• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4633406)   Today's Articles (4928)   Subscriber (49951)
For: Lee JK, Kung MC, Kung HH, Mockros LF. Microchannel technologies for artificial lungs: (3) open rectangular channels. ASAIO J 2008;54:390-5. [PMID: 18645356 PMCID: PMC2702480 DOI: 10.1097/mat.0b013e31817eda02] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]  Open
Number Cited by Other Article(s)
1
Calzuola ST, Newman G, Feaugas T, Perrault CM, Blondé JB, Roy E, Porrini C, Stojanovic GM, Vidic J. Membrane-based microfluidic systems for medical and biological applications. LAB ON A CHIP 2024;24:3579-3603. [PMID: 38954466 DOI: 10.1039/d4lc00251b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
2
Chang LH, Kumar S. Capillary Filling in Open Rectangular Microchannels with a Spatially Varying Contact Angle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023;39:18526-18536. [PMID: 38054451 DOI: 10.1021/acs.langmuir.3c02865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
3
Blauvelt DG, Chui BW, Higgins NC, Baltazar FJ, Roy S. Silicon membranes for extracorporeal life support: a comparison of design and fabrication methodologies. Biomed Microdevices 2022;25:2. [PMID: 36472672 DOI: 10.1007/s10544-022-00639-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 12/12/2022]
4
Astor TL, Borenstein JT. The microfluidic artificial lung: Mimicking nature's blood path design to solve the biocompatibility paradox. Artif Organs 2022;46:1227-1239. [PMID: 35514275 DOI: 10.1111/aor.14266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
5
Gimbel AA, Hsiao JC, Kim ES, Lewis DJ, Risoleo TF, Urban JN, Borenstein JT. A high gas transfer efficiency microfluidic oxygenator for extracorporeal respiratory assist applications in critical care medicine. Artif Organs 2021;45:E247-E264. [PMID: 33561881 DOI: 10.1111/aor.13935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/10/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
6
Duy Nguyen BT, Nguyen Thi HY, Nguyen Thi BP, Kang DK, Kim JF. The Roles of Membrane Technology in Artificial Organs: Current Challenges and Perspectives. MEMBRANES 2021;11:239. [PMID: 33800659 PMCID: PMC8065507 DOI: 10.3390/membranes11040239] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023]
7
Blauvelt DG, Abada EN, Oishi P, Roy S. Advances in extracorporeal membrane oxygenator design for artificial placenta technology. Artif Organs 2021;45:205-221. [PMID: 32979857 PMCID: PMC8513573 DOI: 10.1111/aor.13827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/28/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
8
Dabaghi M, Rochow N, Saraei N, Fusch G, Monkman S, Da K, Shahin‐Shamsabadi A, Brash JL, Predescu D, Delaney K, Fusch C, Selvaganapathy PR. A Pumpless Microfluidic Neonatal Lung Assist Device for Support of Preterm Neonates in Respiratory Distress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020;7:2001860. [PMID: 33173732 PMCID: PMC7610273 DOI: 10.1002/advs.202001860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/16/2020] [Indexed: 05/19/2023]
9
Advancing Front Oxygen Transfer Model for the Design of Microchannel Artificial Lungs. ASAIO J 2020;66:1054-1062. [DOI: 10.1097/mat.0000000000001129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]  Open
10
Comber EM, Palchesko RN, Ng WH, Ren X, Cook KE. De novo lung biofabrication: clinical need, construction methods, and design strategy. Transl Res 2019;211:1-18. [PMID: 31103468 DOI: 10.1016/j.trsl.2019.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/10/2019] [Accepted: 04/25/2019] [Indexed: 01/22/2023]
11
Dabaghi M, Saraei N, Fusch G, Rochow N, Brash JL, Fusch C, Ravi Selvaganapathy P. An ultra-thin, all PDMS-based microfluidic lung assist device with high oxygenation capacity. BIOMICROFLUIDICS 2019;13:034116. [PMID: 31263515 PMCID: PMC6597343 DOI: 10.1063/1.5091492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/11/2019] [Indexed: 05/06/2023]
12
Thompson AJ, Ma LJ, Plegue TJ, Potkay JA. Design Analysis and Optimization of a Single-Layer PDMS Microfluidic Artificial Lung. IEEE Trans Biomed Eng 2019;66:1082-1093. [DOI: 10.1109/tbme.2018.2866782] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
13
Dabaghi M, Saraei N, Fusch G, Rochow N, Brash JL, Fusch C, Selvaganapathy PR. An ultra-thin highly flexible microfluidic device for blood oxygenation. LAB ON A CHIP 2018;18:3780-3789. [PMID: 30421770 DOI: 10.1039/c8lc01083h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
14
Abada EN, Feinberg BJ, Roy S. Evaluation of silicon membranes for extracorporeal membrane oxygenation (ECMO). Biomed Microdevices 2018;20:86. [DOI: 10.1007/s10544-018-0335-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
15
Dabaghi M, Fusch G, Saraei N, Rochow N, Brash JL, Fusch C, Ravi Selvaganapathy P. An artificial placenta type microfluidic blood oxygenator with double-sided gas transfer microchannels and its integration as a neonatal lung assist device. BIOMICROFLUIDICS 2018;12:044101. [PMID: 30867861 PMCID: PMC6404930 DOI: 10.1063/1.5034791] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/05/2018] [Indexed: 05/22/2023]
16
Matharoo H, Dabaghi M, Rochow N, Fusch G, Saraei N, Tauhiduzzaman M, Veldhuis S, Brash J, Fusch C, Selvaganapathy PR. Steel reinforced composite silicone membranes and its integration to microfluidic oxygenators for high performance gas exchange. BIOMICROFLUIDICS 2018;12:014107. [PMID: 29375728 PMCID: PMC5764751 DOI: 10.1063/1.5014028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/02/2018] [Indexed: 05/19/2023]
17
Thompson AJ, Marks LH, Goudie MJ, Rojas-Pena A, Handa H, Potkay JA. A small-scale, rolled-membrane microfluidic artificial lung designed towards future large area manufacturing. BIOMICROFLUIDICS 2017;11:024113. [PMID: 28798849 PMCID: PMC5533476 DOI: 10.1063/1.4979676] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/22/2017] [Indexed: 05/22/2023]
18
Yeager T, Roy S. Evolution of Gas Permeable Membranes for Extracorporeal Membrane Oxygenation. Artif Organs 2017;41:700-709. [DOI: 10.1111/aor.12835] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 11/28/2022]
19
Gimbel AA, Flores E, Koo A, García-Cardeña G, Borenstein JT. Development of a biomimetic microfluidic oxygen transfer device. LAB ON A CHIP 2016;16:3227-34. [PMID: 27411972 PMCID: PMC4987252 DOI: 10.1039/c6lc00641h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
20
Potkay JA. Reply to the 'Comment on "The promise of microfluidic artificial lungs"' by G. Wagner, A. Kaesler, U. Steinseifer, T. Schmitz-Rode and J. Arens, Lab Chip, 2016, 16. LAB ON A CHIP 2016;16:1274-1277. [PMID: 26957040 DOI: 10.1039/c6lc00221h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
21
Rieper T, Müller C, Reinecke H. Novel scalable and monolithically integrated extracorporeal gas exchange device. Biomed Microdevices 2015;17:86. [DOI: 10.1007/s10544-015-9982-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
22
Lo JH, Bassett EK, Penson EJN, Hoganson DM, Vacanti JP. Gas Transfer in Cellularized Collagen-Membrane Gas Exchange Devices. Tissue Eng Part A 2015;21:2147-55. [PMID: 26020102 DOI: 10.1089/ten.tea.2014.0369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]  Open
23
Potkay JA. The promise of microfluidic artificial lungs. LAB ON A CHIP 2014;14:4122-38. [PMID: 25198427 DOI: 10.1039/c4lc00828f] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
24
Stem cells and cell therapies in lung biology and diseases: conference report. Ann Am Thorac Soc 2014;10:S25-44. [PMID: 23869447 DOI: 10.1513/annalsats.201304-089aw] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]  Open
25
Rogers CI, Oxborrow JB, Anderson RR, Tsai LF, Nordin GP, Woolley AT. Microfluidic Valves Made From Polymerized Polyethylene Glycol Diacrylate. SENSORS AND ACTUATORS. B, CHEMICAL 2014;191:10.1016/j.snb.2013.10.008. [PMID: 24357897 PMCID: PMC3864702 DOI: 10.1016/j.snb.2013.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
26
Wu WI, Rochow N, Chan E, Fusch G, Manan A, Nagpal D, Selvaganapathy PR, Fusch C. Lung assist device: development of microfluidic oxygenators for preterm infants with respiratory failure. LAB ON A CHIP 2013;13:2641-50. [PMID: 23702615 DOI: 10.1039/c3lc41417e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
27
Dhanaliwala AH, Chen JL, Wang S, Hossack JA. Liquid Flooded Flow-Focusing Microfluidic Device for in situ Generation of Monodisperse Microbubbles. MICROFLUIDICS AND NANOFLUIDICS 2013;14:457-467. [PMID: 23439786 PMCID: PMC3579535 DOI: 10.1007/s10404-012-1064-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
28
Potkay JA. A simple, closed-form, mathematical model for gas exchange in microchannel artificial lungs. Biomed Microdevices 2013;15:397-406. [DOI: 10.1007/s10544-013-9736-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
29
Wang S, Dhanaliwala AH, Chen JL, Hossack JA. Production rate and diameter analysis of spherical monodisperse microbubbles from two-dimensional, expanding-nozzle flow-focusing microfluidic devices. BIOMICROFLUIDICS 2013;7:14103. [PMID: 24403995 PMCID: PMC3562342 DOI: 10.1063/1.4774069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/18/2012] [Indexed: 05/04/2023]
30
Borenstein JT, Vunjak-Novakovic G. Engineering tissue with BioMEMS. IEEE Pulse 2012;2:28-34. [PMID: 22147066 DOI: 10.1109/mpul.2011.942764] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
31
Extracorporeal CO(2) removal in ARDS. Crit Care Clin 2011;27:609-25. [PMID: 21742219 DOI: 10.1016/j.ccc.2011.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
32
Bassett EK, Hoganson DM, Lo JH, Penson EJN, Vacanti JP. Influence of Vascular Network Design on Gas Transfer in Lung Assist Device Technology. ASAIO J 2011;57:533-8. [DOI: 10.1097/mat.0b013e318234a3ac] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]  Open
33
Potkay JA, Magnetta M, Vinson A, Cmolik B. Bio-inspired, efficient, artificial lung employing air as the ventilating gas. LAB ON A CHIP 2011;11:2901-9. [PMID: 21755093 DOI: 10.1039/c1lc20020h] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
34
Sreenivasan R, Bassett EK, Hoganson DM, Vacanti JP, Gleason KK. Ultra-thin, gas permeable free-standing and composite membranes for microfluidic lung assist devices. Biomaterials 2011;32:3883-9. [PMID: 21396705 DOI: 10.1016/j.biomaterials.2011.02.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 02/09/2011] [Indexed: 11/28/2022]
35
Sung JH, Esch MB, Shuler ML. Integration of in silico and in vitro platforms for pharmacokinetic-pharmacodynamic modeling. Expert Opin Drug Metab Toxicol 2011;6:1063-81. [PMID: 20540627 DOI: 10.1517/17425255.2010.496251] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
36
Branched vascular network architecture: A new approach to lung assist device technology. J Thorac Cardiovasc Surg 2010;140:990-5. [DOI: 10.1016/j.jtcvs.2010.02.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 01/07/2010] [Accepted: 02/02/2010] [Indexed: 12/21/2022]
37
Peng XYL, Wu LQ, Zhang N, Hu LD, Li Y, Li WJ, Li DH, Huang P, Zhou YL. A micro surface tension alveolus (MISTA) in a glass microchip. LAB ON A CHIP 2009;9:3251-3254. [PMID: 19865732 DOI: 10.1039/b913112d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
38
Microchannel technologies for artificial lungs: (1) theory. ASAIO J 2008;54:372-82. [PMID: 18645354 DOI: 10.1097/mat.0b013e31817ed9e1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA