1
|
Fehrmann MLA, Lanting CP, Haer-Wigman L, Yntema HG, Mylanus EAM, Huinck WJ, Pennings RJE. Long-Term Outcomes of Cochlear Implantation in Usher Syndrome. Ear Hear 2024; 45:1542-1553. [PMID: 38987893 PMCID: PMC11487040 DOI: 10.1097/aud.0000000000001544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/25/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVES Usher syndrome (USH), characterized by bilateral sensorineural hearing loss (SNHL) and retinitis pigmentosa (RP), prompts increased reliance on hearing due to progressive visual deterioration. It can be categorized into three subtypes: USH type 1 (USH1), characterized by severe to profound congenital SNHL, childhood-onset RP, and vestibular areflexia; USH type 2 (USH2), presenting with moderate to severe progressive SNHL and RP onset in the second decade, with or without vestibular dysfunction; and USH type 3 (USH3), featuring variable progressive SNHL beginning in childhood, variable RP onset, and diverse vestibular function. Previous studies evaluating cochlear implant (CI) outcomes in individuals with USH used varying or short follow-up durations, while others did not evaluate outcomes for each subtype separately. This study evaluates long-term CI performance in subjects with USH, at both short-term and long-term, considering each subtype separately. DESIGN This retrospective, observational cohort study identified 36 CI recipients (53 ears) who were categorized into four different groups: early-implanted USH1 (first CI at ≤7 years of age), late-implanted USH1 (first CI at ≥8 years of age), USH2 and USH3. Phoneme scores at 65 dB SPL with CI were evaluated at 1 year, ≥2 years (mid-term), and ≥5 years postimplantation (long-term). Each subtype was analyzed separately due to the significant variability in phenotype observed among the three subtypes. RESULTS Early-implanted USH1-subjects (N = 23 ears) achieved excellent long-term phoneme scores (100% [interquartile ranges {IQR} = 95 to 100]), with younger age at implantation significantly correlating with better CI outcomes. Simultaneously implanted subjects had significantly better outcomes than sequentially implanted subjects ( p = 0.028). Late-implanted USH1 subjects (N = 3 ears) used CI solely for sound detection and showed a mean phoneme discrimination score of 12% (IQR = 0 to 12), while still expressing satisfaction with ambient sound detection. In the USH2 group (N = 23 ears), a long-term mean phoneme score of 85% (IQR = 81 to 95) was found. Better outcomes were associated with younger age at implantation and higher preimplantation speech perception scores. USH3-subjects (N = 7 ears) achieved a mean postimplantation phoneme score of 71% (IQR = 45 to 91). CONCLUSIONS This study is currently one of the largest and most comprehensive studies evaluating CI outcomes in individuals with USH, demonstrating that overall, individuals with USH benefit from CI at both short- and long-term follow-up. Due to the considerable variability in phenotype observed among the three subtypes, each subtype was analyzed separately, resulting in smaller sample sizes. For USH1 subjects, optimal CI outcomes are expected with early simultaneous bilateral implantation. Late implantation in USH1 provides signaling function, but achieved speech recognition is insufficient for oral communication. In USH2 and USH3, favorable CI outcomes are expected, especially if individuals exhibit sufficient speech recognition with hearing aids and receive ample auditory stimulation preimplantation. Early implantation is recommended for USH2, given the progressive nature of hearing loss and concomitant severe visual impairment. In comparison with USH2, predicting outcomes in USH3 remains challenging due to the variability found. Counseling for USH2 and USH3 should highlight early implantation benefits and encourage hearing aid use.
Collapse
Affiliation(s)
- Mirthe L A Fehrmann
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Cris P Lanting
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Lonneke Haer-Wigman
- Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helger G Yntema
- Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Emmanuel A M Mylanus
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Wendy J Huinck
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Ronald J E Pennings
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Li S, Jiang Y, Zhang L, Yan W, Wei D, Zhang M, Zhu B, Chen T, Wang X, Zhang Z, Su Y. A New Mouse Model for Usher Syndrome Crossing Kunming Mice with CBA/J Mice. Gene 2024; 922:148562. [PMID: 38754567 DOI: 10.1016/j.gene.2024.148562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/06/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Previously, we discovered a strain of Kunming mice, referred to as the KMush/ush strain, that exhibited notably abnormal electroretinogram (ERG) readings and elevated thresholds for auditory brainstem responses (ABRs), which resembled the characteristics of Usher Syndrome (USH). We successfully identified the pathogenic genes, Pde6b and Adgrv1, after KMush/ush crossbred with CBA/CaJ mice, referred to as CBA-1ush/ush, CBA-2ush/ush or CBA-2ush/ush. In this investigation, we crossbred KMush/ush and CBA/J mice to establish novel recombinant inbred lines and analysed their phenotypic and genotypic characteristics. METHODS ERG readings, ABR testing, fundus morphology, histological examination of the retina and inner ear, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, western blotting, DNA sequence analysis and behavioural experiments were performed to assess the phenotypes and genotypes of the progeny lines. RESULTS No obvious waveforms in the ERG were detected in F1 hybrid mice while normal ABR results were recorded. The F2 hybrids, which were called J1ush/ush or J2ush/ush, exhibited segregated hearing-loss phenotypes. J1ush/ush mice had a retinitis pigmentosa (RP) phenotype with elevated ABR thresholds, whereas J2ush/ush mice exhibited only the RP phenotype. Interestingly, J1ush/ush mice showed significantly higher ABR thresholds than wild-type mice at 28 days post born (P28), and RT-qPCR and DNA-sequencing analysis showed that Adgrv1 gene expression was significantly altered in J1ush/ush mice, but histological analysis showed no significant structural changes in the organ of Corti or spiral ganglia. Further elevation of ABR-related hearing thresholds by P56 manifested only as a reduced density of spiral ganglion cells, which differed significantly from the previous pattern of cochlear alterations in CBA-2ush/ush mice. CONCLUSIONS We successfully introduced the hearing-loss phenotype of inbred mice with USH into CBA/J mice, which provides a good animal model for future studies on the important physiological roles of the Adgrv1 gene in inner-ear structure and for therapeutic studies targeting Adgrv1-mutated USH.
Collapse
Affiliation(s)
- Shaoheng Li
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China; Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Yihong Jiang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China
| | - Lei Zhang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, Shaanxi Province, China
| | - Weiming Yan
- The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350000, China
| | - Dongyu Wei
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China
| | - Min Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China
| | - Bin Zhu
- Outpatient Department, General Hospital of Xizang Military Region, Lhasa 850007, China
| | - Tao Chen
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China; Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Xiaocheng Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China; Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an 710032, China.
| | - Zuoming Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China.
| | - Yuting Su
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China; Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
Cornwall HL, Lam CM, Chaudhry D, Muzaffar J, Monksfield P, Bance ML. Outcomes of cochlear implantation in Usher syndrome: a systematic review. Eur Arch Otorhinolaryngol 2024; 281:1115-1129. [PMID: 37930386 PMCID: PMC10858075 DOI: 10.1007/s00405-023-08304-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
PURPOSE This study is a systematic review of the literature which seeks to evaluate auditory and quality of life (QOL) outcomes of cochlear implantation in patients with Usher syndrome. METHODS Systematic review of studies indexed in Medline via PubMed, Ovid EMBASE, Web of Science, CENTRAL and clinicaltrials.gov was performed up to March 9th 2022, conducted in accordance with the PRISMA statement. Patient demographics, comorbidity, details of cochlear implantation, auditory, and QOL outcomes were extracted and summarized. RESULTS 33 studies reported over 217 cochlear implants in 187 patients with Usher syndrome, comprising subtypes 1 (56 patients), 2 (9 patients), 3 (23 patients), and not specified (99 patients). Auditory outcomes included improved sound detection, speech perception, and speech intelligibility. QOL outcomes were reported for 75 patients, with benefit reported in the majority. CONCLUSIONS Many patients with Usher syndrome develop improved auditory outcomes after cochlear implantation with early implantation being an important factor.
Collapse
Affiliation(s)
| | - Chon Meng Lam
- Cardiff and Vale University Health Board, Cardiff, UK
| | - Daoud Chaudhry
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jameel Muzaffar
- Department of Clinical Neurosciences, University of Cambridge, Level 3, A BlockCambridge Biomedical Campus, Box 165, Cambridge, CB2 0QQ, UK
- Department of Otolaryngology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Peter Monksfield
- Department of Otolaryngology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Manohar L Bance
- Department of Clinical Neurosciences, University of Cambridge, Level 3, A BlockCambridge Biomedical Campus, Box 165, Cambridge, CB2 0QQ, UK.
- Department of Otolaryngology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
4
|
Busi M, Castiglione A. Navigating the Usher Syndrome Genetic Landscape: An Evaluation of the Associations between Specific Genes and Quality Categories of Cochlear Implant Outcomes. Audiol Res 2024; 14:254-263. [PMID: 38525684 PMCID: PMC10961690 DOI: 10.3390/audiolres14020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Usher syndrome (US) is a clinically and genetically heterogeneous disorder that involves three main features: sensorineural hearing loss, retinitis pigmentosa (RP), and vestibular impairment. With a prevalence of 4-17/100,000, it is the most common cause of deaf-blindness worldwide. Genetic research has provided crucial insights into the complexity of US. Among nine confirmed causative genes, MYO7A and USH2A are major players in US types 1 and 2, respectively, whereas CRLN1 is the sole confirmed gene associated with type 3. Variants in these genes also contribute to isolated forms of hearing loss and RP, indicating intersecting molecular pathways. While hearing loss can be adequately managed with hearing aids or cochlear implants (CIs), approved RP treatment modalities are lacking. Gene replacement and editing, antisense oligonucleotides, and small-molecule drugs hold promise for halting RP progression and restoring vision, enhancing patients' quality of life. Massively parallel sequencing has identified gene variants (e.g., in PCDH15) that influence CI results. Accordingly, preoperative genetic examination appears valuable for predicting CI success. To explore genetic mutations in CI recipients and establish correlations between implant outcomes and involved genes, we comprehensively reviewed the literature to gather data covering a broad spectrum of CI outcomes across all known US-causative genes. Implant outcomes were categorized as excellent or very good, good, poor or fair, and very poor. Our review of 95 cochlear-implant patients with US, along with their CI outcomes, revealed the importance of presurgical genetic testing to elucidate potential challenges and provide tailored counseling to improve auditory outcomes. The multifaceted nature of US demands a comprehensive understanding and innovative interventions. Genetic insights drive therapeutic advancements, offering potential remedies for the retinal component of US. The synergy between genetics and therapeutics holds promise for individuals with US and may enhance their sensory experiences through customized interventions.
Collapse
Affiliation(s)
- Micol Busi
- Department of Audiology, Orebro University Hospital, Interdisciplinary Research in Clinical Audiology—IRCA, Orebro University, 70116 Orebro, Sweden;
| | | |
Collapse
|
5
|
Cuzzuol BR, Apolonio JS, da Silva Júnior RT, de Carvalho LS, Santos LKDS, Malheiro LH, Silva Luz M, Calmon MS, Crivellaro HDL, Lemos FFB, Freire de Melo F. Usher syndrome: Genetic diagnosis and current therapeutic approaches. World J Otorhinolaryngol 2024; 11:1-17. [DOI: 10.5319/wjo.v11.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024] Open
Abstract
Usher Syndrome (USH) is the most common deaf-blind syndrome, affecting approximately 1 in 6000 people in the deaf population. This genetic condition is characterized by a combination of hearing loss (HL), retinitis pigmentosa, and, in some cases, vestibular areflexia. Among the subtypes of USH, USH type 1 is considered the most severe form, presenting profound bilateral congenital deafness, vestibular areflexia, and early onset RP. USH type 2 is the most common form, exhibiting congenital moderate to severe HL for low frequencies and severe to profound HL for high frequencies. Conversely, type 3 is the rarest, initially manifesting mild symptoms during childhood that become more prominent in the first decades of life. The dual impact of USH on both visual and auditory senses significantly impairs patients’ quality of life, restricting their daily activities and interactions with society. To date, 9 genes have been confirmed so far for USH: MYO7A, USH1C, CDH23, PCDH15, USH1G, USH2A, ADGRV1, WHRN and CLRN1. These genes are inherited in an autosomal recessive manner and encode proteins expressed in the inner ear and retina, leading to functional loss. Although non-genetic methods can assist in patient triage and disease extension evaluation, genetic and molecular tests play a pivotal role in providing genetic counseling, enabling appropriate gene therapy, and facilitating timely cochlear implantation (CI). The CRISPR/Cas9 system and viral-based gene replacement therapy have recently emerged as highly promising techniques for treating USH. Regarding drug therapy, PTC-124 and Nb54 have been identified as promising drug interventions for genetic HL in USH. Simultaneously, CI has proven to be critical in the restoration of hearing. This review aims to summarize the genetic and molecular diagnosis of USH and highlight the importance of early diagnosis in guiding appropriate treatment strategies and improving patient prognosis.
Collapse
Affiliation(s)
- Beatriz Rocha Cuzzuol
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Jonathan Santos Apolonio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Lorena Sousa de Carvalho
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Kauany de Sá Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luciano Hasimoto Malheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Henrique de Lima Crivellaro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
6
|
Evaluation of a Less Invasive Cochlear Implant Surgery in OPA1 Mutations Provoking Deafblindness. Genes (Basel) 2023; 14:genes14030627. [PMID: 36980899 PMCID: PMC10048538 DOI: 10.3390/genes14030627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Cochlear implantation (CI) for deafblindness may have more impact than for non-syndromic hearing loss. Deafblind patients have a double handicap in a society that is more and more empowered by fast communication. CI is a remedy for deafness, but requires revision surgery every 20 to 25 years, and thus placement should be minimally invasive. Furthermore, failed reimplantation surgery will have more impact on a deafblind person. In this context, we assessed the safety of minimally invasive robotically assisted cochlear implant surgery (RACIS) for the first time in a deafblind patient. Standard pure tone audiometry and speech audiometry were performed in a patient with deafblindness as part of this robotic-assisted CI study before and after surgery. This patient, with an optic atrophy 1 (OPA1) (OMIM#165500) mutation consented to RACIS for the second (contralateral) CI. The applicability and safety of RACIS were evaluated as well as her subjective opinion on her disability. RACIS was uneventful with successful surgical and auditory outcomes in this case of deafblindness due to the OPA1 mutation. RACIS appears to be a safe and beneficial intervention to increase communication skills in the cases of deafblindness due to an OPA1 mutation. The use of RACIS use should be widespread in deafblindness as it minimizes surgical trauma and possible failures.
Collapse
|
7
|
Remjasz-Jurek A, Clarós P, Clarós-Pujol A, Pujol C, Clarós A. Outcomes of cochlear implantation in children with Usher syndrome: a long-term observation. Eur Arch Otorhinolaryngol 2022; 280:2119-2132. [PMID: 36242610 DOI: 10.1007/s00405-022-07670-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate auditory performance and speech intelligibility of children with Usher syndrome up to 10 years after cochlear implantation. METHODS Thirty-five children with USH were compared to 46 non-syndromic patients regarding age at implantation. Auditory performance and speech intelligibility was assessed with standard tools. Genetic counseling, vestibular tests, imaging studies, and ophthalmological findings were evaluated, depending on the availability. RESULTS The mean age of implantation in USH children was 6.3 years (SD 4.6, range 0.3-17.6 years). Post-implantation values of the studied parameters were compared between USH and NS children and presented as follows: PTA = 25.0 dB HL vs. 28.4, CAP = 5.3 vs. 5.1, SIR = 4.1 vs. 3.9, MAIS = 82.3% vs. 80.5%, MUSS = 81.8% vs. 76.6%. There were no statistically significant differences between the USH and NS groups (p > 0.005). USH patients reached a higher score ceiling earlier compared to NS patients. Children implanted before 3 years of age achieved significantly higher results than older children in USH and NS groups (p < 0.005). In all patients with USH, the electroretinogram was abnormal. Vestibular examination was abnormal in 29 of 31 patients with USH1. Imaging studies revealed no inner ear or auditory nerve anomalies in patients with USH. CONCLUSION Cochlear implantation successfully improves auditory performance and speech intelligibility in patients with USH, especially those implanted under 3 years of age. The electroretinogram is the only reliable test to establish a diagnosis of USH. Logopedic outcomes are associated with early implantation, and early diagnosis of USH contributes to optimizing speech therapy.
Collapse
Affiliation(s)
- Agnieszka Remjasz-Jurek
- Clarós Clinic, Cochlear Implant Centre, c./Vergós 31, 08017, Barcelona, Spain
- Department of Otorhinolaryngology, Stefan Zeromski Specialist Hospital, Cracow, Poland
- Scholarship in Clarós Clinic, Barcelona, Spain
| | - Pedro Clarós
- Clarós Clinic, Cochlear Implant Centre, c./Vergós 31, 08017, Barcelona, Spain.
| | - Astrid Clarós-Pujol
- Clarós Clinic, Cochlear Implant Centre, c./Vergós 31, 08017, Barcelona, Spain
| | - Carmen Pujol
- Clarós Clinic, Cochlear Implant Centre, c./Vergós 31, 08017, Barcelona, Spain
| | - Andrés Clarós
- Clarós Clinic, Cochlear Implant Centre, c./Vergós 31, 08017, Barcelona, Spain
| |
Collapse
|
8
|
Daneshi A, Sajjadi H, Blevins N, Jenkins HA, Farhadi M, Ajallouyan M, Hashemi SB, Thai A, Tran E, Rajati M, Asghari A, Mohseni M, Mohebbi S, Bayat A, Saki N, Emamdjomeh H, Romiani M, Hosseinzadeh F, Nasori Y, Mirsaleh M. The Outcome of Cochlear Implantations in Deaf-Blind Patients: A Multicenter Observational Study. Otol Neurotol 2022; 43:908-914. [PMID: 35970154 DOI: 10.1097/mao.0000000000003611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This multicenter study aimed to evaluate the auditory and speech outcomes of cochlear implantation (CI) in deaf-blind patients compared with deaf-only patients. STUDY DESIGN Retrospective cohort study. SETTING Multiple cochlear implant centers. PATIENTS The current study was conducted on 17 prelingual deaf-blind children and 12 postlingual deaf-blind adults who underwent CI surgery. As a control group, 17 prelingual deaf children and 12 postlingual deaf adults were selected. INTERVENTION Cochlear implantation. MAIN OUTCOME MEASURES Auditory and linguistic performances in children were assessed using the categories of auditory performance (CAP) and Speech Intelligibility Rating (SIR) scales, respectively. The word recognition score (WRS) was also used to measure speech perception ability in adults. The mean CAP, SIR, and WRS cores were compared between the deaf-only and deaf-blind groups before CI surgery and at "12 months" and "24 months" after device activation. Cohen's d was used for effect size estimation. RESULTS We found no significant differences in the mean CAP and SIR scores between the deaf-blind and deaf-only children before the CI surgery. For both groups, SIR and CAP scores improved with increasing time after the device activation. The mean CAP scores in the deaf-only children were either equivalent or slightly higher than those of the deaf-blind children at "12 months post-CI" (3.94 ± 0.74 vs 3.24 ± 1.25; mean difference score, 0.706) and "24 months post-CI" (6.01 ± 0.79 vs 5.47 ± 1.06; mean difference score, 0.529) time intervals, but these differences were not statistically significant. The SIR scores in deaf-only implanted children were, on average, 0.870 scores greater than the deaf-blind children at "12 months post-CI" (2.94 ± 0.55 vs 2.07 ± 1.4; p = 0.01, d = 0.97) and, on average, 1.067 scores greater than deaf-blind children at "24 months post-CI" (4.35 ± 0.49 vs 3.29 ± 1.20; p = 0.002; d = 1.15) time intervals. We also found an improvement in WRS scores from the "preimplantation" to the "12-month post-CI" and "24-month post-CI" time intervals in both groups. Pairwise comparisons indicated that the mean WRS in the deaf-only adults was, on average, 10.61% better than deaf-blind implanted adults at "12 months post-CI" (62.33 ± 9.09% vs 51.71 ± 10.73%, p = 0.034, d = 1.06) and, on average, 15.81% better than deaf-blind adults at "24-months post-CI" (72.67 ± 8.66% vs 56.8 ± 9.78%, p = 0.002, d = 1.61) follow-ups. CONCLUSION Cochlear implantation is a beneficial method for the rehabilitation of deaf-blind patients. Both deaf-blind and deaf-only implanted children revealed similar auditory performances. However, speech perception ability in deaf-blind patients was slightly lower than the deaf-only patients in both children and adults.
Collapse
Affiliation(s)
- Ahmad Daneshi
- ENT and Head & Neck Research Center, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Sajjadi
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA
| | - Nikolas Blevins
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA
| | - Herman A Jenkins
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mohammad Farhadi
- ENT and Head & Neck Research Center, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ajallouyan
- Department of Otorhinolaryngology, Baqiyatallah Hospital, Baqiyatallah University of Medical Sciences, Tehran
| | - Seyed Basir Hashemi
- Department of Otorhinolaryngology, Khalili Hospital, Shiraz University of Medical Sciences, Shiraz
| | - Anthony Thai
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA
| | - Emma Tran
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA
| | - Mohsen Rajati
- Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alimohamad Asghari
- Skull Base Research Center, The Five Senses Institute, Iran University of Medical Sciences, Tehran
| | - Mohammad Mohseni
- ENT and Head & Neck Research Center, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Saleh Mohebbi
- ENT and Head & Neck Research Center, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Arash Bayat
- Department of Audiology, School of Rehabilitation Sciences
| | | | - Hesamaldin Emamdjomeh
- ENT and Head & Neck Research Center, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Romiani
- ENT and Head & Neck Research Center, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Farideh Hosseinzadeh
- ENT and Head & Neck Research Center, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Yasser Nasori
- ENT and Head & Neck Research Center, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Marjan Mirsaleh
- ENT and Head & Neck Research Center, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Zaw K, Carvalho LS, Aung-Htut MT, Fletcher S, Wilton SD, Chen FK, McLenachan S. Pathogenesis and Treatment of Usher Syndrome Type IIA. Asia Pac J Ophthalmol (Phila) 2022; 11:369-379. [PMID: 36041150 DOI: 10.1097/apo.0000000000000546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/27/2022] [Indexed: 12/16/2022] Open
Abstract
Usher syndrome (USH) is the most common form of deaf-blindness, with an estimated prevalence of 4.4 to 16.6 per 100,000 people worldwide. The most common form of USH is type IIA (USH2A), which is caused by homozygous or compound heterozygous mutations in the USH2A gene and accounts for around half of all USH cases. USH2A patients show moderate to severe hearing loss from birth, with diagnosis of retinitis pigmentosa in the second decade of life and variable vestibular involvement. Although hearing aids or cochlear implants can provide some mitigation of hearing deficits, there are currently no treatments aimed at preventing or restoring vision loss in USH2A patients. In this review, we first provide an overview of the molecular biology of the USH2A gene and its protein isoforms, which include a transmembrane protein (TM usherin) and an extracellular protein (EC usherin). The role of these proteins in the inner ear and retina and their impact on the pathogenesis of USH2A is discussed. We review animal cell-derived and patient cell-derived models currently used in USH2A research and conclude with an overview of potential treatment strategies currently in preclinical development and clinical trials.
Collapse
Affiliation(s)
- Khine Zaw
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Livia S Carvalho
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - May T Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Fred K Chen
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Samuel McLenachan
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
10
|
Abstract
Usher syndrome (USH) encompasses a group of clinically and genetically heterogenous disorders defined by the triad of sensorineural hearing loss (SNHL), vestibular dysfunction, and vision loss. USH is the most common cause of deaf blindness. USH is divided clinically into three subtypes-USH1, USH2, and USH3-based on symptom severity, progression, and age of onset. The underlying genetics of these USH forms are, however, significantly more complex, with over a dozen genes linked to the three primary clinical subtypes and other atypical USH phenotypes. Several of these genes are associated with other deaf-blindness syndromes that share significant clinical overlap with USH, pointing to the limits of a clinically based classification system. The genotype-phenotype relationships among USH forms also may vary significantly based on the location and type of mutation in the gene of interest. Understanding these genotype-phenotype relationships and associated natural disease histories is necessary for the successful development and application of gene-based therapies and precision medicine approaches to USH. Currently, the state of knowledge varies widely depending on the gene of interest. Recent studies utilizing next-generation sequencing technology have expanded the list of known pathogenic mutations in USH genes, identified new genes associated with USH-like phenotypes, and proposed algorithms to predict the phenotypic effects of specific categories of allelic variants. Further work is required to validate USH gene causality, and better define USH genotype-phenotype relationships and disease natural histories-particularly for rare mutations-to lay the groundwork for the future of USH treatment.
Collapse
|
11
|
Davies C, Bergman J, Misztal C, Ramchandran R, Mittal J, Bulut E, Shah V, Mittal R, Eshraghi AA. The Outcomes of Cochlear Implantation in Usher Syndrome: A Systematic Review. J Clin Med 2021; 10:jcm10132915. [PMID: 34209904 PMCID: PMC8267700 DOI: 10.3390/jcm10132915] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
Objective: To systematically appraise the implementation of cochlear implantation (CI) in Usher Syndrome (USH) Types 1, 2, and 3 patients, and analyze who would benefit from CI. Data Sources: A comprehensive search of PubMed, Embase, CINAHL, and Cochrane Library electronic databases from inception through June 2020 was performed. There were no language restrictions. Study Selection: The PRISMA strategy was followed. Included studies discuss USH patients who underwent CI regardless of age, nationality, or clinical subtype. All included studies report post-implantation functional, cognitive, or quality of life outcomes. Only reviews were excluded. Results: Fifteen studies met the inclusion criteria. USH patients experienced improvements in PTA and speech perception and expression outcomes after CI, as well as improvements in phonological memory and quality of life measures. Overall, patients implanted at younger ages outperformed older patients in audiological testing. Similarly, patients with prolonged auditory deprivation had relatively poor performance outcomes in sentence recognition and speech detection following CI. Conclusions: Most USH patients benefit from CI. USH patients who undergo CI at younger ages generally achieve better hearing, speech, and cognitive outcomes. CI at older ages can still prove beneficial if appropriate auditory amplification is started at the right time. Further research is warranted to fill the gap in understanding regarding the gene mutations underlying the pathophysiology of USH that have favorable CI outcomes as well as the optimal time to perform CI.
Collapse
Affiliation(s)
- Camron Davies
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (J.B.); (C.M.); (R.R.); (J.M.); (E.B.); (V.S.); (R.M.)
| | - Jenna Bergman
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (J.B.); (C.M.); (R.R.); (J.M.); (E.B.); (V.S.); (R.M.)
| | - Carly Misztal
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (J.B.); (C.M.); (R.R.); (J.M.); (E.B.); (V.S.); (R.M.)
| | - Renuka Ramchandran
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (J.B.); (C.M.); (R.R.); (J.M.); (E.B.); (V.S.); (R.M.)
| | - Jeenu Mittal
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (J.B.); (C.M.); (R.R.); (J.M.); (E.B.); (V.S.); (R.M.)
| | - Erdogan Bulut
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (J.B.); (C.M.); (R.R.); (J.M.); (E.B.); (V.S.); (R.M.)
| | - Viraj Shah
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (J.B.); (C.M.); (R.R.); (J.M.); (E.B.); (V.S.); (R.M.)
| | - Rahul Mittal
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (J.B.); (C.M.); (R.R.); (J.M.); (E.B.); (V.S.); (R.M.)
| | - Adrien A. Eshraghi
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (J.B.); (C.M.); (R.R.); (J.M.); (E.B.); (V.S.); (R.M.)
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Correspondence:
| |
Collapse
|
12
|
Dulla K, Slijkerman R, van Diepen HC, Albert S, Dona M, Beumer W, Turunen JJ, Chan HL, Schulkens IA, Vorthoren L, den Besten C, Buil L, Schmidt I, Miao J, Venselaar H, Zang J, Neuhauss SCF, Peters T, Broekman S, Pennings R, Kremer H, Platenburg G, Adamson P, de Vrieze E, van Wijk E. Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by USH2A exon 13 mutations. Mol Ther 2021; 29:2441-2455. [PMID: 33895329 PMCID: PMC8353187 DOI: 10.1016/j.ymthe.2021.04.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Mutations in USH2A are among the most common causes of syndromic and non-syndromic retinitis pigmentosa (RP). The two most recurrent mutations in USH2A, c.2299delG and c.2276G > T, both reside in exon 13. Skipping exon 13 from the USH2A transcript presents a potential treatment modality in which the resulting transcript is predicted to encode a slightly shortened usherin protein. Morpholino-induced skipping of ush2a exon 13 in zebrafish ush2armc1 mutants resulted in the production of usherinΔexon 13 protein and a completely restored retinal function. Antisense oligonucleotides were investigated for their potential to selectively induce human USH2A exon 13 skipping. Lead candidate QR-421a induced a concentration-dependent exon 13 skipping in induced pluripotent stem cell (iPSC)-derived photoreceptor precursors from an Usher syndrome patient homozygous for the c.2299delG mutation. Mouse surrogate mQR-421a reached the retinal outer nuclear layer after a single intravitreal injection and induced a detectable level of exon skipping until at least 6 months post-injection. In conclusion, QR-421a-induced exon skipping proves to be a highly promising treatment option for RP caused by mutations in USH2A exon 13.
Collapse
Affiliation(s)
- Kalyan Dulla
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Ralph Slijkerman
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | | | - Silvia Albert
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Margo Dona
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Wouter Beumer
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Janne J Turunen
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Hee Lam Chan
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Iris A Schulkens
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Lars Vorthoren
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | | | - Levi Buil
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Iris Schmidt
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Jiayi Miao
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Hanka Venselaar
- Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Jingjing Zang
- University of Zürich, Institute of Molecular Life Sciences, 8057 Zürich, Switzerland
| | - Stephan C F Neuhauss
- University of Zürich, Institute of Molecular Life Sciences, 8057 Zürich, Switzerland
| | - Theo Peters
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Sanne Broekman
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Ronald Pennings
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Hannie Kremer
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | | | - Peter Adamson
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands; UCL, Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
13
|
Establishing Genotype-phenotype Correlation in USH2A-related Disorders to Personalize Audiological Surveillance and Rehabilitation. Otol Neurotol 2021; 41:431-437. [PMID: 32176120 DOI: 10.1097/mao.0000000000002588] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE USH2A-related disorders are characterised by genetic and phenotypic heterogeneity, and are associated with a spectrum of sensory deficits, ranging from deaf blindness to blindness with normal hearing. It has been previously proposed that the presence of specific USH2A alleles can be predictive of unaffected hearing. This study reports the clinical and genetic findings in a group of patients with USH2A-related disease and evaluates the validity of the allelic hierarchy model. PATIENTS AND INTERVENTION USH2A variants from 27 adults with syndromic and nonsyndromic USH2A-related disease were analyzed according to a previously reported model of allelic hierarchy. The analysis was replicated on genotype-phenotype correlation information from 197 individuals previously reported in 2 external datasets. MAIN OUTCOME MEASURE Genotype-phenotype correlations in USH2A-related disease. RESULTS A valid allelic hierarchy model was observed in 93% of individuals with nonsyndromic USH2A-retinopathy (n = 14/15) and in 100% of patients with classic Usher syndrome type IIa (n = 8/8). Furthermore, when two large external cohorts of cases were combined, the allelic hierarchy model was valid across 85.7% (n = 78/91) of individuals with nonsyndromic USH2A-retinopathy and 95% (n = 123/129) of individuals with classic Usher syndrome type II (p = 0.012, χ test). Notably, analysis of all three patient datasets revealed that USH2A protein truncating variants were reported most frequently in individuals with hearing loss. CONCLUSION Genetic testing results in individuals suspected to have an USH2A-related disorder have the potential to facilitate personalized audiological surveillance and rehabilitation pathways.
Collapse
|
14
|
de Joya EM, Colbert BM, Tang PC, Lam BL, Yang J, Blanton SH, Dykxhoorn DM, Liu X. Usher Syndrome in the Inner Ear: Etiologies and Advances in Gene Therapy. Int J Mol Sci 2021; 22:3910. [PMID: 33920085 PMCID: PMC8068832 DOI: 10.3390/ijms22083910] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Hearing loss is the most common sensory disorder with ~466 million people worldwide affected, representing about 5% of the population. A substantial portion of hearing loss is genetic. Hearing loss can either be non-syndromic, if hearing loss is the only clinical manifestation, or syndromic, if the hearing loss is accompanied by a collage of other clinical manifestations. Usher syndrome is a syndromic form of genetic hearing loss that is accompanied by impaired vision associated with retinitis pigmentosa and, in many cases, vestibular dysfunction. It is the most common cause of deaf-blindness. Currently cochlear implantation or hearing aids are the only treatments for Usher-related hearing loss. However, gene therapy has shown promise in treating Usher-related retinitis pigmentosa. Here we review how the etiologies of Usher-related hearing loss make it a good candidate for gene therapy and discuss how various forms of gene therapy could be applied to Usher-related hearing loss.
Collapse
Affiliation(s)
- Evan M. de Joya
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Brett M. Colbert
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Pei-Ciao Tang
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
| | - Byron L. Lam
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA;
| | - Jun Yang
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA;
| | - Susan H. Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Derek M. Dykxhoorn
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
15
|
Toms M, Pagarkar W, Moosajee M. Usher syndrome: clinical features, molecular genetics and advancing therapeutics. Ther Adv Ophthalmol 2020; 12:2515841420952194. [PMID: 32995707 PMCID: PMC7502997 DOI: 10.1177/2515841420952194] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/27/2020] [Indexed: 01/12/2023] Open
Abstract
Usher syndrome has three subtypes, each being clinically and genetically heterogeneous characterised by sensorineural hearing loss and retinitis pigmentosa (RP), with or without vestibular dysfunction. It is the most common cause of deaf–blindness worldwide with a prevalence of between 4 and 17 in 100 000. To date, 10 causative genes have been identified for Usher syndrome, with MYO7A accounting for >50% of type 1 and USH2A contributing to approximately 80% of type 2 Usher syndrome. Variants in these genes can also cause non-syndromic RP and deafness. Genotype–phenotype correlations have been described for several of the Usher genes. Hearing loss is managed with hearing aids and cochlear implants, which has made a significant improvement in quality of life for patients. While there is currently no available approved treatment for the RP, various therapeutic strategies are in development or in clinical trials for Usher syndrome, including gene replacement, gene editing, antisense oligonucleotides and small molecule drugs.
Collapse
Affiliation(s)
- Maria Toms
- UCL Institute of Ophthalmology, London, UK; The Francis Crick Institute, London, UK
| | - Waheeda Pagarkar
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; University College London Hospitals NHS Foundation Trust, London, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
16
|
Eshraghi AA, Polineni SP, Davies C, Shahal D, Mittal J, Al-Zaghal Z, Sinha R, Jindal U, Mittal R. Genotype-Phenotype Correlation for Predicting Cochlear Implant Outcome: Current Challenges and Opportunities. Front Genet 2020; 11:678. [PMID: 32765579 PMCID: PMC7381205 DOI: 10.3389/fgene.2020.00678] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
The use and utility of cochlear implantation has rapidly increased in recent years as technological advances in the field have expanded both the efficacy and eligible patient population for implantation. This review aims to serve as a general overview of the most common hearing disorders that have favorable auditory outcomes with cochlear implants (CI). Hearing loss in children caused by congenital cytomegalovirus infection, syndromic conditions including Pendred Syndrome, and non-syndromic genetic conditions such as hearing impairment associated with GJB2 mutations have shown to be successfully managed by CI. Furthermore, cochlear implantation provides the auditory rehabilitation for the most common etiology of hearing loss in adults and age-related hearing loss (ARHL) or presbycusis. However, in some cases, cochlear implantation have been associated with some challenges. Regarding implantation in children, studies have shown that sometimes parents seem to have unrealistic expectations regarding the ability of CI to provide auditory rehabilitation and speech improvement. Given the evidence revealing the beneficial effects of early intervention via CI in individuals with hearing disorders especially hearing loss due to genetic etiology, early auditory and genetic screening efforts may yield better clinical outcomes. There is a need to better understand genotype-phenotype correlations and CI outcome, so that effective genetic counseling and successful treatment strategies can be developed at the appropriate time for hearing impaired individuals.
Collapse
Affiliation(s)
- Adrien A. Eshraghi
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
- Department of Neurological Surgery, Miller School of Medicine, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Sai P. Polineni
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| | - Camron Davies
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| | - David Shahal
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| | - Jeenu Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| | - Zaid Al-Zaghal
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| | - Rahul Sinha
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| | - Urmi Jindal
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| | - Rahul Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| |
Collapse
|
17
|
Abstract
This commentary article is co-authored by a patient with Usher syndrome type 2A. The patient kindly shares her experience of living a life marked by the severe dual sensory loss associated with Usher syndrome. The experiences of the patient are put into perspective by two ophthalmologists associated with the Ophthalmological Department at Rigshospitalet, Denmark.
Collapse
|
18
|
Géléoc GGS, El-Amraoui A. Disease mechanisms and gene therapy for Usher syndrome. Hear Res 2020; 394:107932. [PMID: 32199721 DOI: 10.1016/j.heares.2020.107932] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/03/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
Usher syndrome (USH) is a major cause of deaf-blindness in humans, affecting ∼400 000 patients worldwide. Three clinical subtypes, USH1-3, have been defined, with 10 USH genes identified so far. In recent years, in addition to identification of new Usher genes and diagnostic tools, major progress has been made in understanding the role of Usher proteins and how they cooperate through interaction networks to ensure proper development, architecture and function of the stereociliary bundle at the apex of sensory hair cells in the inner ear. Several Usher mouse models of known human Usher genes have been characterized. These mice faithfully reproduce the auditory phenotype associated with Usher syndrome and the vestibular phenotype associated with some mutations in USH genes, particularly USH1. Interestingly, very few mouse models of Usher syndrome recapitulate the retinal phenotype associated with the disease in human. Usher patients can benefit from hearing aids or cochlear implants, which partially alleviate auditory sensory deprivation. However, there are currently no biological treatments available for auditory or visual dysfunction in Usher patients. Development of novel therapies for Usher syndrome has sprouted over the past decade, building on recent progress in gene transfer and new gene editing tools. Promising success demonstrating recovery of hearing and balance functions have been obtained via distinct therapeutic strategies in animal models. Clinical translation to Usher patients, however, calls for further improvements and concerted efforts to overcome the challenges ahead.
Collapse
Affiliation(s)
- Gwenaelle G S Géléoc
- Boston Children's Hospital and Harvard Medical School, 3, Blackfan circle, Center for Life Science, 03001, Boston, MA, 02115, United States.
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Institut Pasteur, INSERM-UMRS1120, Sorbonne Université, 25 rue du Dr. Roux, 75015, Paris, France.
| |
Collapse
|
19
|
Lee SY, Joo K, Oh J, Han JH, Park HR, Lee S, Oh DY, Woo SJ, Choi BY. Severe or Profound Sensorineural Hearing Loss Caused by Novel USH2A Variants in Korea: Potential Genotype-Phenotype Correlation. Clin Exp Otorhinolaryngol 2019; 13:113-122. [PMID: 31674169 PMCID: PMC7248602 DOI: 10.21053/ceo.2019.00990] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/16/2019] [Indexed: 11/22/2022] Open
Abstract
Objectives We, herein, report two novel USH2A variants from two unrelated Korean families and their clinical phenotypes, with attention to severe or more than severe sensorineural hearing loss (SNHL). Methods Two postlingually deafened subjects (SB237-461, M/46 and SB354-692, F/34) with more than severe SNHL and also with suspicion of Usher syndrome type II (USH2) were enrolled. A comprehensive audiological and ophthalmological assessments were evaluated. We conducted the whole exome sequencing and subsequent pathogenicity prediction analysis. Results We identified the following variants of USH2A from the two probands manifesting more than severe SNHL and retinitis pigmentosa (RP): compound heterozygosity for a nonsense (c.8176C>T: p.R2723X) and a missense variant (c.1823G>A: p.C608Y) in SB237, and compound heterozygosity for two frameshift variants (c.14835delT: p.S4945fs & c.13112_13115delAAAT: p.G4371fs) in SB354. Based on the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines, two novel variants, c.1823G>A: p.C608Y and c.14835delT: p.Ser4945fs, can be classified as “uncertain significance” and “pathogenic,” respectively. The audiogram exhibited more than severe SNHL and a down-sloping configuration, necessitating cochlear implantation. The ophthalmic examinations revealed typical features of RP. Interestingly, one proband (SB 354-692) carrying two truncating compound heterozygous variants exhibited more severe hearing loss than the other proband (SB 237-461), carrying one truncation with one missense variant. Conclusion Our results provide insight on the expansion of audiological spectrum encompassing more than severe SNHL in Korean subjects harboring USH2A variants, suggesting that USH2A should also be included in the candidate gene of cochlear implantation. A specific combination of USH2A variants causing truncating proteins in both alleles could demonstrate more severe audiological phenotype than that of USH2A variants carrying one truncating mutation and one missense mutation, suggesting a possible genotype-phenotype correlation. The understanding of audiological complexity associated with USH2A will be helpful for genetic counseling and treatment starategy.
Collapse
Affiliation(s)
- Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jayoung Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hye-Rim Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seungmin Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Doo-Yi Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
20
|
Molina-Ramirez LP, Bruce IA, Black GCM. Cochlear implantation in the era of genomic medicine. Cochlear Implants Int 2019; 21:117-120. [PMID: 31648626 DOI: 10.1080/14670100.2019.1678895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Leslie P Molina-Ramirez
- Domain of Evolution, Systems and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.,Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Iain A Bruce
- Paediatric ENT Department, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health University of Manchester, Manchester, UK
| | - Graeme C M Black
- Domain of Evolution, Systems and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.,Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK.,Manchester Royal Eye Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| |
Collapse
|
21
|
Advances in cochlear implantation for hereditary deafness caused by common mutations in deafness genes. JOURNAL OF BIO-X RESEARCH 2019. [DOI: 10.1097/jbr.0000000000000037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
22
|
Slijkerman R, Goloborodko A, Broekman S, de Vrieze E, Hetterschijt L, Peters T, Gerits M, Kremer H, van Wijk E. Poor Splice-Site Recognition in a Humanized Zebrafish Knockin Model for the Recurrent Deep-Intronic c.7595-2144A>G Mutation in USH2A. Zebrafish 2018; 15:597-609. [PMID: 30281416 DOI: 10.1089/zeb.2018.1613] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The frequent deep-intronic c.7595-2144A>G mutation in intron 40 of USH2A generates a high-quality splice donor site, resulting in the incorporation of a pseudoexon (PE40) into the mature transcript that is predicted to prematurely terminate usherin translation. Aberrant USH2A pre-mRNA splicing could be corrected in patient-derived fibroblasts using antisense oligonucleotides. With the aim to study the effect of the c.7595-2144A>G mutation and USH2A splice redirection on retinal function, a humanized zebrafish knockin model was generated, in which 670 basepairs of ush2a intron 40 were exchanged for 557 basepairs of the corresponding human sequence using an optimized CRISPR/Cas9-based protocol. However, in the retina of adult homozygous humanized zebrafish, only 7.4% ± 3.9% of ush2a transcripts contained the human PE40 sequence and immunohistochemical analyses revealed no differences in the usherin expression and localization between the retina of humanized and wild-type zebrafish larvae. Nevertheless, we were able to partially correct aberrant ush2a splicing using a PE40-targeting antisense morpholino. Our results indicate a clear difference in splice-site recognition by the human and zebrafish splicing machinery. Therefore, we propose a protocol in which the effect of human splice-modulating mutations is studied in a zebrafish-specific cell-based splice assay before the generation of a humanized zebrafish knockin model.
Collapse
Affiliation(s)
- Ralph Slijkerman
- 1 Department of Otorhinolaryngology, Radboud University Medical Center , Nijmegen, the Netherlands .,2 Radboud Institute for Molecular Life Sciences, and Radboud University Medical Center , Nijmegen, the Netherlands
| | - Alexander Goloborodko
- 3 Department of Human Genetics, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Sanne Broekman
- 1 Department of Otorhinolaryngology, Radboud University Medical Center , Nijmegen, the Netherlands .,4 Donders Institute for Brain , Cognition, and Behavior, Nijmegen, the Netherlands
| | - Erik de Vrieze
- 1 Department of Otorhinolaryngology, Radboud University Medical Center , Nijmegen, the Netherlands .,4 Donders Institute for Brain , Cognition, and Behavior, Nijmegen, the Netherlands
| | - Lisette Hetterschijt
- 1 Department of Otorhinolaryngology, Radboud University Medical Center , Nijmegen, the Netherlands .,4 Donders Institute for Brain , Cognition, and Behavior, Nijmegen, the Netherlands
| | - Theo Peters
- 1 Department of Otorhinolaryngology, Radboud University Medical Center , Nijmegen, the Netherlands .,4 Donders Institute for Brain , Cognition, and Behavior, Nijmegen, the Netherlands
| | - Milou Gerits
- 3 Department of Human Genetics, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Hannie Kremer
- 1 Department of Otorhinolaryngology, Radboud University Medical Center , Nijmegen, the Netherlands .,3 Department of Human Genetics, Radboud University Medical Center , Nijmegen, the Netherlands .,4 Donders Institute for Brain , Cognition, and Behavior, Nijmegen, the Netherlands
| | - Erwin van Wijk
- 1 Department of Otorhinolaryngology, Radboud University Medical Center , Nijmegen, the Netherlands .,4 Donders Institute for Brain , Cognition, and Behavior, Nijmegen, the Netherlands
| |
Collapse
|
23
|
Wei C, Yang L, Cheng J, Imani S, Fu S, Lv H, Li Y, Chen R, Leung ELH, Fu J. A novel homozygous variant of GPR98 causes usher syndrome type IIC in a consanguineous Chinese family by next generation sequencing. BMC MEDICAL GENETICS 2018; 19:99. [PMID: 29890953 PMCID: PMC5996530 DOI: 10.1186/s12881-018-0602-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/01/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Usher syndrome (USH) is a common heterogeneous retinopathy and a hearing loss (HL) syndrome. However, the gene causing Usher syndrome type IIC (USH2C) in a consanguineous Chinese pedigree is unknown. METHODS We performed targeted next-generation sequencing analysis and Sanger sequencing to explore the GPR98 mutations in a USH2C pedigree that included a 32-year-old male patient from a consanguineous marriage family. Western blot verified the nonsense mutation. RESULTS To identify disease-causing gene variants in a consanguineous Chinese pedigree with USH2C, DNA from proband was analyzed using targeted next generation sequencing (NGS). The patient was clinically documented as a possible USH2 by a comprehensive auditory and ophthalmology evaluation. We succeeded in identifying the deleterious, novel, and homologous variant, c.6912dupG (p.Leu2305Valfs*4), in the GPR98 gene (NM_032119.3) that contributes to the progression of USH2C. Variant detected by targeted NGS was then confirmed and co-segregation was conducted by direct Sanger sequencing. Western blot verified losing almost two-thirds of its amino acid residues, including partial Calx-beta, whole EPTP and 7TM-GPCRs at the C-terminus of GPR98. Furthermore, our results highlighted that this p.Leu2305Valfs*4 variant is most likely pathogenic due to a large deletion at the seven-transmembrane G protein-coupled receptors (7TM-GPCRs) domain in GPR98 protein, leading to significantly decreased functionality and complex stability. CONCLUSIONS These findings characterized the novel disease causativeness variant in GPR98 and broaden mutation spectrums, which could predict the pathogenic progression of patient with USH2C, guide diagnosis and treatment of this disease; and provide genetic counseling and family planning for consanguineous marriage pedigree in developing countries, including China.
Collapse
Affiliation(s)
- Chunli Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macao, Special Administrative Region of China.,Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Lisha Yang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Saber Imani
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.,Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shangyi Fu
- The Honors College, University of Houston, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hongbin Lv
- Department of Ophthalmology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macao, Special Administrative Region of China. .,Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease, The 1st Affiliated Hospital of Guangzhou Medical College, Guangzhou, China. .,Respiratoire Medicine Department, Taihe Hospital, Hubei University of Medicine, Hubei, China.
| | - Junjiang Fu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macao, Special Administrative Region of China. .,Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
24
|
Zhang N, Wang J, Liu S, Liu M, Jiang F. Identification of two novel compound heterozygous mutations of ADGRV1 in a Chinese family with Usher syndrome type IIC. Ophthalmic Genet 2018; 39:517-521. [PMID: 29883260 DOI: 10.1080/13816810.2018.1479430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
BACKGROUND To describe the clinical and genetic findings in a Chinese family with three sibs diagnosed with Usher syndrome type IIC. MATERIALS AND METHODS Four members received ophthalmic and otologic tests to ascertain the clinical characteristics. According to the clinical phenotype, we focused attention on a total of 658 genes associated with them. We screened the possible pathogenic mutation sites, used Sanger to exclude the false positive and verified whether there were co-segregated among the family members. RESULTS Typical fundus features found in the proband supported the diagnosis of retinitis pigmentosa (RP). Audiometric test indicated moderate to severe sensorineural hearing impairment while the vestibular function was normal. Whole-exome sequencing identified the presence of two novel compound heterozygous mutations in ADGRV1, a known gene responsible for Usher syndrome type IIC. Mutationc.15008delG/p.Gly5003AlafsTer13 was inherited from the mother while c.18383_18386dupACAG/p.His6130GlnfsTer84 was inherited from the father, and they were co-segregated with the disease phenotype in the family. CONCLUSIONS The mutations found in our study not only broaden the mutation spectrum of ADGRV1, but also provide assistances for future genetic diagnosis and treatment for Usher syndrome patients.
Collapse
Affiliation(s)
- Nian Zhang
- a Department of Ophthalmology , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , P.R. China
| | - Juan Wang
- a Department of Ophthalmology , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , P.R. China
| | - Shuting Liu
- a Department of Ophthalmology , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , P.R. China
| | - Mugen Liu
- b Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology , Center of Human Genome Research, Huazhong University of Science and Technology , Wuhan , Hubei , P.R. China
| | - Fagang Jiang
- a Department of Ophthalmology , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , P.R. China
| |
Collapse
|