
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Matthew A. Shew
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Abhinav Ettyreddy
- Department of Otolaryngology—Head and Neck Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shannon M. Lefler
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Pawina Jiramongkolchai
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Cameron C. Wick
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Nedim Durakovic
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Craig A. Buchman
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Jacques A. Herzog
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| |
Collapse
|
34
|
Canfarotta MW, Dillon MT, Brown KD, Pillsbury HC, Dedmon MM, O'Connell BP. Insertion Depth and Cochlear Implant Speech Recognition Outcomes: A Comparative Study of 28- and 31.5-mm Lateral Wall Arrays. Otol Neurotol 2022; 43:183-189. [PMID: 34772886 PMCID: PMC8752482 DOI: 10.1097/mao.0000000000003416] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES 1) To compare speech recognition outcomes between cochlear implant (CI) recipients of 28- and 31.5-mm lateral wall electrode arrays, and 2) to characterize the relationship between angular insertion depth (AID) and speech recognition. STUDY DESIGN Retrospective review. SETTING Tertiary academic referral center. PATIENTS Seventy-five adult CI recipients of fully inserted 28-mm (n = 28) or 31.5-mm (n = 47) lateral wall arrays listening with a CI-alone device. INTERVENTIONS Cochlear implantation with postoperative computed tomography. MAIN OUTCOME MEASURES Consonant-nucleus-consonant (CNC) word recognition assessed with the CI-alone at 12 months postactivation. RESULTS The mean AID of the most apical electrode contact for the 31.5-mm array recipients was significantly deeper than the 28-mm array recipients (628° vs 571°, p < 0.001). Following 12 months of listening experience, mean CNC word scores were significantly better for recipients of 31.5-mm arrays compared with those implanted with 28-mm arrays (59.5% vs 48.3%, p = 0.004; Cohen's d = 0.70; 95% CI [0.22, 1.18]). There was a significant positive correlation between AID and CNC word scores (r = 0.372, p = 0.001), with a plateau in performance observed around 600°. CONCLUSIONS Cochlear implant recipients implanted with a 31.5-mm array experienced better speech recognition than those with a 28-mm array at 12 months postactivation. Deeper insertion of a lateral wall array appears to confer speech recognition benefit up to ∼600°, with a plateau in performance observed thereafter. These data provide preliminary evidence of the insertion depth necessary to optimize speech recognition outcomes for lateral wall electrode arrays among CI-alone users.
Collapse
Affiliation(s)
- Michael W Canfarotta
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | | |
Collapse
|
35
|
Frequency reallocation based on cochlear place frequencies in cochlear implants: a pilot study. Eur Arch Otorhinolaryngol 2022; 279:4719-4725. [PMID: 35032205 PMCID: PMC9474446 DOI: 10.1007/s00405-021-07245-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022]
Abstract
Purpose The aim of this study is to evaluate speech perception outcomes after a frequency reallocation performed through the creation of an anatomically based map obtained with Otoplan®, a tablet-based software that allows the cochlear duct length to be calculated starting from CT images. Methods Ten postlingually deafened patients who underwent cochlear implantation with MED-EL company devices from 2015 to 2019 in the Tertiary referral center University Hospital of Verona have been included in a retrospective study. The postoperative CT scans were evaluated with Otoplan®; the position of the intracochlear electrodes was obtained, an anatomical mapping was carried out and then it was submitted to the patients. All patients underwent pure tonal and speech audiometry before and after the reallocation and the audiological results were processed considering the Speech Recognition Threshold (SRT), the Speech Awareness Threshold (SAT) and the Pure Tone Average (PTA). The differences in the PTA, SAT and SRT values before and after the reallocation were determined. The results were statistically processed using the software Stata with a significance value of α < 0.05. Results The mean values of SRT (61.25 dB versus 51.25 dB) and SAT (49 dB versus 41 dB) were significantly lower (p: 0.02 and p: 0.04, respectively) after the reallocation. No significant difference was found between PTA values (41.5 dB versus 39.25 dB; p: 0.18). Conclusions Our preliminary results demonstrate better speech discrimination and rapid adaptation in implanted postlingually deaf patients after anatomic mapping and subsequent frequency reallocation.
Collapse
|
36
|
Dutrieux N, Quatre R, Péan V, Schmerber S. Correlation Between Cochlear Length, Insertion Angle, and Tonotopic Mismatch for MED-EL FLEX28 Electrode Arrays. Otol Neurotol 2022; 43:48-55. [PMID: 34538852 DOI: 10.1097/mao.0000000000003337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the relationship between cochlear length, insertion angle, and tonotopic mismatch and to compare the tonotopic mismatches with respect to the spiral ganglion and the organ of Corti. STUDY DESIGN Retrospective. SETTING Tertiary referral center with cochlear implant program. PATIENTS Analyses of patients' computed tomography images after cochlear implant surgery. INTERVENTION Cochlear implantation with 28-mm-long straight lateral wall electrode arrays. MAIN OUTCOME MEASURE Cochlear length, insertion angle, and insertion depth were assessed using the OTOPLAN software. Tonotopic mismatch for each electrode contact was estimated using the Greenwood (organ of Corti) and the Stakhovskaya (spiral ganglion) maps and compared. RESULTS 106 cochleae were analyzed. 99% of the electrode arrays were located in the tympanic ramp. The insertion was complete in 96% of cases. The mean cochlear length was 34.5 mm and the mean insertion angle of the apical electrode was 545°. Cochlear length was negatively correlated with the insertion angle of the contacts E1 to E9 (all p < 0.004). The tonotopic mismatch was greater at the organ of Corti than at the spiral ganglion. It was also greater at the organ of Corti in larger cochleae (correlation with mismatch for E1 r = 0.421, p < 0.0001) and in the apical than in the middle and basal regions of the cochlea. CONCLUSION Small cochlea size corresponded to higher insertion angle and reduction of tonotopic mismatch on a 28-mm-long straight lateral wall electrode array. Tonotopic mismatch could be minimized preoperatively by choosing electrode arrays according to the individual cochlear morphology and postoperatively by appropriate frequency fitting.
Collapse
Affiliation(s)
- Noémie Dutrieux
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Grenoble Alpes University Hospital, France
- Medical Faculty, University of Grenoble Alpes, Grenoble, France
| | - Raphaële Quatre
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Grenoble Alpes University Hospital, France
- Medical Faculty, University of Grenoble Alpes, Grenoble, France
| | | | - Sébastien Schmerber
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Grenoble Alpes University Hospital, France
- Medical Faculty, University of Grenoble Alpes, Grenoble, France
- Brain Tech Inserm Laboratory, UMR 1205, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
37
|
Arslan NÖ, Akbulut AA, Köse B, Karaman-Demirel A, Derinsu U. Sound quality perception of cochlear implant recipients: low-frequency information and foreign-language effect. Int J Audiol 2021; 61:1045-1053. [PMID: 34894993 DOI: 10.1080/14992027.2021.2005833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE This study aimed to adapt a method used in sound quality measurements named CI-MUSHRA (the multiple stimuli with hidden reference and anchor for cochlear implant users) to the Turkish language. The effect of low-frequency information and non-native musical stimuli on sound quality perception was investigated. DESIGN Subjects completed the Turkish version of the MUSHRA test, called TR-MUSHRA, and the original CI-MUSHRA test. Participants also completed the Turkish monosyllabic word recognition test and the spectral temporal modulated ripple test (SMRT). STUDY SAMPLE 19 cochlear implant (CI) users and 16 normal-hearing (NH) adults were included. RESULTS CI users demonstrated a lack of ability to detect the sound quality differences between original stimuli and stimuli with omitted low-frequency information up to 600 Hz in both tests. There was no significant main effect of the test version on sound quality ratings for the two groups. No significant correlation was found between mean sound quality scores, SMRT, and speech recognition in quiet and noise conditions. CONCLUSIONS Our study suggests that CI users perform poorly in discriminating high-pass filtered musical sounds regardless of the language of the musical stimuli. The TR-MUSHRA can be used as a reliable research tool to evaluate the perceived sound quality.
Collapse
Affiliation(s)
- Niyazi Ömer Arslan
- Program of Audiology and Speech Disorders, Institute of Health Sciences, Marmara University, Istanbul, Turkey.,Program of Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Ahmet Alperen Akbulut
- Program of Audiology and Speech Disorders, Institute of Health Sciences, Marmara University, Istanbul, Turkey.,Department of Audiology, Hamidiye Faculty of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Büşra Köse
- Program of Audiology and Speech Disorders, Institute of Health Sciences, Marmara University, Istanbul, Turkey.,Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Ayşenur Karaman-Demirel
- Program of Audiology and Speech Disorders, Institute of Health Sciences, Marmara University, Istanbul, Turkey.,Vocational School of Health Services, Istanbul Okan University, Istanbul, Turkey
| | - Ufuk Derinsu
- Department of Audiology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
38
|
Ketterer MC, Aschendorff A, Arndt S, Beck R. Electrode array design determines scalar position, dislocation rate and angle and postoperative speech perception. Eur Arch Otorhinolaryngol 2021; 279:4257-4267. [PMID: 34778920 PMCID: PMC9363302 DOI: 10.1007/s00405-021-07160-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/26/2021] [Indexed: 01/06/2023]
Abstract
Purpose The aim of this study is to examine the scalar dislocation rate in straight and perimodiolar electrode arrays in relation to cochlear morphology. Furthermore, we aim to analyze the specific dislocation point of electrode arrays depending on their design and shape and to correlate these results to postoperative speech perception. Methods We conducted a comparative analysis of patients (ears: n = 495) implanted between 2013 and 2018 with inserted perimodiolar or straight electrode arrays from Cochlear™ or MED-EL. CBCT (cone beam computed tomography) was used to determine electrode array position (scalar insertion, intra-cochlear dislocation, point of dislocation and angular insertion depth). Furthermore, cochlear morphology was measured. The postoperative speech discrimination was compared regarding electrode array dislocation, primary scalar insertion and angular insertion depth. Results The electrode array with the highest rate of primary SV insertions was the CA; the electrode array with the highest rate of dislocations out of ST was the FlexSoft. We did not find significantly higher dislocation rates in cochleostomy-inserted arrays. The angle of dislocation was electrode array design-specific. A multivariate nonparametric analysis revealed that the dislocation of the electrode array has no significant influence on postoperative speech perception. Nevertheless, increasing angular insertion depth significantly reduced postoperative speech perception for monosyllables. Conclusion This study demonstrates the significant influence of electrode array design on scalar location, dislocation and the angle of dislocation itself. Straight and perimodiolar electrode arrays differ from each other regarding both the rate and place of dislocation. Insertion via cochleostomy does not lead to increased dislocation rates in any of the included electrode arrays. Furthermore, speech perception is significantly negatively influenced by angular insertion depth.
Collapse
Affiliation(s)
- Manuel Christoph Ketterer
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany.
| | - Antje Aschendorff
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Susan Arndt
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Rainer Beck
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| |
Collapse
|
39
|
Cochlear Implantation in Elderly Patients with Residual Hearing. J Clin Med 2021; 10:jcm10194305. [PMID: 34640325 PMCID: PMC8509733 DOI: 10.3390/jcm10194305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022] Open
Abstract
This retrospective study aimed to investigate the range of hearing levels in a cochlear implant (CI) elderly population receiving electric-acoustic-stimulation (EAS) or electric-stimulation (ES) alone. The investigation evaluates the degree of hearing preservation (HP) and the speech comprehension resulting from EAS or ES-only to identify audiometric factors that predict adequate EAS and ES use. We analyzed the pure tone audiometry and speech perception in quiet and noise preoperatively and 12-months after activation of 89 elderly adults (age of 65 years old or older), yielding in total 97 CIs. Thirty-two (33.1%) patients were potential EAS candidates preoperatively, of which 18 patients used EAS at the time of first fitting and the other 14 patients continued to use their residual hearing for EAS at 12-months. Post-treatment, patients with EAS system and ES-only users’ with longer electrodes showed better results in monosyllable word scores in quiet than ES-only users with shorter electrodes. A similar trend was revealed for the speech recognition in noise. Patients with an EAS system benefit from maintaining their natural residual hearing. Nevertheless, strict preoperative patient selection is warranted particularly in elderly patients, in whom the hearing thresholds for EAS indication differ slightly from that in younger adults.
Collapse
|
40
|
Hollis ES, Canfarotta MW, Dillon MT, Rooth MA, Bucker AL, Dillon SA, Young A, Quinones K, Pillsbury HC, Dedmon MM, O’Connell BP, Brown KD. Initial Hearing Preservation Is Correlated With Cochlear Duct Length in Fully-inserted Long Flexible Lateral Wall Arrays. Otol Neurotol 2021; 42:1149-1155. [PMID: 33859134 PMCID: PMC8373638 DOI: 10.1097/mao.0000000000003181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To characterize the relationship between cochlear duct length (CDL) and initial hearing preservation among cochlear implant recipients of a fully inserted 31.5 mm flexible lateral wall electrode array. STUDY DESIGN Retrospective review. SETTING Tertiary academic referral center. PATIENTS Adult cochlear implant recipients who presented preoperatively with unaided hearing detection thresholds of ≤ 65 dB HL at 125 Hz and underwent cochlear implantation with a 31.5 mm flexible lateral wall array. INTERVENTION Cochlear implantation with a hearing preservation surgical approach. MAIN OUTCOME MEASURES Computed tomography was reviewed to determine CDL. Hearing preservation was characterized by the shift in low-frequency pure-tone average (LFPTA; 125, 250, and 500 Hz), and shift in individual unaided hearing detection thresholds at 125, 250, and 500 Hz. RESULTS Nineteen patients met the criteria for inclusion. The mean CDL was 34.2 mm (range: 30.8-36.5 mm). Recipients experienced a mean LFPTA shift of 27.6 dB HL (range: 10-50 dB HL). Significant, negative correlations were observed between CDL and smaller threshold shifts at individual frequencies and LFPTA (p ≤ 0.048). CONCLUSION A longer CDL is associated with greater likelihood of preserving low-frequency hearing with long arrays. Low-frequency hearing preservation is feasible with fully inserted long flexible arrays within the initial months after cochlear implantation. Preoperative measurement of CDL may facilitate a more individualized approach in array selection to permit optimal cochlear coverage while enhancing hearing preservation outcomes.
Collapse
Affiliation(s)
- Emily S. Hollis
- UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael W. Canfarotta
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Margaret T. Dillon
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Meredith A. Rooth
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, North Carolina, USA
| | | | | | - Allison Young
- Department of Audiology, UNC Health, North Carolina, USA
| | | | - Harold C. Pillsbury
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Matthew M. Dedmon
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Brendan P. O’Connell
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Kevin D. Brown
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
41
|
Relationship Between Electrocochleography, Angular Insertion Depth, and Cochlear Implant Speech Perception Outcomes. Ear Hear 2021; 42:941-948. [PMID: 33369942 PMCID: PMC8217403 DOI: 10.1097/aud.0000000000000985] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Electrocochleography (ECochG), obtained before the insertion of a cochlear implant (CI) array, provides a measure of residual cochlear function that accounts for a substantial portion of variability in postoperative speech perception outcomes in adults. It is postulated that subsequent surgical factors represent independent sources of variance in outcomes. Prior work has demonstrated a positive correlation between angular insertion depth (AID) of straight arrays and speech perception under the CI-alone condition, with an inverse relationship observed for precurved arrays. The purpose of the present study was to determine the combined effects of ECochG, AID, and array design on speech perception outcomes. DESIGN Participants were 50 postlingually deafened adult CI recipients who received one of three straight arrays (MED-EL Flex24, MED-EL Flex28, and MED-EL Standard) and two precurved arrays (Cochlear Contour Advance and Advanced Bionics HiFocus Mid-Scala). Residual cochlear function was determined by the intraoperative ECochG total response (TR) measured before array insertion, which is the sum of magnitudes of spectral components in response to tones of different stimulus frequencies across the speech spectrum. The AID was then determined with postoperative imaging. Multiple linear regression was used to predict consonant-nucleus-consonant (CNC) word recognition in the CI-alone condition at 6 months postactivation based on AID, TR, and array design. RESULTS Forty-one participants received a straight array and nine received a precurved array. The AID of the most apical electrode contact ranged from 341° to 696°. The TR measured by ECochG accounted for 43% of variance in speech perception outcomes (p < 0.001). A regression model predicting CNC word scores with the TR tended to underestimate the performance for precurved arrays and deeply inserted straight arrays, and to overestimate the performance for straight arrays with shallower insertions. When combined in a multivariate linear regression, the TR, AID, and array design accounted for 72% of variability in speech perception outcomes (p < 0.001). CONCLUSIONS A model of speech perception outcomes that incorporates TR, AID, and array design represents an improvement over a model based on TR alone. The success of this model shows that peripheral factors including cochlear health and electrode placement may play a predominant role in speech perception with CIs.
Collapse
|
42
|
The Use of Clinically Measurable Cochlear Parameters in Cochlear Implant Surgery as Indicators for Size, Shape, and Orientation of the Scala Tympani. Ear Hear 2021; 42:1034-1041. [PMID: 33480625 DOI: 10.1097/aud.0000000000000998] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES (1) To assess variations of the human intracochlear anatomy and quantify factors which might be relevant for cochlear implantation (CI) regarding surgical technique and electrode design. (2) Search for correlations of these factors with clinically assessable measurements. DESIGN Human temporal bone study with micro computed tomography (μCT) data and analysis of intracochlear geometrical variations: μCT data of 15 fresh human temporal bones was generated, and the intracochlear lumina scala tympani (ST) and scala vestibuli were manually segmented using custom software specifically designed for accurate cochlear segmentation. The corresponding datasets were processed yielding 15 detailed, three-dimensional cochlear models which were investigated in terms of the scalae height, cross-sectional size, and rotation as well as the interrelation of these factors and correlations to others. RESULTS The greatest anatomical variability was observed within the round window region of the cochlea (basal 45°), especially regarding the cross-sectional size of the ST and its orientation relative to the scala vestibuli, which were found to be correlated (p < 0.001). The cross-sectional height of the ST changes substantially for both increasing cochlear angles and lateral wall distances. Even small cochleae were found to contain enough space for all commercially available CI arrays. Significant correlations of individual intracochlear parameters to clinically assessable ones were found despite the small sample size. CONCLUSION While there is generally enough space within the ST for CI, strong intracochlear anatomical variations could be observed highlighting the relevance of both soft surgical technique as well as a highly flexible and self-adapting cochlear implant electrode array design. Cochlear dimensions (especially at the round window) could potentially be used to indicate surgically challenging anatomies.
Collapse
|
43
|
Butler MJ, Wick CC, Shew MA, Chicoine MR, Ortmann AJ, Vance J, Buchman CA. Intraoperative Cochlear Nerve Monitoring for Vestibular Schwannoma Resection and Simultaneous Cochlear Implantation in Neurofibromatosis Type 2: A Case Series. Oper Neurosurg (Hagerstown) 2021; 21:324-331. [PMID: 34332508 DOI: 10.1093/ons/opab274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/06/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Neurofibromatosis type 2 (NF2) often results in profound hearing loss and cochlear implantation is an emerging hearing rehabilitation option. However, cochlear implant (CI) outcomes in this population vary, and intraoperative monitoring to predict cochlear nerve viability and subsequent outcomes is not well-established. OBJECTIVE To review the use of intraoperative electrically evoked cochlear nerve monitoring in patients with NF2 simultaneous translabyrinthine (TL) vestibular schwannoma (VS) resection and cochlear implantation. METHODS A retrospective review was performed of 3 patients with NF2 that underwent simultaneous TL VS resection and cochlear implantation with electrical auditory brainstem response (eABR) measured throughout tumor resection. Patient demographics, preoperative assessments, surgical procedures, and outcomes were reviewed. RESULTS Patients 1 and 3 had a reliable eABR throughout tumor removal. Patient 2 had eABR pretumor removal, but post-tumor removal eABR presence could not be reliably determined because of electrical artifact interference. All patients achieved auditory percepts upon CI activation. Patients 1 and 2 experienced a decline in CI performance after 1 yr and after 3 mo, respectively. Patient 3 continues to perform well at 9 mo. Patients 2 and 3 are daily users of their CI. CONCLUSION Cochlear implantation is attainable in cases of NF2-associated VS resection. Intraoperative eABR may facilitate cochlear nerve preservation during tumor removal, though more data and long-term outcomes are needed to refine eABR methodology and predictive value for this population.
Collapse
Affiliation(s)
- Margaret J Butler
- Program in Audiology and Communication Sciences, Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Cameron C Wick
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Matthew A Shew
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael R Chicoine
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amanda J Ortmann
- Program in Audiology and Communication Sciences, Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Janet Vance
- Saint Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Craig A Buchman
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
44
|
Imsiecke M, Krüger B, Büchner A, Lenarz T, Nogueira W. Interaction Between Electric and Acoustic Stimulation Influences Speech Perception in Ipsilateral EAS Users. Ear Hear 2021; 41:868-882. [PMID: 31592902 PMCID: PMC7676483 DOI: 10.1097/aud.0000000000000807] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/30/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this study was to determine electric-acoustic masking in cochlear implant users with ipsilateral residual hearing and different electrode insertion depths and to investigate the influence on speech reception. The effects of different fitting strategies-meet, overlap, and a newly developed masking adjusted fitting (UNMASKfit)-on speech reception are compared. If electric-acoustic masking has a detrimental effect on speech reception, the individualized UNMASKfit map might be able to reduce masking and thereby enhance speech reception. DESIGN Fifteen experienced MED-EL Flex electrode recipients with ipsilateral residual hearing participated in a crosssover design study using three fitting strategies for 4 weeks each. The following strategies were compared: (1) a meet fitting, dividing the frequency range between electric and acoustic stimulation, (2) an overlap fitting, delivering part of the frequency range both acoustically and electrically, and (3) the UNMASKfit, reducing the electric stimulation according to the individual electric-on-acoustic masking strength. A psychoacoustic masking procedure was used to measure the changes in acoustic thresholds due to the presence of electric maskers. Speech reception was measured in noise with the Oldenburg Matrix Sentence test. RESULTS Behavioral thresholds of acoustic probe tones were significantly elevated in the presence of electric maskers. A maximum of masking was observed when the difference in location between the electric and acoustic stimulation was around one octave in place frequency. Speech reception scores and strength of masking showed a dependency on residual hearing, and speech reception was significantly reduced in the overlap fitting strategy. Electric- acoustic stimulation significantly improved speech reception over electric stimulation alone, with a tendency toward a larger benefit with the UNMASKfit map. In addition, masking was significantly inversely correlated to the speech reception performance difference between the overlap and the meet fitting. CONCLUSIONS (1) This study confirmed the interaction between ipsilateral electric and acoustic stimulation in a psychoacoustic masking experiment. (2) The overlap fitting yielded poorer speech reception performance in stationary noise especially in subjects with strong masking. (3) The newly developed UNMASKfit strategy yielded similar speech reception thresholds with an enhanced acoustic benefit, while at the same time reducing the electric stimulation. This could be beneficial in the long-term if applied as a standard fitting, as hair cells are exposed to less possibly adverse electric stimulation. In this study, the UNMASKfit allowed the participants a better use of their natural hearing even after 1 month of adaptation. It might be feasible to transfer these results to the clinic, by fitting patients with the UNMASKfit upon their first fitting appointment, so that longer adaptation times can further improve speech reception.
Collapse
Affiliation(s)
- Marina Imsiecke
- Department of Otorhinolaryngology, Hanover Medical School, Hannover, Germany
| | - Benjamin Krüger
- Department of Otorhinolaryngology, Hanover Medical School, Hannover, Germany
- Cluster of Excellence ‘Hearing4all,' Hanover, Germany
| | - Andreas Büchner
- Department of Otorhinolaryngology, Hanover Medical School, Hannover, Germany
- Cluster of Excellence ‘Hearing4all,' Hanover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Hanover Medical School, Hannover, Germany
- Cluster of Excellence ‘Hearing4all,' Hanover, Germany
| | - Waldo Nogueira
- Department of Otorhinolaryngology, Hanover Medical School, Hannover, Germany
- Cluster of Excellence ‘Hearing4all,' Hanover, Germany
| |
Collapse
|
45
|
Frequency-to-Place Mismatch: Characterizing Variability and the Influence on Speech Perception Outcomes in Cochlear Implant Recipients. Ear Hear 2021; 41:1349-1361. [PMID: 32205726 DOI: 10.1097/aud.0000000000000864] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The spatial position of a cochlear implant (CI) electrode array affects the spectral cues provided to the recipient. Differences in cochlear size and array length lead to substantial variability in angular insertion depth (AID) across and within array types. For CI-alone users, the variability in AID results in varying degrees of frequency-to-place mismatch between the default electric frequency filters and cochlear place of stimulation. For electric-acoustic stimulation (EAS) users, default electric frequency filters also vary as a function of residual acoustic hearing in the implanted ear. The present study aimed to (1) investigate variability in AID associated with lateral wall arrays, (2) determine the subsequent frequency-to-place mismatch for CI-alone and EAS users mapped with default frequency filters, and (3) examine the relationship between early speech perception for CI-alone users and two aspects of electrode position: frequency-to-place mismatch and angular separation between neighboring contacts, a metric associated with spectral selectivity at the periphery. DESIGN One hundred one adult CI recipients (111 ears) with MED-EL Flex24 (24 mm), Flex28 (28 mm), and FlexSOFT/Standard (31.5 mm) arrays underwent postoperative computed tomography to determine AID. A subsequent comparison was made between AID, predicted spiral ganglion place frequencies, and the default frequency filters for CI-alone (n = 84) and EAS users (n = 27). For CI-alone users with complete insertions who listened with maps fit with the default frequency filters (n = 48), frequency-to-place mismatch was quantified at 1500 Hz and angular separation between neighboring contacts was determined for electrodes in the 1 to 2 kHz region. Multiple linear regression was used to examine how frequency-to-place mismatch and angular separation of contacts influence consonant-nucleus-consonant (CNC) scores through 6 months postactivation. RESULTS For CI recipients with complete insertions (n = 106, 95.5%), the AID (mean ± standard deviation) of the most apical contact was 428° ± 34.3° for Flex24 (n = 11), 558° ± 65.4° for Flex28 (n = 48), and 636° ± 42.9° for FlexSOFT/Standard (n = 47) arrays. For CI-alone users, default frequency filters aligned closely with the spiral ganglion map for deeply inserted lateral wall arrays. For EAS users, default frequency filters produced a range of mismatches; absolute deviations of ≤ 6 semitones occurred in only 37% of cases. Participants with shallow insertions and minimal or no residual hearing experienced the greatest mismatch. For CI-alone users, both smaller frequency-to-place mismatch and greater angular separation between contacts were associated with better CNC scores during the initial 6 months of device use. CONCLUSIONS There is significant variability in frequency-to-place mismatch among CI-alone and EAS users with default frequency filters, even between individuals implanted with the same array. When using default frequency filters, mismatch can be minimized with longer lateral wall arrays and insertion depths that meet the edge frequency associated with residual hearing for CI-alone and EAS users, respectively. Smaller degrees of frequency-to-place mismatch and decreased peripheral masking due to more widely spaced contacts may independently support better speech perception with longer lateral wall arrays in CI-alone users.
Collapse
|
46
|
The smaller the frequency-to-place mismatch the better the hearing outcomes in cochlear implant recipients? Eur Arch Otorhinolaryngol 2021; 279:1875-1883. [PMID: 34131770 DOI: 10.1007/s00405-021-06899-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To investigate the effect of frequency-to-place mismatch, i.e. the mismatch between the tonotopic frequency map in the cochlea and the frequency band that is assigned to an electrode contact of a cochlear implant (CI) at the same cochlear location on speech perception outcomes, using postoperative CT images. STUDY DESIGN Retrospective observational single-centre study. METHODS Retrospective pre- and postoperative clinical CT data of 39 CI recipients with normal cochlear anatomy were analysed in an otological surgical planning software. The tonotopic frequency at each electrode position was estimated using the Greenwood function. For each patient, frequency-to-place mismatch between the tonotopic frequency and the fitted centre frequency for each electrode contact was calculated. The influence of frequency-to-place mismatch on speech perception in noise at 6 and 12 months after CI activation was studied. RESULTS A significant linear correlation was found between the frequency-to-place mismatch and speech perception in noise 6 months after cochlear implantation (p < 0.05). The smaller the frequency-to-place mismatch, the better the initial speech perception in noise results of the CI recipients. The significant effect disappeared after 12 months CI experience. CONCLUSION The study findings support the idea of minimizing the frequency-to-place mismatch in CI recipients in order to pursue better initial speech perception in noise. Further research is needed to investigate the prospect of tonotopic fitting strategies based upon postoperative CT images of the exact locations of the electrode contacts.
Collapse
|
47
|
Dillon MT, Canfarotta MW, Buss E, O'Connell BP. Comparison of Speech Recognition With an Organ of Corti Versus Spiral Ganglion Frequency-to-Place Function in Place-Based Mapping of Cochlear Implant and Electric-Acoustic Stimulation Devices. Otol Neurotol 2021; 42:721-725. [PMID: 33625196 PMCID: PMC8935664 DOI: 10.1097/mao.0000000000003070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To compare acute speech recognition with a cochlear implant (CI) alone or electric-acoustic stimulation (EAS) device for place-based maps calculated with an organ of Corti (OC) versus a spiral ganglion (SG) frequency-to-place function. PATIENTS Eleven adult CI recipients of a lateral wall electrode array. INTERVENTION Postoperative imaging was used to derive place-based maps calculated with an OC versus SG function. MAIN OUTCOME MEASURE Phoneme recognition was evaluated at initial activation with consonant-nucleus-consonant (CNC) words presented using an OC versus a SG place-based map. RESULTS For the 9 CI-alone users, there was a nonsignificant trend for better acute phoneme recognition with the SG map (mean 18 RAUs) than the OC map (mean 9 RAUs; p = 0.071, 95% CI [≤-1.2]). When including the 2 EAS users in the analysis, performance was significantly better with the SG map (mean 21 RAUs) than the OC map (mean 7 RAUs; p = 0.019, 95% CI [≤-6.2]). CONCLUSIONS Better phoneme recognition with the SG frequency-to-place function could indicate more natural tonotopic alignment of information compared with the OC place-based map.A prospective, randomized investigation is currently underway to assess longitudinal outcomes with place-based mapping in CI-alone and EAS devices using the SG frequency-to-place function.
Collapse
Affiliation(s)
- Margaret T Dillon
- Department of Otolaryngology/Head and Neck Surgery, School of Medicine
- Division of Speech & Hearing, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, North Carolina
| | | | - Emily Buss
- Department of Otolaryngology/Head and Neck Surgery, School of Medicine
| | | |
Collapse
|
48
|
Du Q, Wang C, He G, Sun Z. Insertion trauma of a new cochlear implant electrode: evaluated by histology in fresh human temporal bone specimens. Acta Otolaryngol 2021; 141:490-494. [PMID: 33784954 DOI: 10.1080/00016489.2021.1897159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Combining acoustic and electrical stimulation has been successfully used in patients with low-frequency residual hearing. Electrode insertion trauma, such as electrode translocation could result in loss of residual hearing. OBJECTIVES The aim of the study is to evaluate the LCI-20PI electrode array insertion trauma to the intra-cochlear structures in fresh human temporal bone specimens. MATERIALS AND METHODS The LCI-20PI electrode arrays were inserted into scalae tympani through round window membrane in 10 cochleae from ten fresh human cadavers. The intracochlear trauma was evaluated histologically by a scale of 0-4: 0 - no observable trauma, 1 - elevation of basilar membrane, 2 - rupture of basilar membrane or spiral ligament, 3-dislocation into scala vestibuli and 4 - fracture of modiolus or osseous spiral lamina. The insertion depth was measured by radiography. RESULTS Histological results revealed no observable trauma in seven specimens; basal membrane elevation and rupture in two specimens; the electrode array misled into scala vestibuli in one specimen. The insertion depth varied from 228° to 288°. CONCLUSIONS AND SIGNIFICANCE The insertion of the LCI-20PI electrode arrays caused no trauma in the majority of the fresh temporal bone specimens. No translocation of the electrode arrays from the scala tympani to the scala vestibuli was observed.
Collapse
Affiliation(s)
- Qiang Du
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, PR China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, PR China
- Shanghai Hearing Medical Center, Shanghai, PR China
| | - Cheng Wang
- Shanghai Engineering Research Center of Cochlear Implants, Shanghai, PR China
| | - Guangming He
- Shanghai Engineering Research Center of Cochlear Implants, Shanghai, PR China
| | - Zengjun Sun
- Shanghai Engineering Research Center of Cochlear Implants, Shanghai, PR China
| |
Collapse
|
49
|
Abstract
OBJECTIVE The physical shape of cochlear implant (CI) arrays may impact hearing outcomes. The goal of this study was to compare post-operative speech and melody perception between patients with lateral wall (LW) and perimodiolar (PM) electrode arrays across a range of lengths and manufacturers. STUDY DESIGN Retrospective chart review. SETTING Tertiary Care Hospital. PATIENTS 119 adult patients with post-lingual hearing loss who underwent cochlear implantation. MAIN OUTCOME MEASURES A total of seven different electrodes were evaluated including 5 different LW electrodes (CI422 [Cochlear American], 1J [Advanced Bionics], Medium [Med El], Standard [Med El], Flex28 [Med El]) and 2 PM electrodes (Contour [Cochlear American], MidScala [Advanced Bionics]). Speech perception outcomes (n = 119 patients) were measured by Consonant-Nucleus-Consonant (CNC) scores collected 3, 6, 12 and 24 months after implantation. Melody perception outcomes (n = 35 CI patients and n = 6 normal hearing patients) were measured by Melodic Contour Identification (MCI). RESULTS CNC scores increased over time after implantation across all array designs. PM designs exhibited higher CNC scores compared to LW electrodes, particularly 6-months after implantation. Pre-operative pure tone averages did not correlate with post-operative CNC scores. PM arrays outperformed LW electrodes in terms of MCI scores. CONCLUSIONS The physical shape of cochlear implant electrode arrays may impact hearing performance. Compared to LW designs, PM arrays appear to offer superior speech perception during the first 6 months after implantation, with performance equalizing between groups by 24 months. Compared to LW designs, PM arrays also appear to afford superior melody perception.
Collapse
|
50
|
Abstract
OBJECTIVE To describe our experience with adults undergoing cochlear implantation (CI) for treatment of single-sided deafness (SSD). STUDY DESIGN Retrospective case review. SETTING Tertiary referral center. PATIENTS Fifty-three adults with SSD. INTERVENTIONS Unilateral CI. MAIN OUTCOME MEASURES Speech perception testing in quiet and noise, tinnitus suppression, and device usage from datalogs. RESULTS The mean age at CI was 53.2 years (SD 11.9). The mean duration of deafness was 4.0 years (SD 7.8). The most common etiology was idiopathic sudden SNHL (50%). Word recognition improved from 8.7% (SD 15) preoperatively to 61.8% (SD 20) at a mean follow-up of 3.3 years (SD 1.8) (p < 0.0001). Adaptive speech recognition testing in the "binaural with CI" condition (speech directed toward the front and noise toward the normal hearing ear) revealed a significant improvement by 2.6-dB SNR compared to the preoperative unaided condition (p = 0.0002) and by 3.6-dB SNR compared to when a device to route sound to the contralateral side was used (p < 0.0001). Tinnitus suppression was reported to be complete in 23 patients (43%) and improved in 20 patients (38%) while the device was on. The addition of the CI did not lead to a decrement in hearing performance in any spatial configuration. Device usage averaged 8.7 (SD 3.7) hours/day. CONCLUSIONS Cochlear implantation in adult SSD patients can suppress tinnitus and achieve speech perception outcomes comparable with CI in conventional candidates. Modest improvements in spatial hearing were also observed and primarily attributable to the head shadow effect. Careful patient selection and counseling regarding potential benefits are important to optimize outcomes.
Collapse
|