1
|
Birla RK. State of the art in Purkinje bioengineering. Tissue Cell 2024; 90:102467. [PMID: 39053130 DOI: 10.1016/j.tice.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/09/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
This review article will cover the recent developments in the new evolving field of Purkinje bioengineering and the development of human Purkinje networks. Recent work has progressed to the point of a methodological and systematic process to bioengineer Purkinje networks. This involves the development of 3D models based on human anatomy, followed by the development of tunable biomaterials, and strategies to reprogram stem cells to Purkinje cells. Subsequently, the reprogrammed cells and the biomaterials are coupled to bioengineer Purkinje networks, which are then tested using a small animal injury model. In this article, we discuss this process as a whole and then each step separately. We then describe potential applications of bioengineered Purkinje networks and challenges in the field that need to be overcome to move this field forward. Although the field of Purkinje bioengineering is new and in a state of infancy, it holds tremendous potential, both for therapeutic applications and to develop tools that can be used for disease modeling.
Collapse
Affiliation(s)
- Ravi K Birla
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA; Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA; Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA; Department of Surgery, Baylor College of Medicine, Houston, TX, USA; Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
2
|
Wu Y, Wang H, Qu C, Deng X, Li N, Yue S, Xu W, Chen Y, Zhou M. Pig-derived ECM-SIS provides a novel matrix gel for tumor modeling. Biomed Phys Eng Express 2024; 10:065002. [PMID: 39178888 DOI: 10.1088/2057-1976/ad72fa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
The absence of effective extracellular matrix to mimic the natural tumor microenvironment remains a significant obstacle in cancer research. Matrigel, abundant in various biological matrix components, is limited in its application due to its high cost. This has prompted researchers to explore alternative matrix substitutes. Here, we have investigated the effects of the extracellular matrix derived from pig small intestinal submucosa (ECM-SIS) in xenograft tumor modeling. Our results showed that the pig-derived ECM-SIS effectively promotes the establishment of xenograft tumor models, with a tumor formation rate comparable to that of Matrigel. Furthermore, we showed that the pig-derived ECM-SIS exhibited lower immune rejection and fewer infiltrating macrophages than Matrigel. Gene sequencing analysis demonstrated only a 0.5% difference in genes between pig-derived ECM-SIS and Matrigel during the process of tumor tissue formation. These differentially expressed genes primarily participate in cellular processes, biological regulation, and metabolic processes. These findings emphasize the potential of pig-derived ECM-SIS as a cost-effective option for tumor modeling in cancer research.
Collapse
Affiliation(s)
- Yanhua Wu
- BGI-Shenzhen, BGI.Research,-Shenzhen, 518110, Guangdong Province, People's Republic of China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518110, Guangdong Province, People's Republic of China
- Liver-biotechnology (Shenzhen) Co., ltd, Shenzhen, 518110, Guangdong Province, People's Republic of China
| | - Hao Wang
- BGI-Shenzhen, BGI.Research,-Shenzhen, 518110, Guangdong Province, People's Republic of China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518110, Guangdong Province, People's Republic of China
- Liver-biotechnology (Shenzhen) Co., ltd, Shenzhen, 518110, Guangdong Province, People's Republic of China
| | - Changbo Qu
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, People's Republic of China
| | - Xuesong Deng
- Department of Hepatobiliary Surgery, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong Province, People's Republic of China
| | - Na Li
- BGI-Shenzhen, BGI.Research,-Shenzhen, 518110, Guangdong Province, People's Republic of China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518110, Guangdong Province, People's Republic of China
- Liver-biotechnology (Shenzhen) Co., ltd, Shenzhen, 518110, Guangdong Province, People's Republic of China
| | - Sile Yue
- BGI-Shenzhen, BGI.Research,-Shenzhen, 518110, Guangdong Province, People's Republic of China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518110, Guangdong Province, People's Republic of China
- Liver-biotechnology (Shenzhen) Co., ltd, Shenzhen, 518110, Guangdong Province, People's Republic of China
| | - Wenjing Xu
- BGI-Shenzhen, BGI.Research,-Shenzhen, 518110, Guangdong Province, People's Republic of China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518110, Guangdong Province, People's Republic of China
- Liver-biotechnology (Shenzhen) Co., ltd, Shenzhen, 518110, Guangdong Province, People's Republic of China
| | - Yinghua Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, People's Republic of China
| | - Ming Zhou
- BGI-Shenzhen, BGI.Research,-Shenzhen, 518110, Guangdong Province, People's Republic of China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518110, Guangdong Province, People's Republic of China
- Liver-biotechnology (Shenzhen) Co., ltd, Shenzhen, 518110, Guangdong Province, People's Republic of China
| |
Collapse
|
3
|
Jarrell DK, Jacot JG. An In Vitro Characterization of a PCL-Fibrin Scaffold for Myocardial Repair. MATERIALS TODAY. COMMUNICATIONS 2023; 37:107596. [PMID: 38130877 PMCID: PMC10732481 DOI: 10.1016/j.mtcomm.2023.107596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Each year in the United States approximately 10,000 babies are born with a complex congenital heart defect (CHD) requiring surgery in the first year of after birth. Several of these operations require the implantation of a full-thickness heart patch; however, the current patch materials available to pediatric heart surgeons are exclusively non-living and non-degradable, which do not grow with the patient and are prone to fail due to an inability to integrate with the heart. In this work, the goal was to develop a full-thickness, tissue engineered myocardial patch (TEMP) that is made from biodegradable components, strong enough to withstand the mechanical forces of the heart wall, and able to integrate with the heart and drive neotissue formation. Here, a thick and porous electrospun PCL scaffold filled with high-salt PEGylated fibrin was developed. The scaffold was found to be mechanically sufficient for heart wall repair. Vascular cells were able to infiltrate more than halfway through the scaffold in static culture within three weeks. The scaffold maintained pluripotent stem cells for at least four days, supports viable iPSC-derived cardiomyocytes, and fostered tissue thickening in vitro. The TEMP developed here and tested in vitro is promising for the repair of structural CHD and will next be assessed in situ.
Collapse
Affiliation(s)
- Dillon K Jarrell
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus
| | - Jeffrey G Jacot
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus
- Department of Pediatrics, Children’s Hospital Colorado
| |
Collapse
|
4
|
Palmosi T, Tolomeo AM, Cirillo C, Sandrin D, Sciro M, Negrisolo S, Todesco M, Caicci F, Santoro M, Dal Lago E, Marchesan M, Modesti M, Bagno A, Romanato F, Grumati P, Fabozzo A, Gerosa G. Small intestinal submucosa-derived extracellular matrix as a heterotopic scaffold for cardiovascular applications. Front Bioeng Biotechnol 2022; 10:1042434. [PMID: 36578513 PMCID: PMC9792098 DOI: 10.3389/fbioe.2022.1042434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Structural cardiac lesions are often surgically repaired using prosthetic patches, which can be biological or synthetic. In the current clinical scenario, biological patches derived from the decellularization of a xenogeneic scaffold are gaining more interest as they maintain the natural architecture of the extracellular matrix (ECM) after the removal of the native cells and remnants. Once implanted in the host, these patches can induce tissue regeneration and repair, encouraging angiogenesis, migration, proliferation, and host cell differentiation. Lastly, decellularized xenogeneic patches undergo cell repopulation, thus reducing host immuno-mediated response against the graft and preventing device failure. Porcine small intestinal submucosa (pSIS) showed such properties in alternative clinical scenarios. Specifically, the US FDA approved its use in humans for urogenital procedures such as hernia repair, cystoplasties, ureteral reconstructions, stress incontinence, Peyronie's disease, penile chordee, and even urethral reconstruction for hypospadias and strictures. In addition, it has also been successfully used for skeletal muscle tissue reconstruction in young patients. However, for cardiovascular applications, the results are controversial. In this study, we aimed to validate our decellularization protocol for SIS, which is based on the use of Tergitol 15 S 9, by comparing it to our previous and efficient method (Triton X 100), which is not more available in the market. For both treatments, we evaluated the preservation of the ECM ultrastructure, biomechanical features, biocompatibility, and final bioinductive capabilities. The overall analysis shows that the SIS tissue is macroscopically distinguishable into two regions, one smooth and one wrinkle, equivalent to the ultrastructure and biochemical and proteomic profile. Furthermore, Tergitol 15 S 9 treatment does not modify tissue biomechanics, resulting in comparable to the native one and confirming the superior preservation of the collagen fibers. In summary, the present study showed that the SIS decellularized with Tergitol 15 S 9 guarantees higher performances, compared to the Triton X 100 method, in all the explored fields and for both SIS regions: smooth and wrinkle.
Collapse
Affiliation(s)
- Tiziana Palmosi
- Laboratory of Cardiovascular Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy,L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy
| | - Anna Maria Tolomeo
- Laboratory of Cardiovascular Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy,L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy
| | - Carmine Cirillo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Debora Sandrin
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Optics and Bioimaging Lab, Department of Physics and Astronomy, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, University of Padova, Padua, Italy
| | | | - Susanna Negrisolo
- Laboratory of Immunopathology and Molecular Biology of the Kidney, Department of Women’s and Children’s Health, University of Padova, Padua, Italy
| | - Martina Todesco
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Department of Industrial Engineering, University of Padova, Padua, Italy
| | | | - Michele Santoro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Eleonora Dal Lago
- Department of Industrial Engineering, University of Padova, Padua, Italy
| | | | - Michele Modesti
- Department of Industrial Engineering, University of Padova, Padua, Italy
| | - Andrea Bagno
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Department of Industrial Engineering, University of Padova, Padua, Italy
| | - Filippo Romanato
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Department of Physics and Astronomy “G. Galilei”, University of Padova, Padua, Italy
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy,Department of Clinical Medicine and Surgery, University of Napoli Federico II, Naples, Italy
| | - Assunta Fabozzo
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Cardiac Surgery Unit, Hospital University of Padova, Padua, Italy,*Correspondence: Assunta Fabozzo,
| | - Gino Gerosa
- Laboratory of Cardiovascular Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy,L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Cardiac Surgery Unit, Hospital University of Padova, Padua, Italy
| |
Collapse
|
5
|
Taking It Personally: 3D Bioprinting a Patient-Specific Cardiac Patch for the Treatment of Heart Failure. Bioengineering (Basel) 2022; 9:bioengineering9030093. [PMID: 35324782 PMCID: PMC8945185 DOI: 10.3390/bioengineering9030093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022] Open
Abstract
Despite a massive global preventative effort, heart failure remains the major cause of death globally. The number of patients requiring a heart transplant, the eventual last treatment option, far outnumbers the available donor hearts, leaving many to deteriorate or die on the transplant waiting list. Treating heart failure by transplanting a 3D bioprinted patient-specific cardiac patch to the infarcted region on the myocardium has been investigated as a potential future treatment. To date, several studies have created cardiac patches using 3D bioprinting; however, testing the concept is still at a pre-clinical stage. A handful of clinical studies have been conducted. However, moving from animal studies to human trials will require an increase in research in this area. This review covers key elements to the design of a patient-specific cardiac patch, divided into general areas of biological design and 3D modelling. It will make recommendations on incorporating anatomical considerations and high-definition motion data into the process of 3D-bioprinting a patient-specific cardiac patch.
Collapse
|
6
|
Birla RK. A methodological nine-step process to bioengineer heart muscle tissue. Tissue Cell 2020; 67:101425. [PMID: 32853859 DOI: 10.1016/j.tice.2020.101425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 01/15/2023]
Abstract
Research in the field of heart muscle tissue engineering is focused on the fabrication of heart muscle tissue which can be utilized to repair, replace and/or augment functionality of damaged and/or diseased tissue. In the simplest embodiment, bioengineering heart muscle tissue constructs involves culture of cardiomyocytes within natural or synthetic scaffolds. Functional integration of the cells with the scaffold and subsequent remodeling lead to the formation of 3D heart muscle tissue and physiological cues like mechanical stretch, electrical stimulation and perfusion are necessary to guide tissue maturation and development. Potential applications for bioengineered heart muscle include use as grafts to repair or replace damaged tissue, as models for basic research and as tools for high-throughput screening of pharmacological agents. In this article, we provide a methodological process to bioengineer functional 3D heart muscle tissue and discuss state of the art and potential challenges in each of the nine-step tissue fabrication process.
Collapse
Affiliation(s)
- Ravi K Birla
- BIOLIFE4D, 2450 Holcombe Blvd; Houston, TX, 77204, United States.
| |
Collapse
|
7
|
Kiper C, Cua CL, Baker P, McConnell P. Mitral Valve Replacement in Pediatrics Using an Extracellular Matrix Cylinder Valve: A Case Series. Pediatr Cardiol 2020; 41:1458-1465. [PMID: 32607741 DOI: 10.1007/s00246-020-02382-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/22/2020] [Indexed: 11/25/2022]
Abstract
Mitral valve replacement (MVR) in children under 2 years is associated with significant morbidity and mortality. Decellularized porcine intestinal submucosa is a commercially available formulation of an extracellular matrix (ECM) with an indication for cardiac tissue repair. The present study reports our experience using ECM cylinder valves in patients for MVR. A retrospective review of patients under 2 years who underwent ECM custom-made cylinder mitral valve (ECM-MV) replacement was performed. Clinical, demographic, operative and post-operative follow-up data, including serial echocardiographic data are presented. Eight patients (age 5.6 ± 1.6 months; weight: 6.0 ± 1.1 kg) were identified who underwent ECM-MVR. There was one in-hospital death and no major neurological events. Six patients underwent replacement of their cylinder valve with either a Melody valve inside the ECM-MVR (n = 3), a mechanical valve (n = 2), or a decellularized bovine pericardial cylinder valve (n = 1). The mean time to replacement surgery was 8.4 ± 2.6 months after ECM-MV. The indications for replacement of ECM-MV included mitral stenosis/regurgitation (n = 4) or dehiscence (n = 2). One remaining patient is 24 months from ECM-MV, with trivial regurgitation and no stenosis. Mitral valve creation using ECM is an option for MVR in pediatrics, avoiding anticoagulation, and provides a suitable construct for later placement of a Melody valve, extending surgical and non-surgical options. However, the durability of the native ECM-MV in the mitral position is concerning considering the high re-intervention rate in a relatively short time period. Further studies are needed to determine the longer-term outcomes of this valve in this complex patient population.
Collapse
Affiliation(s)
- Carmen Kiper
- Department of Pediatrics, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
| | - Clifford L Cua
- Department of Pediatrics, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Peter Baker
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Patrick McConnell
- Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| |
Collapse
|
8
|
Durko AP, Yacoub MH, Kluin J. Tissue Engineered Materials in Cardiovascular Surgery: The Surgeon's Perspective. Front Cardiovasc Med 2020; 7:55. [PMID: 32351975 PMCID: PMC7174659 DOI: 10.3389/fcvm.2020.00055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
In cardiovascular surgery, reconstruction and replacement of cardiac and vascular structures are routinely performed. Prosthetic or biological materials traditionally used for this purpose cannot be considered ideal substitutes as they have limited durability and no growth or regeneration potential. Tissue engineering aims to create materials having normal tissue function including capacity for growth and self-repair. These advanced materials can potentially overcome the shortcomings of conventionally used materials, and, if successfully passing all phases of product development, they might provide a better option for both the pediatric and adult patient population requiring cardiovascular interventions. This short review article overviews the most important cardiovascular pathologies where tissue engineered materials could be used, briefly summarizes the main directions of development of these materials, and discusses the hurdles in their clinical translation. At its beginnings in the 1980s, tissue engineering (TE) was defined as “an interdisciplinary field that applies the principles of engineering and the life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function” (1). Currently, the utility of TE products and materials are being investigated in several fields of human medicine, ranging from orthopedics to cardiovascular surgery (2–5). In cardiovascular surgery, reconstruction and replacement of cardiac and vascular structures are routinely performed. Considering the shortcomings of traditionally used materials, the need for advanced materials that can “restore, maintain or improve tissue function” are evident. Tissue engineered substitutes, having growth and regenerative capacity, could fundamentally change the specialty (6). This article overviews the most important cardiovascular pathologies where TE materials could be used, briefly summarizes the main directions of development of TE materials along with their advantages and shortcomings, and discusses the hurdles in their clinical translation.
Collapse
Affiliation(s)
- Andras P Durko
- Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Magdi H Yacoub
- Imperial College London, National Heart and Lung Institute, London, United Kingdom
| | - Jolanda Kluin
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
9
|
Bar A, Cohen S. Inducing Endogenous Cardiac Regeneration: Can Biomaterials Connect the Dots? Front Bioeng Biotechnol 2020; 8:126. [PMID: 32175315 PMCID: PMC7056668 DOI: 10.3389/fbioe.2020.00126] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
Heart failure (HF) after myocardial infarction (MI) due to blockage of coronary arteries is a major public health issue. MI results in massive loss of cardiac muscle due to ischemia. Unfortunately, the adult mammalian myocardium presents a low regenerative potential, leading to two main responses to injury: fibrotic scar formation and hypertrophic remodeling. To date, complete heart transplantation remains the only clinical option to restore heart function. In the last two decades, tissue engineering has emerged as a promising approach to promote cardiac regeneration. Tissue engineering aims to target processes associated with MI, including cardiomyogenesis, modulation of extracellular matrix (ECM) remodeling, and fibrosis. Tissue engineering dogmas suggest the utilization and combination of two key components: bioactive molecules and biomaterials. This chapter will present current therapeutic applications of biomaterials in cardiac regeneration and the challenges still faced ahead. The following biomaterial-based approaches will be discussed: Nano-carriers for cardiac regeneration-inducing biomolecules; corresponding matrices for their controlled release; injectable hydrogels for cell delivery and cardiac patches. The concept of combining cardiac patches with controlled release matrices will be introduced, presenting a promising strategy to promote endogenous cardiac regeneration.
Collapse
Affiliation(s)
- Assaf Bar
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Smadar Cohen
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beersheba, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|