1
|
Stommel AM, Herkner H, Kienbacher CL, Wildner B, Hermann A, Staudinger T. Effects of extracorporeal CO 2 removal on gas exchange and ventilator settings: a systematic review and meta-analysis. Crit Care 2024; 28:146. [PMID: 38693569 PMCID: PMC11061932 DOI: 10.1186/s13054-024-04927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024] Open
Abstract
PURPOSE A systematic review and meta-analysis to evaluate the impact of extracorporeal carbon dioxide removal (ECCO2R) on gas exchange and respiratory settings in critically ill adults with respiratory failure. METHODS We conducted a comprehensive database search, including observational studies and randomized controlled trials (RCTs) from January 2000 to March 2022, targeting adult ICU patients undergoing ECCO2R. Primary outcomes were changes in gas exchange and ventilator settings 24 h after ECCO2R initiation, estimated as mean of differences, or proportions for adverse events (AEs); with subgroup analyses for disease indication and technology. Across RCTs, we assessed mortality, length of stay, ventilation days, and AEs as mean differences or odds ratios. RESULTS A total of 49 studies encompassing 1672 patients were included. ECCO2R was associated with a significant decrease in PaCO2, plateau pressure, and tidal volume and an increase in pH across all patient groups, at an overall 19% adverse event rate. In ARDS and lung transplant patients, the PaO2/FiO2 ratio increased significantly while ventilator settings were variable. "Higher extraction" systems reduced PaCO2 and respiratory rate more efficiently. The three available RCTs did not demonstrate an effect on mortality, but a significantly longer ICU and hospital stay associated with ECCO2R. CONCLUSIONS ECCO2R effectively reduces PaCO2 and acidosis allowing for less invasive ventilation. "Higher extraction" systems may be more efficient to achieve this goal. However, as RCTs have not shown a mortality benefit but increase AEs, ECCO2R's effects on clinical outcome remain unclear. Future studies should target patient groups that may benefit from ECCO2R. PROSPERO Registration No: CRD 42020154110 (on January 24, 2021).
Collapse
Affiliation(s)
- Alexandra-Maria Stommel
- Department of Emergency Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Harald Herkner
- Department of Emergency Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Calvin Lukas Kienbacher
- Department of Emergency Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Brigitte Wildner
- University Library, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Alexander Hermann
- Department of Medicine I, Intensive Care Unit 13i2, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Thomas Staudinger
- Department of Medicine I, Intensive Care Unit 13i2, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| |
Collapse
|
2
|
Zhou Z, Li Z, Liu C, Wang F, Zhang L, Fu P. Extracorporeal carbon dioxide removal for patients with acute respiratory failure: a systematic review and meta-analysis. Ann Med 2023; 55:746-759. [PMID: 36856550 PMCID: PMC9980035 DOI: 10.1080/07853890.2023.2172606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Acute respiratory failure (ARF) is a common clinical critical syndrome with substantial mortality. Extracorporeal carbon dioxide removal (ECCO2R) has been proposed for the treatment of ARF. However, whether ECCO2R could provide a survival advantage for patients with ARF is still controversial. METHODS Electronic databases (PubMed, Embase, Web of Science, and the Cochrane database) were searched from inception to 30 April 2022. Randomized controlled trials (RCTs) and observational studies that examined the following outcomes were included: mortality, length of hospital and ICU stay, intubation and tracheotomy rate, mechanical ventilation days, ventilator-free days (VFDs), respiratory parameters, and reported adverse events. RESULTS Four RCTs and five observational studies including 1173 participants with ARF due to COPD or ARDS were included in this meta-analysis. Pooled analyses of related studies showed no significant difference in overall mortality between ECCO2R and control group, neither in RCTs targeted ARDS or acute hypoxic respiratory failure patients (RR 1.05, 95% CI 0.83 to 1.32, p = 0.70, I2 =0.0%), nor in studies targeted patients with ARF secondary to COPD (RR 0.80, 95% CI 0.58 to 1.11, p = 0.19, I2 =0.0%). A shorter duration of ICU stay in the ECCO2R group was only obtained in observational studies (WMD -4.25, p < 0.01), and ECCO2R was associated with a longer length of hospital stay (p = 0.02). ECCO2R was associated with lower intubation rate (p < 0.01) and tracheotomy rate (p = 0.01), and shorter mechanical ventilation days (p < 0.01) in comparison to control group in ARF patients with COPD. In addition, an improvement in pH (p = 0.01), PaO2 (p = 0.01), respiratory rate (p < 0.01), and PaCO2 (p = 0.04) was also observed in patients with COPD exacerbations by ECCO2R therapy. However, the ECCO2R-related complication rate was high in six of the included studies. CONCLUSIONS Our findings from both RCTs and observational studies did not confirm a significant beneficial effect of ECCO2R therapy on mortality. A shorter length of ICU stay in the ECCO2R group was only obtained in observational studies, and ECCO2R was associated with a longer length of hospital stay. ECCO2R was associated with lower intubation rate and tracheotomy rate, and shorter mechanical ventilation days in ARF patients with COPD. And an improvement in pH, PaO2, respiratory rate and PaCO2 was observed in the ECCO2R group. However, outcomes largely relied on data from observational studies targeted patients with ARF secondary to COPD, thus further larger high-quality RCTs are desirable to strengthen the evidence on the efficacy and benefits of ECCO2R for patients with ARF.Key messagesECCO2R therapy did not confirm a significant beneficial effect on mortality.ECCO2R was associated with lower intubation and tracheotomy rate, and shorter mechanical ventilation days in patients with ARF secondary to COPD.An improvement in pH, PaO2, respiratory rate, and PaCO2 was observed in ECCO2R group in patients with COPD exacerbations.Evidence for the future application of ECCO2R therapy for patients with ARF. The protocol of this meta-analysis was registered on PROSPERO (CRD42022295174).
Collapse
Affiliation(s)
- Zhifeng Zhou
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Zhengyan Li
- Division of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Chen Liu
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Fang Wang
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Ling Zhang
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Ping Fu
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, First Medical Center of Chinese, PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Extracorporeal Membrane Oxygenation in Pediatric Acute Respiratory Distress Syndrome: From the Second Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med 2023; 24:S124-S134. [PMID: 36661441 DOI: 10.1097/pcc.0000000000003164] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To systematically review and assimilate literature on children receiving extracorporeal membrane oxygenation (ECMO) support in pediatric acute respiratory distress syndrome (PARDS) with the goal of developing an update to the Pediatric Acute Lung Injury Consensus Conference recommendations and statements about clinical practice and research. DATA SOURCES Electronic searches of MEDLINE (Ovid), Embase (Elsevier), and CINAHL Complete (EBSCOhost). STUDY SELECTION The search used a medical subject heading terms and text words to capture studies of ECMO in PARDS or acute respiratory failure. Studies using animal models and case reports were excluded from our review. DATA EXTRACTION Title/abstract review, full-text review, and data extraction using a standardized data collection form. DATA SYNTHESIS The Grading of Recommendations Assessment, Development, and Evaluation approach was used to identify and summarize evidence and develop recommendations. There were 18 studies identified for full-text extraction. When pediatric data was lacking, adult and neonatal data from randomized clinical trials and observational studies were considered. Six clinical recommendations were generated related to ECMO indications, initiation, and management in PARDS. There were three good practice statements generated related to ECMO indications, initiation, and follow-up in PARDS. Two policy statements were generated involving the impact of ECMO team organization and training in PARDS. Last, there was one research statement. CONCLUSIONS Based on a systematic literature review, we propose clinical management, good practice and policy statements within the domains of ECMO indications, initiation, team organization, team training, management, and follow-up as they relate to PARDS.
Collapse
|
4
|
|
5
|
Yu TZ, Tatum RT, Saxena A, Ahmad D, Yost CC, Maynes EJ, O'Malley TJ, Massey HT, Swol J, Whitson BA, Tchantchaleishvili V. Utilization and outcomes of extracorporeal CO 2 removal (ECCO 2 R): Systematic review and meta-analysis of arterio-venous and veno-venous ECCO 2 R approaches. Artif Organs 2021; 46:763-774. [PMID: 34897748 DOI: 10.1111/aor.14130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/25/2021] [Accepted: 11/09/2021] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Extracorporeal carbon dioxide removal (ECCO2 R) provides respiratory support to patients suffering from hypercapnic respiratory failure by utilizing an extracorporeal shunt and gas exchange membrane to remove CO2 from either the venous (VV-ECCO2 R) or arterial (AV-ECCO2 R) system before return into the venous site. AV-ECCO2 R relies on the patient's native cardiac function to generate pressures needed to deliver blood through the extracorporeal circuit. VV-ECCO2 R utilizes a mechanical pump and can be used to treat patients with inadequate native cardiac function. We sought to evaluate the existing evidence comparing the subgroups of patients supported on VV and AV-ECCO2 R devices. METHODS A literature search was performed to identify all relevant studies published between 2000 and 2019. Demographic information, medical indications, perioperative variables, and clinical outcomes were extracted for systematic review and meta-analysis. RESULTS Twenty-five studies including 826 patients were reviewed. 60% of patients (497/826) were supported on VV-ECCO2 R. The most frequent indications were acute respiratory distress syndrome (ARDS) [69%, (95%CI: 53%-82%)] and chronic obstructive pulmonary disease (COPD) [49%, (95%CI: 37%-60%)]. ICU length of stay was significantly shorter in patients supported on VV-ECCO2 R compared to AV-ECCO2 R [15 (95%CI: 7-23) vs. 42 (95%CI: 17-67) days, p = 0.05]. In-hospital mortality was not significantly different [27% (95%CI: 18%-38%) vs. 36% (95%CI: 24%-51%), p = 0.26]. CONCLUSION Both VV and AV-ECCO2 R provided clinically meaningful CO2 removal with comparable mortality.
Collapse
Affiliation(s)
- Tiffany Z Yu
- Cardiac Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Robert T Tatum
- Cardiac Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Abhiraj Saxena
- Cardiac Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Danial Ahmad
- Cardiac Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Colin C Yost
- Cardiac Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Elizabeth J Maynes
- Cardiac Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Thomas J O'Malley
- Cardiac Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Howard T Massey
- Cardiac Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Justyna Swol
- Department of Respiratory Medicine, Allergology and Sleep Medicine, Paracelsus Medical University Nuremberg, Nuremberg, Germany
| | | | | |
Collapse
|
6
|
Scaravilli V, Fumagalli J, Rosso L, Polli F, Panigada M, Abbruzzese C, Crotti S, Lissoni A, Nosotti M, Pesenti A, Zanella A, Grasselli G. Heparin-Free Lung Transplantation on Venovenous Extracorporeal Membrane Oxygenation Bridge. ASAIO J 2021; 67:e191-e197. [PMID: 33528168 DOI: 10.1097/mat.0000000000001371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) bridge to lung transplantation (LuTX) exposes the patients to a high risk of perioperative bleeding secondary to systemic anticoagulation and coagulation factors deficiency. With this case series, we propose innovative "no-heparin" management of ECMO-bridge support during LuTX, based upon 1) control heparin resistance with antithrombin III in the preoperative period; 2) relying upon a fully functional, brand new heparinized ECMO circuit; 3) completely avoiding perioperative heparin; 4) hampering fibrinolysis with tranexamic acid; and 5) limiting venoarterial (VA) ECMO escalation, and the following need for full anticoagulation. Following the application of this new approach, we carried out three challenging clinical cases of bilateral ECMO-bridged LuTX effectively, with limited intraoperative blood requirement and no major postoperative bleeding or thromboembolic events. Of note, two of them had an extremely high risk for hemorrhage due to complete right lung anatomic derangement in case number 2 and surgical adhesion following first LuTX in case number 3, while for the case number 1, no blood products were administered during surgery. Despite the limited patient population, such an approach relies on a strong rationale and may be beneficial for managing ECMO bridging to LuTX. Prospective studies are necessary to confirm the validity of our strategy.
Collapse
Affiliation(s)
- Vittorio Scaravilli
- From the Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Jacopo Fumagalli
- From the Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Rosso
- Department of Thoracic Surgery and Lung Transplant, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Federico Polli
- From the Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Panigada
- From the Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Abbruzzese
- From the Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Crotti
- From the Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Alfredo Lissoni
- From the Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Mario Nosotti
- Department of Thoracic Surgery and Lung Transplant, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Antonio Pesenti
- From the Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alberto Zanella
- From the Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giacomo Grasselli
- From the Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Alkaline Liquid Ventilation of the Membrane Lung for Extracorporeal Carbon Dioxide Removal (ECCO 2R): In Vitro Study. MEMBRANES 2021; 11:membranes11070464. [PMID: 34206672 PMCID: PMC8306443 DOI: 10.3390/membranes11070464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 11/16/2022]
Abstract
Extracorporeal carbon dioxide removal (ECCO2R) is a promising strategy to manage acute respiratory failure. We hypothesized that ECCO2R could be enhanced by ventilating the membrane lung with a sodium hydroxide (NaOH) solution with high CO2 absorbing capacity. A computed mathematical model was implemented to assess NaOH–CO2 interactions. Subsequently, we compared NaOH infusion, named “alkaline liquid ventilation”, to conventional oxygen sweeping flows. We built an extracorporeal circuit with two polypropylene membrane lungs, one to remove CO2 and the other to maintain a constant PCO2 (60 ± 2 mmHg). The circuit was primed with swine blood. Blood flow was 500 mL × min−1. After testing the safety and feasibility of increasing concentrations of aqueous NaOH (up to 100 mmol × L−1), the CO2 removal capacity of sweeping oxygen was compared to that of 100 mmol × L−1 NaOH. We performed six experiments to randomly test four sweep flows (100, 250, 500, 1000 mL × min−1) for each fluid plus 10 L × min−1 oxygen. Alkaline liquid ventilation proved to be feasible and safe. No damages or hemolysis were detected. NaOH showed higher CO2 removal capacity compared to oxygen for flows up to 1 L × min−1. However, the highest CO2 extraction power exerted by NaOH was comparable to that of 10 L × min−1 oxygen. Further studies with dedicated devices are required to exploit potential clinical applications of alkaline liquid ventilation.
Collapse
|
8
|
Martin AK, Ramakrishna H. Extracorporeal Carbon Dioxide Removal (ECCO 2R): A Potential Perioperative Tool in End-Stage Lung Disease. J Cardiothorac Vasc Anesth 2021; 35:2245-2248. [PMID: 33994317 DOI: 10.1053/j.jvca.2021.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Archer Kilbourne Martin
- Division of Cardiovascular and Thoracic Anesthesiology, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic School of Medicine, Jacksonville, FL
| | - Harish Ramakrishna
- Division of Cardiovascular and Thoracic Anesthesiology, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic School of Medicine, Rochester, MN
| |
Collapse
|
9
|
|