1
|
Singh AK, Asif S, Pandey DK, Chaudhary A, Kapoor V, Verma PK. Biomarkers in Acute Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Cureus 2024; 16:e63020. [PMID: 39050316 PMCID: PMC11268976 DOI: 10.7759/cureus.63020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Traumatic brain injury (TBI) stands as a significant contributor to traumatic death and disability worldwide. In recent years, researchers have identified biomarkers to gauge useful outcomes in TBI patients. However, the enigma of timely sample collection to measure the biomarkers remains a controversial point in the case of TBI, unlike other degenerative diseases like Alzheimer's disease and Parkinson's disease, where we can collect the sample at any point in time. The purpose of this study is to evaluate the sensitivity of biomarkers in TBI concerning time of injury by analyzing recent available data on biomarkers in the medical literature. A total of 2,256 studies were initially retrieved from the search engine. After an initial screening, only 1,750 unique articles remained. After excluding review articles, animal studies, meta-analysis, and studies with children (screened by title and abstract), 30 kinds of literature were found relevant to search the required variables. Further 16 studies were excluded due to the nonavailability of complete variables or data. Finally, 14 studies remained and were included in the analysis. This study has analyzed the four most commonly described biomarkers for TBI in the literature: glial fibrillary acidic protein (GFAP), S100 calcium-binding protein B, ubiquitin carboxy-terminal hydrolase L1, and Tau. According to this statistical analysis, all biomarkers included in the study have shown their serum levels after trauma. So, all these biomarkers can be used for further study in the outcome prediction and diagnosis of TBI patients. The meta-analysis suggests that the best biomarker for TBI is Tau in cases where sample collection is done within 24 hours, while GFAP is the best biomarker to be studied for TBI if sample collection is done 24 hours after trauma.
Collapse
Affiliation(s)
- Adarsh Kumar Singh
- Department of Biotechnology, Centre of BioMedical Research (CBMR) Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, IND
| | - Shafaque Asif
- Department of Molecular Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, IND
| | - Deepika Kumari Pandey
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, IND
| | - Akash Chaudhary
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, IND
| | - Vishwas Kapoor
- Department of Biostatistics and Health Informatics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, IND
| | - Pawan Kumar Verma
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, IND
| |
Collapse
|
2
|
Bodenstein DF, Siebiger G, Zhao Y, Clasky AJ, Mukkala AN, Beroncal EL, Banh L, Aslostovar L, Brijbassi S, Hogan SE, McCully JD, Mehrabian M, Petersen TH, Robinson LA, Walker M, Zachos C, Viswanathan S, Gu FX, Rotstein OD, Cypel M, Radisic M, Andreazza AC. Bridging the gap between in vitro and in vivo models: a way forward to clinical translation of mitochondrial transplantation in acute disease states. Stem Cell Res Ther 2024; 15:157. [PMID: 38816774 PMCID: PMC11140916 DOI: 10.1186/s13287-024-03771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
Mitochondrial transplantation and transfer are being explored as therapeutic options in acute and chronic diseases to restore cellular function in injured tissues. To limit potential immune responses and rejection of donor mitochondria, current clinical applications have focused on delivery of autologous mitochondria. We recently convened a Mitochondrial Transplant Convergent Working Group (CWG), to explore three key issues that limit clinical translation: (1) storage of mitochondria, (2) biomaterials to enhance mitochondrial uptake, and (3) dynamic models to mimic the complex recipient tissue environment. In this review, we present a summary of CWG conclusions related to these three issues and provide an overview of pre-clinical studies aimed at building a more robust toolkit for translational trials.
Collapse
Affiliation(s)
- David F Bodenstein
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Gabriel Siebiger
- Institute of Medical Science (IMS), University of Toronto, Toronto, Canada
- Latner Thoracic Research Laboratories, Toronto General Hospital, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Aaron J Clasky
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Avinash N Mukkala
- Institute of Medical Science (IMS), University of Toronto, Toronto, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Erika L Beroncal
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Lauren Banh
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Lili Aslostovar
- Centre for Commercialization of Regenerative Medicine, Toronto, Canada
| | - Sonya Brijbassi
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Sarah E Hogan
- Regenerative Medicine Department, United Therapeutics Corporation, Silver Spring, USA
| | - James D McCully
- Harvard Medical School, Boston, USA
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, USA
| | | | - Thomas H Petersen
- Regenerative Medicine Department, United Therapeutics Corporation, Silver Spring, USA
| | - Lisa A Robinson
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Melanie Walker
- Department of Neurological Surgery, University of Washington, Seattle, USA
| | | | - Sowmya Viswanathan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Frank X Gu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
| | - Ori D Rotstein
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
- Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Marcelo Cypel
- Latner Thoracic Research Laboratories, Toronto General Hospital, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
- Toronto Lung Transplant Program, Division of Thoracic Surgery, Department of Surgery, University Health Network, University of Toronto, Toronto, ON, M5G 2C4, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
- Terence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Silvestro S, Raffaele I, Quartarone A, Mazzon E. Innovative Insights into Traumatic Brain Injuries: Biomarkers and New Pharmacological Targets. Int J Mol Sci 2024; 25:2372. [PMID: 38397046 PMCID: PMC10889179 DOI: 10.3390/ijms25042372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
A traumatic brain injury (TBI) is a major health issue affecting many people across the world, causing significant morbidity and mortality. TBIs often have long-lasting effects, disrupting daily life and functionality. They cause two types of damage to the brain: primary and secondary. Secondary damage is particularly critical as it involves complex processes unfolding after the initial injury. These processes can lead to cell damage and death in the brain. Understanding how these processes damage the brain is crucial for finding new treatments. This review examines a wide range of literature from 2021 to 2023, focusing on biomarkers and molecular mechanisms in TBIs to pinpoint therapeutic advancements. Baseline levels of biomarkers, including neurofilament light chain (NF-L), ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1), Tau, and glial fibrillary acidic protein (GFAP) in TBI, have demonstrated prognostic value for cognitive outcomes, laying the groundwork for personalized treatment strategies. In terms of pharmacological progress, the most promising approaches currently target neuroinflammation, oxidative stress, and apoptotic mechanisms. Agents that can modulate these pathways offer the potential to reduce a TBI's impact and aid in neurological rehabilitation. Future research is poised to refine these therapeutic approaches, potentially revolutionizing TBI treatment.
Collapse
Affiliation(s)
| | | | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, Via Provinciale Palermo, SS 113, Contrada Casazza, 98124 Messina, Italy; (S.S.); (I.R.); (A.Q.)
| |
Collapse
|
4
|
Privšek M, Strnad M, Markota A. Addition of Vitamin C Does Not Decrease Neuron-Specific Enolase Levels in Adult Survivors of Cardiac Arrest-Results of a Randomized Trial. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:103. [PMID: 38256364 PMCID: PMC10818462 DOI: 10.3390/medicina60010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/16/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
Background and Objectives: Survival with favorable neurologic outcomes after out-of-hospital cardiac arrest (OHCA) remains elusive. Post-cardiac arrest syndrome (PCAS) involves myocardial and neurological injury, ischemia-reperfusion response, and underlying pathology. Neurologic injury is a crucial determinant of survival and functional outcomes, with damage caused by free radicals among the responsible mechanisms. This study explores the feasibility of adding intravenous vitamin C to the treatment of OHCA survivors, aiming to mitigate PCAS. Vitamin C, a nutrient with antioxidative and free radical-scavenging properties, is often depleted in critically ill patients. Materials and Methods: This randomized, double-blinded trial was conducted at a tertiary-level university hospital with adult OHCA survivors. Participants received either standard care or the addition of 1.5 g of intravenous vitamin C every 12 h for eight consecutive doses. Neurologic injury was assessed using neuron-specific enolase (NSE) levels, with additional clinical and laboratory outcomes, such as enhanced neuroprognostication factors, inflammatory markers, and cardiac parameters. Results: NSE levels were non-significantly higher in patients who received vitamin C compared to the placebo group (55.05 µg/L [95% confidence interval (CI) 26.7-124.0] vs. 39.4 µg/L [95% CI 22.6-61.9], p > 0.05). Similarly, a non-significantly greater proportion of patients in the vitamin C group developed myoclonus in the first 72 h. We also observed a non-significantly shorter duration of mechanical ventilation, fewer arrhythmias, and reduced length of stay in the intensive care unit in the group of patients who received vitamin C (p = 0.031). However, caution is warranted in interpretation of our results due to the small number of participants. Conclusions: Our findings suggest that intravenous vitamin C should not be used outside of clinical trials for OHCA survivors. Due to the small sample size and conflicting results, further research is needed to determine the potential role of vitamin C in post-cardiac arrest care.
Collapse
Affiliation(s)
- Matevž Privšek
- Emergency Medical Services, Healthcare Centre Dr. Adolf Drolc, Cesta Proletarskih Brigad 21, 2000 Maribor, Slovenia;
| | - Matej Strnad
- Emergency Medical Services, Healthcare Centre Dr. Adolf Drolc, Cesta Proletarskih Brigad 21, 2000 Maribor, Slovenia;
- Emergency Department, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
- Department of Emergency Medicine, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Andrej Markota
- Department of Medical Intensive Care, Clinic of Internal Medicine, University Medical Centre Maribor, 2000 Maribor, Slovenia;
| |
Collapse
|
5
|
Jia H, Chen Y, Wang Y, Jia L, Tian Y, Jiang H. The neuroprotective effect of electro-acupuncture on cognitive recovery for patients with mild traumatic brain injury: A randomized controlled clinical trial. Medicine (Baltimore) 2023; 102:e32885. [PMID: 36820591 PMCID: PMC9907991 DOI: 10.1097/md.0000000000032885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major health and socioeconomic problem that affects all societies. Consciousness disorder is a common complication after TBI while there is still no effective treatment currently. The aim of this study was to investigate the protective effect of electro-acupuncture (EA) on cognitive recovery for patients with mild TBI. METHODS A total of 83 patients with initial Glasgow coma scale score higher than 12 points were assigned into this study. Then patients were randomly divided into 2 groups: EA group and control group (group C). Patients in group EA received EA treatment at Neiguan and Shuigou for 2 weeks. At 0 minute before EA treatment (T1), 0 minute after EA treatment (T2), and 8 weeks after EA treatment (T3), level of neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), hypoxia inducible factor-1α (HIF-1α), and malondialdehyde were tested by enzyme-linked immunosorbent assay. The score of Montreal Cognitive Function Assessment (MoCA) and mini-mental state examination (MMSE) as well as cerebral oxygen saturation (rSO2) were detected at the same time. RESULTS Compared with the baseline at T1, the level of NSE, GFAP, HIF-1α, MDA, and rSO2 decreased, and the score of MoCA and MMSE increased in the 2 groups were significantly increased at T2-3 (P < .05). Compared with group C, the level of NSE, GFAP, HIF-1α, MDA, and rSO2 decreased, and the score of MoCA and MMSE increased were significantly increased at T2-3 in group EA; the difference were statistically significant (P < .05). CONCLUSIONS EA treatment could improve the cognitive recovery for patients with mild TBI and the potential mechanism may be related to improving cerebral hypoxia and alleviating brain injury.
Collapse
Affiliation(s)
- Haokun Jia
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
- * Correspondence: Haokun Jia, Department of Neurosurgery, Cangzhou Central Hospital, No. 50, Xinhua West Road, Yunhe District, Cangzhou, Hebei Province, 061017, China (e-mail: )
| | - Yonghan Chen
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
| | - Yi Wang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
| | - Linwei Jia
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
| | - Yaohui Tian
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
| | - Hao Jiang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
| |
Collapse
|
6
|
Zhou Y, Ma Y, Yu C, Chen Y, Ding J, Yu J, Zhou R, Wang X, Fan T, Shi C. Detection Analysis of Perioperative Plasma and CSF Reveals Risk Biomarkers of Postoperative Delirium of Parkinson's Disease Patients Undergoing Deep Brain Stimulation of the Subthalamic Nuclei. Clin Interv Aging 2022; 17:1739-1749. [PMID: 36474580 PMCID: PMC9719687 DOI: 10.2147/cia.s388690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Objective This study aimed to explore possible biomarkers of postoperative delirium (POD) of Parkinson's disease (PD) patients received deep brain stimulation (DBS) of the subthalamic nuclei. Materials and methods This nested case control study analyzed perioperative plasma and cerebral spinal fluid (CSF) of patients (n = 40) who developed POD undergone DBS surgery (n = 10) and those who did not (n = 30). Blood sample was collected before surgery and on the first day postoperative, CSF sample was collected at the beginning of the operation. POD was assessed by the Confusion Assessment Method (CAM) twice a day between 7:00 am and 7:00 pm after the surgery until discharge. Plasma and CSF sample from the two groups were analyzed to investigate possible biomarkers for POD in PD patients. Results There was no difference between POD and Non-POD groups on the concentration of Interleukin 6 and Tumor Necrosis Factor-α in CSF, preoperative plasma and postoperative plasma. There was no difference between POD and Non-POD groups on the concentration of S100 calcium-binding protein β protein (S100β) and Neurofilament light chain (NFL) in preoperative plasma and postoperative plasma. The concentration of C-reactive protein (CRP), NFL and S100β were significant higher in POD group than non-POD group in CSF. The concentration of CRP was significantly higher in POD group than non-POD group in preoperative plasma and postoperative plasma. CSF concentration of S100β might be a potential biomarker for POD via the receiver operating characteristic curve analysis and the area under the curve value of 0.973. Conclusion For PD patients received DBS surgery, CSF S100β might be a marker for aiding detection of high-risk patients with delirium. This requires further confirmation in clinical trials.
Collapse
Affiliation(s)
- Yongde Zhou
- Department of Anesthesiology, Tsinghua University Yuquan Hospital, Beijing, People’s Republic of China
| | - Yu Ma
- Department of Neurosurgery, Tsinghua University Yuquan Hospital, Beijing, People’s Republic of China
| | - Cuiping Yu
- Department of Anesthesiology, Tsinghua University Yuquan Hospital, Beijing, People’s Republic of China
| | - Yao Chen
- Department of Anesthesiology, Tsinghua University Yuquan Hospital, Beijing, People’s Republic of China
| | - Jian Ding
- Department of Anesthesiology, Tsinghua University Yuquan Hospital, Beijing, People’s Republic of China
| | - Jianfeng Yu
- Department of Anesthesiology, Tsinghua University Yuquan Hospital, Beijing, People’s Republic of China
| | - Rongsong Zhou
- Department of Neurosurgery, Tsinghua University Yuquan Hospital, Beijing, People’s Republic of China
| | - Xiaoxiao Wang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Ting Fan
- Department of Anesthesiology, Tsinghua University Yuquan Hospital, Beijing, People’s Republic of China
| | - Chengmei Shi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, People’s Republic of China,Correspondence: Chengmei Shi; Ting Fan, Email ;
| |
Collapse
|
7
|
Zhao P, Zhu P, Zhang D, Yin B, Wang Y, Hussein NM, Yan Z, Liu X, Bai G. Sex Differences in Cerebral Blood Flow and Serum Inflammatory Cytokines and Their Relationships in Mild Traumatic Brain Injury. Front Neurol 2022; 12:755152. [PMID: 35153973 PMCID: PMC8825420 DOI: 10.3389/fneur.2021.755152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to investigate sex differences in cerebral blood flow (CBF) and serum inflammatory cytokines, as well as their correlations in patients with acute-stage mild traumatic brain injury (mTBI). Forty-one patients with mTBI and 23 matched healthy controls underwent 3D-pseudo-continuous arterial spin labeling imaging on 3T magnetic resonance imaging. The patients underwent cognitive evaluations and measurement of a panel of ten serum cytokines: interleukin (IL)-1I, IL-4, IL-6, IL-8, IL-10, IL-12, C–C motif chemokine ligand 2, interferon-gamma, nerve growth factor-beta (β-NGF), and tumor necrosis factor-alpha (TNF-α). Spearman rank correlation analysis was performed to evaluate the relationship between inflammation levels and CBF. We found that both male and female patients showed increased IL-1L and IL-6 levels. Female patients also demonstrated overexpression of IL-8 and low expression of IL-4. As for CBF levels, three brain regions [the right superior frontal gyrus (SFG_R), left putamen, and right precuneus] increased in male patients while three brain regions [the right superior temporal gyrus (STG_R), left middle occipital gyrus, and right postcentral (PoCG_R)] decreased in female patients. Furthermore, the STG_R in female controls was positively correlated with β-NGF while the right PoCG_R in female patients was negatively correlated with IL-8. In addition, compared with male patients, female patients showed decreased CBF in the right pallidum, which was negatively correlated with IL-8. These findings revealed abnormal expression of serum inflammatory cytokines and CBF levels post-mTBI. Females may be more sensitive to inflammatory and CBF changes and thus more likely to get cognitive impairment. This may suggest the need to pay closer attention to the female mTBI group.
Collapse
Affiliation(s)
- Pinghui Zhao
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pingyi Zhu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Danbin Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Yin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Wang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Nimo Mohamed Hussein
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozheng Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- China-USA Neuroimaging Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Xiaozheng Liu
| | - Guanghui Bai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, Wenzhou, China
- *Correspondence: Guanghui Bai
| |
Collapse
|
8
|
Beard K, Yang Z, Haber M, Flamholz M, Diaz-Arrastia R, Sandsmark D, Meaney DF, Issadore D. Extracellular vesicles as distinct biomarker reservoirs for mild traumatic brain injury diagnosis. Brain Commun 2021; 3:fcab151. [PMID: 34622206 PMCID: PMC8491985 DOI: 10.1093/braincomms/fcab151] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023] Open
Abstract
Mild traumatic brain injury does not currently have a clear molecular diagnostic panel to either confirm the injury or to guide its treatment. Current biomarkers for traumatic brain injury rely mainly on detecting circulating proteins in blood that are associated with degenerating neurons, which are less common in mild traumatic brain injury, or with broad inflammatory cascades which are produced in multiple tissues and are thus not brain specific. To address this issue, we conducted an observational cohort study designed to measure a protein panel in two compartments—plasma and brain-derived extracellular vesicles—with the following hypotheses: (i) each compartment provides independent diagnostic information and (ii) algorithmically combining these compartments accurately classifies clinical mild traumatic brain injury. We evaluated this hypothesis using plasma samples from mild (Glasgow coma scale scores 13–15) traumatic brain injury patients (n = 47) and healthy and orthopaedic control subjects (n = 46) to evaluate biomarkers in brain-derived extracellular vesicles and plasma. We used our Track Etched Magnetic Nanopore technology to isolate brain-derived extracellular vesicles from plasma based on their expression of GluR2, combined with the ultrasensitive digital enzyme-linked immunosorbent assay technique, Single-Molecule Array. We quantified extracellular vesicle-packaged and plasma levels of biomarkers associated with two categories of traumatic brain injury pathology: neurodegeneration and neuronal/glial damage (ubiquitin C-terminal hydrolase L1, glial fibrillary acid protein, neurofilament light and Tau) and inflammation (interleukin-6, interleukin-10 and tumour necrosis factor alpha). We found that GluR2+ extracellular vesicles have distinct biomarker distributions than those present in the plasma. As a proof of concept, we showed that using a panel of biomarkers comprised of both plasma and GluR2+ extracellular vesicles, injured patients could be accurately classified versus non-injured patients.
Collapse
Affiliation(s)
- Kryshawna Beard
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zijian Yang
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Margalit Haber
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Miranda Flamholz
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle Sandsmark
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Ganeshalingham A, Beca J. Serum biomarkers in severe paediatric traumatic brain injury-a narrative review. Transl Pediatr 2021; 10:2720-2737. [PMID: 34765496 PMCID: PMC8578762 DOI: 10.21037/tp-20-386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/14/2021] [Indexed: 11/22/2022] Open
Abstract
Severe traumatic brain injury continues to present complex management and prediction challenges for the clinician. While there is some evidence that better systems of care can improve outcome, multiple multi-centre randomised controlled trials of specific therapies have consistently failed to show benefit. In addition, clinicians are challenged in attempting to accurately predict which children will recover well and which children will have severe and persisting neurocognitive deficits. Traumatic brain injury is vastly heterogeneous and so it is not surprising that one therapy or approach, when applied to a mixed cohort of children in a clinical trial setting, has yielded disappointing results. Children with severe traumatic brain injury have vastly different brain injury pathologies of widely varying severity, in any number of anatomical locations at what may be disparate stages of brain development. This heterogeneity may also explain why clinicians are unable to accurately predict outcome. Biomarkers are objective molecular signatures of injury that are released following traumatic brain injury and may represent a way of unifying the heterogeneity of traumatic brain injury into a single biosignature. Biomarkers hold promise to diagnose brain injury severity, guide intervention selection for clinical trials, or provide vital prognostic information so that early intervention and rehabilitation can be planned much earlier in the course of a child's recovery. Serum S100B and serum NSE levels show promise as a diagnostic tool with biomarker levels significantly higher in children with severe TBI including children with inflicted and non-inflicted head injury. Serum S100B and serum NSE also show promise as a predictor of neurodevelopmental outcome. The role of biomarkers in traumatic brain injury is an evolving field with the potential for clinical application within the next few years.
Collapse
Affiliation(s)
| | - John Beca
- Paediatric Intensive Care Unit, Starship Children's Hospital, Auckland, New Zealand
| |
Collapse
|
10
|
Traumatic brain injury biomarkers in pediatric patients: a systematic review. Neurosurg Rev 2021; 45:167-197. [PMID: 34170424 DOI: 10.1007/s10143-021-01588-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/23/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Traumatic brain injury (TBI) is the main cause of pediatric trauma death and disability worldwide. Recent studies have sought to identify biomarkers of TBI for the purpose of assessing functional outcomes. The aim of this systematic review was to evaluate the utility of TBI biomarkers in the pediatric population by summarizing recent findings in the medical literature. A total of 303 articles were retrieved from our search. An initial screening to remove duplicate studies yielded 162 articles. After excluding all articles that did not meet the inclusion criteria, 56 studies were gathered. Among the 56 studies, 36 analyzed serum biomarkers; 11, neuroimaging biomarkers; and 9, cerebrospinal fluid (CSF) biomarkers. Most studies assessed biomarkers in the serum, reflecting the feasibility of obtaining blood samples compared to obtaining CSF or performing neuroimaging. S100B was the most studied serum biomarker in TBI, followed by SNE and UCH-L1, whereas in CSF analysis, there was no unanimity. Among the different neuroimaging techniques employed, diffusion tensor imaging (DTI) was the most common, seemingly holding diagnostic power in the pediatric TBI clinical setting. The number of cross-sectional studies was similar to the number of longitudinal studies. Our data suggest that S100B measurement has high sensitivity and great promise in diagnosing pediatric TBI, ideally when associated with head CT examination and clinical decision protocols. Further large-scale longitudinal studies addressing TBI biomarkers in children are required to establish more accurate diagnostic protocols and prognostic tools.
Collapse
|
11
|
Nacoti M, Fazzi F, Biroli F, Zangari R, Barbui T, Kochanek PM. Addressing Key Clinical Care and Clinical Research Needs in Severe Pediatric Traumatic Brain Injury: Perspectives From a Focused International Conference. Front Pediatr 2021; 8:594425. [PMID: 33537259 PMCID: PMC7849211 DOI: 10.3389/fped.2020.594425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/06/2020] [Indexed: 12/28/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality in children and adolescents. Survivors of severe TBI are more prone to functional deficits, resulting in poorer school performance, poor health-related quality of life (HRQoL), and increased risk of mental health problems. Critical gaps in knowledge of pathophysiological differences between children and adults concerning TBI outcomes, the paucity of pediatric trials and prognostic models and the uncertain extrapolation of adult data to pediatrics pose significant challenges and demand global efforts. Here, we explore the clinical and research unmet needs focusing on severe pediatric TBI to identify best practices in pathways of care and optimize both inpatient and outpatient management of children following TBI.
Collapse
Affiliation(s)
- Mirco Nacoti
- Pediatric Intensive Care Unit, Department of Anesthesia and Intensive Care, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Francesco Fazzi
- Pediatric Intensive Care Unit, Department of Anesthesia and Intensive Care, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Francesco Biroli
- Fondazione per la Ricerca dell'Ospedale di Bergamo Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Rosalia Zangari
- Fondazione per la Ricerca dell'Ospedale di Bergamo Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Tiziano Barbui
- Fondazione per la Ricerca dell'Ospedale di Bergamo Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, John G Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
12
|
Deng H, Zusman BE, Nwachuku EL, Yue JK, Chang YF, Conley YP, Okonkwo DO, Puccio AM. B-Cell Lymphoma 2 (Bcl-2) Gene Is Associated with Intracranial Hypertension after Severe Traumatic Brain Injury. J Neurotrauma 2021; 38:291-299. [PMID: 32515262 PMCID: PMC8182479 DOI: 10.1089/neu.2020.7028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Severe traumatic brain injury (TBI) activates the apoptotic cascade in neurons and glia as part of secondary cellular injury. B-cell lymphoma 2 (Bcl-2) gene encodes a pro-survival protein to suppress programmed cell death, and variation in this gene has potential to affect intracranial pressure (ICP). Participants were recruited from a single clinical center using a prospective observational study design. Inclusion criteria were: age 16-80 years; Glasgow Coma Scale (GCS) score 4-8; and at least 24 h of ICP monitoring treated between 2000-2014. Outcomes were mean ICP, spikes >20 and >25 mm Hg, edema, and surgical intervention. Odds ratios (OR), mean increases/decreases (B), and 95% confidence intervals (CIs) were reported. In 264 patients, average age was 39.2 years old and 78% of patients were male. Mean ICPs were 11.4 ± 0.4 mm Hg for patients with homozygous wild-type (AA), 12.8 ± 0.6 mm Hg for heterozygous (AG), and 14.3 ± 1.2 mm Hg for homozygous variant (GG; p = 0.023). Rs17759659 GG genotype was associated with more ICP spikes >20 mm Hg (p = 0.017) and >25 mm Hg (p = 0.048). Multi-variate analysis showed that GG relative to AA genotype had higher ICP (B = 2.7 mm Hg, 95% CI [0.5,4.9], p = 0.015), edema (OR = 2.5 [1.0, 6.0], p = 0.049) and need for decompression (OR = 3.7 [1.5-9.3], p = 0.004). In this prospective severe TBI cohort, Bcl-2 rs17759659 was associated with increased risk of intracranial hypertension, cerebral edema, and need for surgical intervention. The variant allele may impact programmed cell death of injured neurons, resulting in elevated ICP and post-traumatic secondary insults. Further risk stratification and targeted genotype-based therapies could improve outcomes after severe TBI.
Collapse
Affiliation(s)
- Hansen Deng
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Benjamin E. Zusman
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Enyinna L. Nwachuku
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - John K. Yue
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Yue-Fang Chang
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Biostatistics and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Yvette P. Conley
- School of Nursing and Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David O. Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Neurotrauma Clinical Trials Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ava M. Puccio
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Neurotrauma Clinical Trials Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Beard K, Meaney DF, Issadore D. Clinical Applications of Extracellular Vesicles in the Diagnosis and Treatment of Traumatic Brain Injury. J Neurotrauma 2020; 37:2045-2056. [PMID: 32312151 PMCID: PMC7502684 DOI: 10.1089/neu.2020.6990] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) have emerged as key mediators of cell-cell communication during homeostasis and in pathology. Central nervous system (CNS)-derived EVs contain cell type-specific surface markers and intralumenal protein, RNA, DNA, and metabolite cargo that can be used to assess the biochemical and molecular state of neurons and glia during neurological injury and disease. The development of EV isolation strategies coupled with analysis of multi-plexed biomarker and clinical data have the potential to improve our ability to classify and treat traumatic brain injury (TBI) and resulting sequelae. Additionally, their ability to cross the blood-brain barrier (BBB) has implications for both EV-based diagnostic strategies and for potential EV-based therapeutics. In the present review, we discuss encouraging data for EV-based diagnostic, prognostic, and therapeutic strategies in the context of TBI monitoring and management.
Collapse
Affiliation(s)
- Kryshawna Beard
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Current Evidence Regarding Biomarkers Used to Aid Postoperative Delirium Diagnosis in the Field of Cardiac Surgery-Review. ACTA ACUST UNITED AC 2020; 56:medicina56100493. [PMID: 32987655 PMCID: PMC7598630 DOI: 10.3390/medicina56100493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Postoperative cognitive disorders after cardiac surgery may manifest as postoperative delirium (POD) or later as postoperative cognitive dysfunction (POCD). The incidence of POD after cardiac surgery ranges from 16% to 73%. In contrast to POD, POCD is usually diagnosed after the discharge from hospital, with an incidence of 30 to 70% of cases, very often noticed only by close relative or friends, decreasing after six (20–30%) and twelve (15–25%) months after surgery. Perioperative cognitive disorders are associated with adverse short- and long-term effects, including increased morbidity and mortality. Due to the complexity of delirium pathomechanisms and the difficulties in the diagnosis, researchers have not yet found a clear answer to the question of which patient will be at a higher risk of developing delirium. The risk for POD and POCD in older patients with numerous comorbidities like hypertension, diabetes, and previous ischemic stroke is relatively high, and the predisposing cognitive profile for both conditions is important. The aim of this narrative review was to identify and describe biomarkers used in the diagnosis of delirium after cardiac surgery by presenting a search through studies regarding this subject, which have been published during the last ten years. The authors discussed brain-derived biomarkers, inflammation-related biomarkers, neurotransmitter-based biomarkers, and others. Work based on inflammation-related biomarkers, which are characterized by the low cost of implementation and the effectiveness of delirium diagnosis, seems to be the closest to the goal of discovering an inexpensive and effective marker. Currently, the use of a panel of tests, and not a single biomarker, brings us closer to the discovery of a test, or rather a set of tests ideal for the diagnosis of delirium after cardiac surgery.
Collapse
|
15
|
Stewart JA, Koistinen R, Lempiäinen A, Hotakainen K, Salminen US, Vakkuri A, Wennervirta J, Stenman UH, Koistinen H. Dramatic increase in serum trypsinogens, SPINK1 and hCGβ in aortic surgery patients after hypothermic circulatory arrest. Scandinavian Journal of Clinical and Laboratory Investigation 2020; 80:640-643. [PMID: 32967482 DOI: 10.1080/00365513.2020.1824297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The concentrations of several diagnostic markers have been found to increase dramatically in critically ill patients with a severe disturbance of normal physiological homeostasis, without indication of the diseases they are normally associated with. To prevent false diagnoses and inappropriate treatments of critically ill patients, it is important that the markers aiding the selection of second-line treatments are evaluated in such patients and not only in the healthy population and patients with diseases the markers are associated with. The levels of trypsinogen isoenzymes, the trypsin inhibitor serine peptidase inhibitor Kazal type 1 (SPINK1), hCG and hCGβ, which are used as pancreatitis and cancer markers, were analyzed by immunoassays from serum samples of 17 adult patients who have undergone surgery of the ascending aorta during hypothermic circulatory arrest (HCA) with optional selective cerebral perfusion. Highly elevated levels of trypsinogen-1, -2 and -3, SPINK1 and hCGβ were observed in patients after HCA. This was accompanied by increased concentrations of S100β and NSE. In conclusion, this study highlights the importance of critically evaluating the markers used for aiding selection of second line of treatments in critically ill patients.
Collapse
Affiliation(s)
- Juhani A Stewart
- Department of Cardiology, Helsinki University Hospital, Helsinki, Finland
| | - Riitta Koistinen
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anna Lempiäinen
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kristina Hotakainen
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ulla-Stina Salminen
- Department of Cardiac Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Anne Vakkuri
- Department of Anesthesiology and Intensive Care, Helsinki University Hospital, Helsinki, Finland
| | - Johanna Wennervirta
- Department of Anesthesiology and Intensive Care, Helsinki University Hospital, Helsinki, Finland
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hannu Koistinen
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
16
|
Psychological Sequelae in Family Caregivers of Critically III Intensive Care Unit Patients. A Systematic Review. Ann Am Thorac Soc 2020; 16:894-909. [PMID: 30950647 DOI: 10.1513/annalsats.201808-540sr] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rationale: Family members of critically ill patients hospitalized in the intensive care unit (ICU) often become caregivers, and they are at risk to develop adverse psychological outcomes. There is a need to understand the psychological impact of critical illness on family caregivers. Objectives: The aim of this systematic review is to document the prevalence of depression, anxiety, and post-traumatic stress disorder (PTSD) in family caregivers of critically ill patients and identify potential risk factors for psychological outcomes to inform clinical and future research recommendations. Methods: A literature search for psychological outcomes for family caregivers of critically ill patients was conducted. A total of 1,148 studies from PsycINFO, CINAHL, Web of Science, SCOPUS, and Medline were identified. Results: Forty studies met inclusion criteria and were included in the review. The prevalence of psychological outcomes in family caregivers ranged from 4% to 94% for depression, 2% to 80% for anxiety, and 3% to 62% for PTSD. Caregiver depression, anxiety, and PTSD decreased in most studies that assessed longitudinal outcomes. Common risk factors identified for adverse psychological outcomes included younger caregiver age, caregiver relationship to the patient, lower socioeconomic status, and female sex. Conclusions: The prevalence of depression, anxiety, and PTSD varies greatly across studies of family caregivers of critically ill patients. This finding highlights the need for more systematic investigations of psychological outcomes and the implementation of clinical interventions to prevent or reduce depression, anxiety, and PTSD in family caregivers of critically ill patients.
Collapse
|
17
|
Tokshilykova AB, Sarkulova ZN, Kabdrakhmanova GB, Utepkaliyeva AP, Tleuova AS, Satenov ZK. Neuron-Specific Markers and their Correlation with Neurological Scales in Patients with Acute Neuropathologies. J Mol Neurosci 2020; 70:1267-1273. [PMID: 32350763 DOI: 10.1007/s12031-020-01536-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/12/2020] [Indexed: 12/22/2022]
Abstract
In predicting outcomes in patients with acute brain injury, current practice focuses special attention on neuron-specific proteins that reliably reflect the severity of the lesion. Further studies of molecular markers and their specificity and sensitivity could contribute to broadening the understanding of pathophysiological, diagnostic, and prognostic methods, which is vital to reducing the mortality and disability associated with these critical conditions. The purpose of this study was to assess the biomarkers of brain lesions and their correlative relations with the integral Glasgow Coma Scale (GCS) and National Institutes of Health Stroke Scale (NIHSS) in predicting severity and treatment outcomes in patients with acute neuropathologies. Ninety patients were examined, including those with traumatic brain lesions (16.6%, n = 15), hemorrhagic stroke (52.2%, n = 47), and ischemic stroke (31.1%, n = 28). Patients were classified into two groups according to the outcome of the disease: those who survived (group I, 57.8%, n = 52) and those who died (group II, 42.2%, n = 38). In comparison with the survivors, the group of patients who died demonstrated an initial increase in neuron-specific enolase (NSE) by 1.23 and S100 by 6.45 times, and in dynamics by 1.5 and 7.4 times. A significant correlation with NIHSS and GCS was determined for NSE (r = 0.1149; P = 0.3073 and r = -0.0758; P = 0.5011) and for S100 (r = 0.3243; P = 0.0031 and r = -0.2661; P = 0.0163). The receiver operating characteristic (ROC) curves were 0.828 for S100 and 0.712 for NSE. The degree of sensitivity and specificity of the markers was studied. Increased levels of S100 and NSE correlated with NIHSS and GCS, with sensitivity of 80.77 and 63.46% and specificity of 42.11 and 73.68%, respectively, and were predictive of adverse disease outcome. The survival analysis showed that early detection of these biomarkers enables the timely prognostication of the progression of secondary brain injury and aids in implementing treatment.
Collapse
Affiliation(s)
| | - Zhanslu N Sarkulova
- West Kazakhstan Medical University named after M. Ospanov, Aktobe, Kazakhstan
| | | | | | - Arzikhiya S Tleuova
- West Kazakhstan Medical University named after M. Ospanov, Aktobe, Kazakhstan
| | - Zhusupbek K Satenov
- West Kazakhstan Medical University named after M. Ospanov, Aktobe, Kazakhstan
| |
Collapse
|
18
|
Anuriev AM, Gorbachev VI. [Hypoxic-ischemic brain damage in premature newborns]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 119:63-69. [PMID: 31825364 DOI: 10.17116/jnevro201911908263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
One of the main causes of cerebral dysfunction in premature newborns is hypoxia. High mortality and lifelong morbidity in these children is a frequent result of neonatal hypoxic brain damage. The article presents some data on the prevalence of neurological diseases that have arisen in the perinatal period, and highlights the key etiological factors leading to hypoxia in both the intranatal and early postnatal periods. The pathogenesis of hypoxic-ischemic brain lesions in premature infants is described in detail. At the same time, more careful consideration is given to the glutathione system, which protects against lipid peroxidation, the glutamate-calcium cascade, and the excitotoxicity mediated by it, as well as the processes of necrosis and apoptosis of nerve cells. The advantages and disadvantages of modern methods for diagnosing cerebral lesions are noted, and the principles of treatment of these disorders are analyzed.
Collapse
Affiliation(s)
- A M Anuriev
- Irkutsk State Medical Academy of Postgraduate Education - Branch Campus of the Russian Medical Academy of Continuing Professional Education, Irkutsk, Russia
| | - V I Gorbachev
- Irkutsk State Medical Academy of Postgraduate Education - Branch Campus of the Russian Medical Academy of Continuing Professional Education, Irkutsk, Russia
| |
Collapse
|
19
|
Defining New Research Questions and Protocols in the Field of Traumatic Brain Injury through Public Engagement: Preliminary Results and Review of the Literature. Emerg Med Int 2019; 2019:9101235. [PMID: 31781399 PMCID: PMC6875310 DOI: 10.1155/2019/9101235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/23/2019] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) is the most common cause of death and disability in the age group below 40 years. The financial cost of loss of earnings and medical care presents a massive burden to family, society, social care, and healthcare, the cost of which is estimated at £1 billion per annum (about brain injury (online)). At present, we still lack a full understanding on the pathophysiology of TBI, and biomarkers represent the next frontier of breakthrough discoveries. Unfortunately, many tenets limit their widespread adoption. Brain tissue sampling is the mainstay of diagnosis in neuro-oncology; following on this path, we hypothesise that information gleaned from neural tissue samples obtained in TBI patients upon hospital admission may correlate with outcome data in TBI patients, enabling an early, accurate, and more comprehensive pathological classification, with the intent of guiding treatment and future research. We proposed various methods of tissue sampling at opportunistic times: two methods rely on a dedicated sample being taken; the remainder relies on tissue that would otherwise be discarded. To gauge acceptance of this, and as per the guidelines set out by the National Research Ethics Service, we conducted a survey of TBI and non-TBI patients admitted to our Trauma ward and their families. 100 responses were collected between December 2017 and July 2018, incorporating two redesigns in response to patient feedback. 75.0% of respondents said that they would consent to a brain biopsy performed at the time of insertion of an intracranial pressure (ICP) bolt. 7.0% replied negatively and 18.0% did not know. 70.0% would consent to insertion of a jugular bulb catheter to obtain paired intracranial venous samples and peripheral samples for analysis of biomarkers. Over 94.0% would consent to neural tissue from ICP probes, external ventricular drains (EVD), and lumbar drains (LD) to be salvaged, and 95.0% would consent to intraoperative samples for further analysis.
Collapse
|
20
|
Estevez AY, Ganesana M, Trentini JF, Olson JE, Li G, Boateng YO, Lipps JM, Yablonski SER, Donnelly WT, Leiter JC, Erlichman JS. Antioxidant Enzyme-Mimetic Activity and Neuroprotective Effects of Cerium Oxide Nanoparticles Stabilized with Various Ratios of Citric Acid and EDTA. Biomolecules 2019; 9:E562. [PMID: 31623336 PMCID: PMC6843313 DOI: 10.3390/biom9100562] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Cerium oxide (CeO2) nanoparticles (CeNPs) are potent antioxidants that are being explored as potential therapies for diseases in which oxidative stress plays an important pathological role. However, both beneficial and toxic effects of CeNPs have been reported, and the method of synthesis as well as physico-chemical, biological, and environmental factors can impact the ultimate biological effects of CeNPs. In the present study, we explored the effect of different ratios of citric acid (CA) and EDTA (CA/EDTA), which are used as stabilizers during synthesis of CeNPs, on the antioxidant enzyme-mimetic and biological activity of the CeNPs. We separated the CeNPs into supernatant and pellet fractions and used commercially available enzymatic assays to measure the catalase-, superoxide dismutase (SOD)-, and oxidase-mimetic activity of each fraction. We tested the effects of these CeNPs in a mouse hippocampal brain slice model of ischemia to induce oxidative stress where the fluorescence indicator SYTOX green was used to assess cell death. Our results demonstrate that CeNPs stabilized with various ratios of CA/EDTA display different enzyme-mimetic activities. CeNPs with intermediate CA/EDTA stabilization ratios demonstrated greater neuroprotection in ischemic mouse brain slices, and the neuroprotective activity resides in the pellet fraction of the CeNPs. The neuroprotective effects of CeNPs stabilized with equal proportions of CA/EDTA (50/50) were also demonstrated in two other models of ischemia/reperfusion in mice and rats. Thus, CeNPs merit further development as a neuroprotective therapy for use in diseases associated with oxidative stress in the nervous system.
Collapse
Affiliation(s)
- Ana Y Estevez
- Biology Department, St. Lawrence University, Canton, NY 13617, USA.
- Psychology Department, St. Lawrence University, Canton, NY 13617, USA.
| | - Mallikarjunarao Ganesana
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | - John F Trentini
- Department of Emergency Medicine, Wright State University, Boonshoft School of Medicine, Dayton, OH 45435, USA.
| | - James E Olson
- Department of Emergency Medicine, Wright State University, Boonshoft School of Medicine, Dayton, OH 45435, USA.
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Boonshoft School of Medicine, Dayton, OH 45435, USA.
| | - Guangze Li
- Department of Emergency Medicine, Wright State University, Boonshoft School of Medicine, Dayton, OH 45435, USA.
| | - Yvonne O Boateng
- Biology Department, St. Lawrence University, Canton, NY 13617, USA.
| | - Jennifer M Lipps
- Biology Department, St. Lawrence University, Canton, NY 13617, USA.
| | | | - William T Donnelly
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | - James C Leiter
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | | |
Collapse
|
21
|
Cameron S, Gillio-Meina C, Ranger A, Choong K, Fraser DD. Collection and Analyses of Cerebrospinal Fluid for Pediatric Translational Research. Pediatr Neurol 2019; 98:3-17. [PMID: 31280949 DOI: 10.1016/j.pediatrneurol.2019.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 12/18/2022]
Abstract
Cerebrospinal fluid sample collection and analysis is imperative to better elucidate central nervous system injury and disease in children. Sample collection methods are varied and carry with them certain ethical and biologic considerations, complications, and contraindications. Establishing best practices for sample collection, processing, storage, and transport will ensure optimal sample quality. Cerebrospinal fluid samples can be affected by a number of factors including subject age, sampling method, sampling location, volume extracted, fraction, blood contamination, storage methods, and freeze-thaw cycles. Indicators of sample quality can be assessed by matrix-associated laser desorption/ionization time-of-flight mass spectrometry and include cystatin C fragments, oxidized proteins, prostaglandin D synthase, and evidence of blood contamination. Precise documentation of sample collection processes and the establishment of meticulous handling procedures are essential for the creation of clinically relevant biospecimen repositories. In this review we discuss the ethical considerations and best practices for cerebrospinal fluid collection, as well as the influence of preanalytical factors on cerebrospinal fluid analyses. Cerebrospinal fluid biomarkers in highly researched pediatric diseases or disorders are discussed.
Collapse
Affiliation(s)
| | | | - Adrianna Ranger
- Pediatrics, Western University, London, Ontario, Canada; Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Karen Choong
- Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Douglas D Fraser
- Pediatrics, Western University, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Clinical Neurological Sciences, Western University, London, Ontario, Canada; Physiology and Pharmacology, Western University, London, Ontario, Canada; Translational Research Centre, London, Ontario, Canada.
| |
Collapse
|
22
|
Yuan X, Wang J, Wang D, Yang S, Yu N, Guo F. NSE, S100B and MMP9 Expression Following Reperfusion after Carotid Artery Stenting. Curr Neurovasc Res 2019; 16:129-134. [PMID: 30907315 DOI: 10.2174/1567202616666190321123515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/22/2022]
Abstract
Objective:
Previous studies have shown that the neuron-specific- enolase (NSE), S100B protein (S100B) and matrix metalloproteinase-9 (MMP9) are specific markers for studying cerebral injury. This study was aimed to demonstrate these biomarkers for their correlation with reperfusion after carotid artery stenting (CAS).
Methods:
In this study, a total of 44 patients who were diagnosed unilateral carotid artery stenosis by digital subtraction angiography (DSA) and underwent CAS, were selected as the operation groups. The patients' blood samples were collected at three different time points: T1, prior to operation; T2, next morning after operation (24 hours); T3, three days after operation (72 hours); All of the patients with the operation received computed tomography perfusion (CTP) at T1 and T3. The second group of 12 patients, who were excluded for carotid artery stenosis by DSA, were assigned to be the control group; Blood samples of these patients were collected at T1. The concentrations of NSE, S100B and MMP9 in serum from patients of both groups were detected by ELISA.
Results:
All of the operations were implanted in stents successfully without complications. (1) After CAS, rCBF increased while rMTT and rTTP decreased. (2) The concentrations of NSE, S100B and MMP9 in the serum decreased gradually (T1>T2>T3). There was no significant difference between the control group and the operation group at T1 (P>0.05) on their concentrations of NSE, S100B and MMP9 in the serum. When compared among the operation groups, the concentrations of NSE, S100B and MMP9 in the serum at T1 and T3 showed significant difference (P < 0.05). (3) Correlation analysis among the operation groups indicated that NSE, S100B, MMP9 and rCBF were positively correlated before operation (r = 0.69, 0.58 and 0.72, respectively, P < 0.05), as well as after operation (r = 0.75, 0.65 and 0.60, respectively, P < 0.05).
Conclusion:
We concluded that the concentrations of NSE, S100B and MMP9 in serum decreased with the improvement of cerebral reperfusion after CAS. NSE, S100B and MMP9 can be used as laboratory biochemical markers to evaluate the improvement of reperfusion after CAS. The results very well complement the imaging methods, such as CTP.
Collapse
Affiliation(s)
- Xiaofan Yuan
- Department of Neurology, School of Clinical Medical, Southwest Medical University, Luzhou, China
| | - Jianhong Wang
- Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Duozi Wang
- Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Shu Yang
- Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Nengwei Yu
- Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Fuqiang Guo
- Department of Neurology, School of Clinical Medical, Southwest Medical University, Luzhou, China
| |
Collapse
|
23
|
Ye L, Zhang D, Shao M, Zhao P, Yin B, Zhuang J, Wang F, Yan Z, Bai G. Lower Posttraumatic α-Synuclein Level Associated With Altered Default Mode Network Connectivity Following Acute Mild Traumatic Brain Injury. Front Neural Circuits 2019; 13:26. [PMID: 31040769 PMCID: PMC6476917 DOI: 10.3389/fncir.2019.00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/26/2019] [Indexed: 01/18/2023] Open
Abstract
This study aimed to investigate the changes of α-synuclein in serum and its relationship with default mode network (DMN) connectivity after acute mild traumatic brain injury (mild TBI). Fifty-two patients with mild TBI at the acute phase and 47 matched healthy controls were enrolled in the study. All participants received resting-state functional magnetic resonance imaging (fMRI) and neuropsychological assessments. Relations between the levels of α-synuclein in serum and clinical assessments were obtained using multivariate linear regression. Results showed that the patients with lower α-synuclein presented more complaints on post-concussion symptoms and depression. Moreover, patients with high levels of α-synuclein exhibited significantly decreased functional connectivity in the left precuneus and increased functional connectivity in both the left anterior cingulate cortex and ventro-medial prefrontal cortex (MPFC) compared with patients with low levels of α-synuclein. These findings supported that α-synuclein may modulate the functional connectivity within the DMN and suggest the feasibility of using α-synuclein as an objective biomarker for diagnosis and prognosis of mild TBI.
Collapse
Affiliation(s)
- Limei Ye
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Radiology, Jinhua Municipal Central Hospital and Jinhua Hospital of Zhejiang University, Jinhua, China
| | - Danbin Zhang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meihua Shao
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Pinghui Zhao
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bo Yin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinfei Zhuang
- Department of Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feifei Wang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guanghui Bai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
24
|
Abstract
Sports-related traumatic brain injuries (TBIs) range in severity from severe to subconcussive. Although technologies exist for clinical diagnosis of more severe injuries, methods for diagnosis of milder forms of brain injury are limited. Developing objective measures to indicate pathogenic processes after a suspected mild TBI is challenging for multiple reasons. The field of biomarker discovery for diagnosing TBI continues to expand, with newly identified candidate biomarkers being reported regularly. Brain-specific biomarkers include proteins derived from neurons and glia, and are often measured to assess neural injury and repair, and to predict outcomes. Ideally, changes in biomarker levels should indicate pathologic events and answer critical questions for accurate diagnosis and prognosis. For example, does the presence or a change in the biomarker level suggest greater vulnerability for sustaining a second concussion or show that the window of increased vulnerability has passed? Likewise, do changes in biomarker levels predict postconcussion syndrome or recovery/repair? Although there are numerous promising candidates for fluid biomarkers that may diagnose mild TBI or concussion, none has reached the clinic to date. In this chapter, we will define biomarkers, discuss the importance of understanding their normal and pathologic functions, and outline some considerations for interpreting detection assay results in TBI. We will then review five proposed blood and cerebrospinal fluid biomarkers (tau, neurofilament, ubiquitin carboxyl-terminal hydrolase L1, S100β, and glial fibrillary acidic protein) used currently to address TBI. Lastly, we will discuss a future trajectory for developing new, clinically useful fluid biomarkers.
Collapse
|
25
|
Kassi AAY, Mahavadi AK, Clavijo A, Caliz D, Lee SW, Ahmed AI, Yokobori S, Hu Z, Spurlock MS, Wasserman JM, Rivera KN, Nodal S, Powell HR, Di L, Torres R, Leung LY, Rubiano AM, Bullock RM, Gajavelli S. Enduring Neuroprotective Effect of Subacute Neural Stem Cell Transplantation After Penetrating TBI. Front Neurol 2019; 9:1097. [PMID: 30719019 PMCID: PMC6348935 DOI: 10.3389/fneur.2018.01097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is the largest cause of death and disability of persons under 45 years old, worldwide. Independent of the distribution, outcomes such as disability are associated with huge societal costs. The heterogeneity of TBI and its complicated biological response have helped clarify the limitations of current pharmacological approaches to TBI management. Five decades of effort have made some strides in reducing TBI mortality but little progress has been made to mitigate TBI-induced disability. Lessons learned from the failure of numerous randomized clinical trials and the inability to scale up results from single center clinical trials with neuroprotective agents led to the formation of organizations such as the Neurological Emergencies Treatment Trials (NETT) Network, and international collaborative comparative effectiveness research (CER) to re-orient TBI clinical research. With initiatives such as TRACK-TBI, generating rich and comprehensive human datasets with demographic, clinical, genomic, proteomic, imaging, and detailed outcome data across multiple time points has become the focus of the field in the United States (US). In addition, government institutions such as the US Department of Defense are investing in groups such as Operation Brain Trauma Therapy (OBTT), a multicenter, pre-clinical drug-screening consortium to address the barriers in translation. The consensus from such efforts including "The Lancet Neurology Commission" and current literature is that unmitigated cell death processes, incomplete debris clearance, aberrant neurotoxic immune, and glia cell response induce progressive tissue loss and spatiotemporal magnification of primary TBI. Our analysis suggests that the focus of neuroprotection research needs to shift from protecting dying and injured neurons at acute time points to modulating the aberrant glial response in sub-acute and chronic time points. One unexpected agent with neuroprotective properties that shows promise is transplantation of neural stem cells. In this review we present (i) a short survey of TBI epidemiology and summary of current care, (ii) findings of past neuroprotective clinical trials and possible reasons for failure based upon insights from human and preclinical TBI pathophysiology studies, including our group's inflammation-centered approach, (iii) the unmet need of TBI and unproven treatments and lastly, (iv) present evidence to support the rationale for sub-acute neural stem cell therapy to mediate enduring neuroprotection.
Collapse
Affiliation(s)
- Anelia A. Y. Kassi
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anil K. Mahavadi
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Angelica Clavijo
- Neurosurgery Service, INUB-MEDITECH Research Group, El Bosque University, Bogotá, CO, United States
| | - Daniela Caliz
- Neurosurgery Service, INUB-MEDITECH Research Group, El Bosque University, Bogotá, CO, United States
| | - Stephanie W. Lee
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Aminul I. Ahmed
- Wessex Neurological Centre, University Hospitals Southampton, Southampton, United Kingdom
| | - Shoji Yokobori
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Zhen Hu
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Markus S. Spurlock
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Joseph M Wasserman
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Karla N. Rivera
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Samuel Nodal
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Henry R. Powell
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Long Di
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rolando Torres
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Lai Yee Leung
- Branch of Brain Trauma Neuroprotection and Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Andres Mariano Rubiano
- Neurosurgery Service, INUB-MEDITECH Research Group, El Bosque University, Bogotá, CO, United States
| | - Ross M. Bullock
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Shyam Gajavelli
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
26
|
Cheng Y, Pereira M, Raukar N, Reagan JL, Queseneberry M, Goldberg L, Borgovan T, LaFrance WC, Dooner M, Deregibus M, Camussi G, Ramratnam B, Quesenberry P. Potential biomarkers to detect traumatic brain injury by the profiling of salivary extracellular vesicles. J Cell Physiol 2019; 234:14377-14388. [PMID: 30644102 PMCID: PMC6478516 DOI: 10.1002/jcp.28139] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is a common cause of death and acquired disability in adults and children. Identifying biomarkers for mild TBI (mTBI) that can predict functional impairments on neuropsychiatric and neurocognitive testing after head trauma is yet to be firmly established. Extracellular vesicles (EVs) are known to traffic from the brain to the oral cavity and can be detected in saliva. We hypothesize the genetic profile of salivary EVs in patients who have suffered head trauma will differ from normal healthy controls, thus constituting a unique expression signature for mTBI. We enrolled a total of 54 subjects including for saliva sampling, 23 controls with no history of head traumas, 16 patients enrolled from an outpatient concussion clinic, and 15 patients from the emergency department who had sustained a head trauma within 24 hr. We performed real‐time PCR of the salivary EVs of the 54 subjects profiling 96 genes from the TaqMan Human Alzheimer's disease array. Real‐time PCR analysis revealed 57 (15 genes, p < 0.05) upregulated genes in emergency department patients and 56 (14 genes,
p < 0.05) upregulated genes in concussion clinic patients when compared with controls. Three genes were upregulated in both the emergency department patients and concussion clinic patients: CDC2, CSNK1A1, and CTSD (
p < 0.05). Our results demonstrate that salivary EVs gene expression can serve as a viable source of biomarkers for mTBI. This study shows multiple Alzheimer's disease genes present after an mTBI.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Mandy Pereira
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Neha Raukar
- Department of Emergency Medicine, Rhode Island Hospital, Providence, Rhode Island
| | - John L Reagan
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Mathew Queseneberry
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Laura Goldberg
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Theodor Borgovan
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - W Curt LaFrance
- Department of Psychiatry/Neurology, Rhode Island Hospital, Providence, Rhode Island
| | - Mark Dooner
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Maria Deregibus
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Bharat Ramratnam
- Department of Medicine Division of Infectious Diseases, Rhode Island Hospital, Providence, Rhode Island
| | - Peter Quesenberry
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
27
|
Ojo JO, Crynen G, Reed JM, Ajoy R, Vallabhaneni P, Algamal M, Leary P, Rafi NG, Mouzon B, Mullan M, Crawford F. Unbiased Proteomic Approach Identifies Unique and Coincidental Plasma Biomarkers in Repetitive mTBI and AD Pathogenesis. Front Aging Neurosci 2018; 10:405. [PMID: 30618712 PMCID: PMC6305374 DOI: 10.3389/fnagi.2018.00405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
The relationship between repetitive mild traumatic brain injury (r-mTBI) and Alzheimer's disease (AD) is well-recognized. However, the precise nature of how r-mTBI leads to or precipitates AD pathogenesis is currently not understood. Plasma biomarkers potentially provide non-invasive tools for detecting neurological changes in the brain, and can reveal overlaps between long-term consequences of r-mTBI and AD. In this study we address this by generating time-dependent molecular profiles of response to r-mTBI and AD pathogenesis in mouse models using unbiased proteomic analyses. To model AD, we used the well-validated hTau and PSAPP(APP/PS1) mouse models that develop age-related tau and amyloid pathological features, respectively, and our well-established model of r-mTBI in C57BL/6 mice. Plasma were collected at different ages (3, 9, and 15 months-old for hTau and PSAPP mice), encompassing pre-, peri- and post-"onset" of the cognitive and neuropathological phenotypes, or at different timepoints after r-mTBI (24 h, 3, 6, 9, and 12 months post-injury). Liquid chromatography/mass spectrometry (LC-MS) approaches coupled with Tandem Mass Tag labeling technology were applied to develop molecular profiles of protein species that were significantly differentially expressed as a consequence of mTBI or AD. Mixed model ANOVA after Benjamini-Hochberg correction, and a stringent cut-off identified 31 proteins significantly changing in r-mTBI groups over time and, when compared with changes over time in sham mice, 13 of these were unique to the injured mice. The canonical pathways predicted to be modulated by these changes were LXR/RXR activation, production of nitric oxide and reactive oxygen species and complement systems. We identified 18 proteins significantly changing in PSAPP mice and 19 proteins in hTau mice compared to their wild-type littermates with aging. Six proteins were found to be significantly regulated in all three models, i.e., r-mTBI, hTau, and PSAPP mice compared to their controls. The top canonical pathways coincidently changing in all three models were LXR/RXR activation, and production of nitric oxide and reactive oxygen species. This work suggests potential biomarkers for TBI and AD pathogenesis and for the overlap between these two, and warrant targeted investigation in human populations. Data are available via ProteomeXchange with identifier PXD010664.
Collapse
Affiliation(s)
- Joseph O. Ojo
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Gogce Crynen
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Jon M. Reed
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Rosa Ajoy
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Prashanthi Vallabhaneni
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Moustafa Algamal
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Paige Leary
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Naomi G. Rafi
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Benoit Mouzon
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Michael Mullan
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Fiona Crawford
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
28
|
Ko J, Hemphill M, Yang Z, Sewell E, Na YJ, Sandsmark DK, Haber M, Fisher SA, Torre EA, Svane KC, Omelchenko A, Firestein BL, Diaz-Arrastia R, Kim J, Meaney DF, Issadore D. Diagnosis of traumatic brain injury using miRNA signatures in nanomagnetically isolated brain-derived extracellular vesicles. LAB ON A CHIP 2018; 18:3617-3630. [PMID: 30357245 PMCID: PMC6334845 DOI: 10.1039/c8lc00672e] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The accurate diagnosis and clinical management of traumatic brain injury (TBI) is currently limited by the lack of accessible molecular biomarkers that reflect the pathophysiology of this heterogeneous disease. To address this challenge, we developed a microchip diagnostic that can characterize TBI more comprehensively using the RNA found in brain-derived extracellular vesicles (EVs). Our approach measures a panel of EV miRNAs, processed with machine learning algorithms to capture the state of the injured and recovering brain. Our diagnostic combines surface marker-specific nanomagnetic isolation of brain-derived EVs, biomarker discovery using RNA sequencing, and machine learning processing of the EV miRNA cargo to minimally invasively measure the state of TBI. We achieved an accuracy of 99% identifying the signature of injured vs. sham control mice using an independent blinded test set (N = 77), where the injured group consists of heterogeneous populations (injury intensity, elapsed time since injury) to model the variability present in clinical samples. Moreover, we successfully predicted the intensity of the injury, the elapsed time since injury, and the presence of a prior injury using independent blinded test sets (N = 82). We demonstrated the translatability in a blinded test set by identifying TBI patients from healthy controls (AUC = 0.9, N = 60). This approach, which can detect signatures of injury that persist across a variety of injury types and individual responses to injury, more accurately reflects the heterogeneity of human TBI injury and recovery than conventional diagnostics, opening new opportunities to improve treatment of traumatic brain injuries.
Collapse
Affiliation(s)
- J Ko
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - M Hemphill
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Z Yang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - E Sewell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Y J Na
- Department of Medicine, Division of Nephrology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - D K Sandsmark
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - M Haber
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - S A Fisher
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E A Torre
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - K C Svane
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, NJ 08854, USA
| | - A Omelchenko
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, NJ 08854, USA
| | - B L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, NJ 08854, USA
| | - R Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - J Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA and Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - D F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - D Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Du Q, Weng JF, Luo LF, Cen M, Yu WH, Zheng YK, Hu W, Pan JW, Dong XQ. Serum ST2 as a potential prognostic biomarker for traumatic brain injury. Clin Chim Acta 2018; 487:145-152. [DOI: 10.1016/j.cca.2018.09.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 09/19/2018] [Accepted: 09/23/2018] [Indexed: 01/26/2023]
|
30
|
Ni BK, Cai JY, Lin Q, Zheng KH, Lin L, Wu JH. Evaluation of serum pannexin-1 as a prognostic biomarker for traumatic brain injury. Clin Chim Acta 2018; 488:159-164. [PMID: 30414433 DOI: 10.1016/j.cca.2018.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Pannexin-1 is a type of hexameric plasma membrane channel-forming proteins, and plays a significant role in brain injury. We investigated the potential prognostic value of pannexin-1 in traumatic brain injury. METHODS A single peripheral blood sample in 112 patients with severe traumatic brain injury and 112 controls was prospectively collected for subsequent measurement of serum pannexin-1. Clinical follow-up was performed at 6 months. An unfavorable outcome was defined as Glasgow Outcome Scale score of 1-3. RESULTS The patients showed markedly higher serum pannexin-1 concentrations than the controls. Among the patients, pannexin-1 concentrations were significantly and negatively correlated with Glasgow coma scale scores. On receiver operating characteristic curve analysis, the predictive value in terms of area under the curve was substantially high for serum pannexin-1 as a predictor for both 6-month mortality and unfavorable outcome. Regression analyses confirmed that there was an increased risk of either 6-month mortality, overall survival or unfavorable outcome associated with serum pannexin-1 concentrations after adjusting for possible confounders. CONCLUSIONS Serum pannexin-1 may represent a potential prognostic biomarker for head trauma.
Collapse
Affiliation(s)
- Bu-Kao Ni
- Departments of Intensive Care Unit, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China
| | - Jian-Yong Cai
- Departments of Neurosurgery, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China
| | - Qun Lin
- Departments of Neurosurgery, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China
| | - Kai-Hui Zheng
- Departments of Intensive Care Unit, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China
| | - Li Lin
- Departments of Intensive Care Unit, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China
| | - Jian-Hua Wu
- Departments of Intensive Care Unit, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China.
| |
Collapse
|
31
|
Wagner AK, Kumar RG. TBI Rehabilomics Research: Conceptualizing a humoral triad for designing effective rehabilitation interventions. Neuropharmacology 2018; 145:133-144. [PMID: 30222984 DOI: 10.1016/j.neuropharm.2018.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/14/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Most areas of medicine use biomarkers in some capacity to aid in understanding how personal biology informs clinical care. This article draws upon the Rehabilomics research model as a translational framework for programs of precision rehabilitation and intervention research focused on linking personal biology to treatment response using biopsychosocial constructs that broadly represent function and that can be applied to many clinical populations with disability. The summary applies the Rehabilomics research framework to the population with traumatic brain injury (TBI) and emphasizes a broad vision for biomarker inclusion, beyond typical brain-derived biomarkers, to capture and/or reflect important neurological and non-neurological pathology associated with TBI as a chronic condition. Humoral signaling molecules are explored as important signaling and regulatory drivers of these chronic conditions and their impact on function. Importantly, secondary injury cascades involved in the humoral triad are influenced by the systemic response to TBI and the development of non-neurological organ dysfunction (NNOD). Biomarkers have been successfully leveraged in other medical fields to inform pre-randomization patient selection for clinical trials, however, this practice largely has not been utilized in TBI research. As such, the applicability of the Rehabilomics research model to contemporary clinical trials and comparative effectiveness research designs for neurological and rehabilitation populations is emphasized. Potential points of intervention to modify inflammation, hormonal, or neurotrophic support through rehabilitation interventions are discussed. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- A K Wagner
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, USA; Safar Center for Resuscitation Research, University of Pittsburgh, USA; Department of Neuroscience, University of Pittsburgh, USA; Center for Neuroscience, University of Pittsburgh, USA.
| | - R G Kumar
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, USA; Safar Center for Resuscitation Research, University of Pittsburgh, USA; Department of Epidemiology, University of Pittsburgh, USA
| |
Collapse
|
32
|
Jayaraman SP, Anand RJ, DeAntonio JH, Mangino M, Aboutanos MB, Kasirajan V, Ivatury RR, Valadka AB, Glushakova O, Hayes RL, Bachmann LM, Brophy GM, Contaifer D, Warncke UO, Brophy DF, Wijesinghe DS. Metabolomics and Precision Medicine in Trauma: The State of the Field. Shock 2018; 50:5-13. [PMID: 29280924 PMCID: PMC5995639 DOI: 10.1097/shk.0000000000001093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Trauma is a major problem in the United States. Mortality from trauma is the number one cause of death under the age of 45 in the United States and is the third leading cause of death for all age groups. There are approximately 200,000 deaths per year due to trauma in the United States at a cost of over $671 billion in combined healthcare costs and lost productivity. Unsurprisingly, trauma accounts for approximately 30% of all life-years lost in the United States. Due to immense development of trauma systems, a large majority of trauma patients survive the injury, but then go on to die from complications arising from the injury. These complications are marked by early and significant metabolic changes accompanied by inflammatory responses that lead to progressive organ failure and, ultimately, death. Early resuscitative and surgical interventions followed by close monitoring to identify and rescue treatment failures are key to successful outcomes. Currently, the adequacy of resuscitation is measured using vital signs, noninvasive methods such as bedside echocardiography or stroke volume variation, and other laboratory endpoints of resuscitation, such as lactate and base deficit. However, these methods may be too crude to understand cellular and subcellular changes that may be occurring in trauma patients. Better diagnostic and therapeutic markers are needed to assess the adequacy of interventions and monitor responses at a cellular and subcellular level and inform clinical decision-making before complications are clinically apparent. The developing field of metabolomics holds great promise in the identification and application of biochemical markers toward the clinical decision-making process.
Collapse
Affiliation(s)
- Sudha P Jayaraman
- Department of Surgery, Division of Acute Care Surgical Services, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Rahul J Anand
- Department of Surgery, Division of Acute Care Surgical Services, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Jonathan H DeAntonio
- Department of Surgery, Division of Acute Care Surgical Services, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Martin Mangino
- Department of Surgery, Division of Acute Care Surgical Services, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Michel B Aboutanos
- Department of Surgery, Division of Acute Care Surgical Services, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Vigneshwar Kasirajan
- Department of Surgery, Division of Cardiothoracic Surgery, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Rao R Ivatury
- Department of Surgery, Division of Acute Care Surgical Services, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Alex B Valadka
- Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Olena Glushakova
- Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Ronald L Hayes
- Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
- Center of Innovative Research, Banyan Biomarkers, Inc., Alachua, Florida
| | - Lorin M Bachmann
- Department of Pathology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Gretchen M Brophy
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Daniel Contaifer
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Urszula O Warncke
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Donald F Brophy
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Dayanjan S Wijesinghe
- Department of Surgery, Division of Acute Care Surgical Services, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
- da Vinci Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
33
|
Hogan SR, Phan JH, Alvarado-Velez M, Wang MD, Bellamkonda RV, Fernández FM, LaPlaca MC. Discovery of Lipidome Alterations Following Traumatic Brain Injury via High-Resolution Metabolomics. J Proteome Res 2018; 17:2131-2143. [PMID: 29671324 DOI: 10.1021/acs.jproteome.8b00068] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) can occur across wide segments of the population, presenting in a heterogeneous manner that makes diagnosis inconsistent and management challenging. Biomarkers offer the potential to objectively identify injury status, severity, and phenotype by measuring the relative concentrations of endogenous molecules in readily accessible biofluids. Through a data-driven, discovery approach, novel biomarker candidates for TBI were identified in the serum lipidome of adult male Sprague-Dawley rats in the first week following moderate controlled cortical impact (CCI). Serum samples were analyzed in positive and negative modes by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). A predictive panel for the classification of injured and uninjured sera samples, consisting of 26 dysregulated species belonging to a variety of lipid classes, was developed with a cross-validated accuracy of 85.3% using omniClassifier software to optimize feature selection. Polyunsaturated fatty acids (PUFAs) and PUFA-containing diacylglycerols were found to be upregulated in sera from injured rats, while changes in sphingolipids and other membrane phospholipids were also observed, many of which map to known secondary injury pathways. Overall, the identified biomarker panel offers viable molecular candidates representing lipids that may readily cross the blood-brain barrier (BBB) and aid in the understanding of TBI pathophysiology.
Collapse
Affiliation(s)
- Scott R Hogan
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - John H Phan
- Wallace H Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Melissa Alvarado-Velez
- Wallace H Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - May Dongmei Wang
- Wallace H Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Ravi V Bellamkonda
- Wallace H Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Facundo M Fernández
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Michelle C LaPlaca
- Wallace H Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
34
|
Choi KS, Cho Y, Jang BH, Kim W, Ahn C, Lim TH, Yi HJ. Prognostic role of copeptin after traumatic brain injury: A systematic review and meta-analysis of observational studies. Am J Emerg Med 2017; 35:1444-1450. [DOI: 10.1016/j.ajem.2017.04.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022] Open
|
35
|
Agoston DV, Langford D. Big Data in traumatic brain injury; promise and challenges. Concussion 2017; 2:CNC45. [PMID: 30202589 PMCID: PMC6122694 DOI: 10.2217/cnc-2016-0013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 05/25/2017] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a spectrum disease of overwhelming complexity, the research of which generates enormous amounts of structured, semi-structured and unstructured data. This resulting big data has tremendous potential to be mined for valuable information regarding the "most complex disease of the most complex organ". Big data analyses require specialized big data analytics applications, machine learning and artificial intelligence platforms to reveal associations, trends, correlations and patterns not otherwise realized by current analytical approaches. The intersection of potential data sources between experimental TBI and clinical TBI research presents inherent challenges for setting parameters for the generation of common data elements and to mine existing legacy data that would allow highly translatable big data analyses. In order to successfully utilize big data analyses in TBI, we must be willing to accept the messiness of data, collect and store all data and give up causation for correlation. In this context, coupling the big data approach to established clinical and pre-clinical data sources will transform current practices for triage, diagnosis, treatment and prognosis into highly integrated evidence-based patient care.
Collapse
Affiliation(s)
- Denes V Agoston
- Department of Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD 20814, USA.,Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD 20814, USA.,Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Dianne Langford
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
36
|
Could B-type natriuretic peptides be a biomarker for trauma brain injury? A systematic review and meta-analysis. Am J Emerg Med 2017; 35:1695-1701. [PMID: 28596033 DOI: 10.1016/j.ajem.2017.05.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/02/2017] [Accepted: 05/28/2017] [Indexed: 01/11/2023] Open
|
37
|
Neuroprotective Role of Atractylenolide-I in an In Vitro and In Vivo Model of Parkinson's Disease. Nutrients 2017; 9:nu9050451. [PMID: 28468332 PMCID: PMC5452181 DOI: 10.3390/nu9050451] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/24/2017] [Accepted: 03/20/2017] [Indexed: 12/23/2022] Open
Abstract
Parkinson’s disease (PD) is an age-related neurological disorder characterized by a loss of dopaminergic neurons within the midbrain. Neuroinflammation has been nominated as one of the key pathogenic features of PD. Recently, the inadequate pharmacotherapy and adverse effects of conventional drugs have spurred the development of unconventional medications in the treatment of PD. The purpose of this study is to investigate the anti-neuroinflammatory mechanisms of Atractylenolide-I (ATR-I) in in vivo and in vitro models of PD. Nitrite assay was measured via Griess reaction in lipopolysaccharide (LPS) stimulated BV-2 cells. mRNA and protein levels were determined by a reverse transcription-polymerase chain reaction (RT-PCR) and immunoblot analysis, respectively. Further, flow cytometry, immunocytochemistry, and immunohistochemistry were employed in BV-2 cells and MPTP-intoxicated C57BL6/J mice. Pre-treatment with ATR-I attenuated the inflammatory response in BV-2 cells by abating the nuclear translocation of nuclear factor-κB (NF-κB) and by inducing heme oxygenase-1 (HO-1). The intraperitoneal administration of ATR-I reversed MPTP-induced behavioral deficits, decreased microglial activation, and conferred protection to dopaminergic neurons in the mouse model of PD. Our experimental reports establish the involvement of multiple benevolent molecular events by ATR-I in MPTP-induced toxicity, which may aid in the development of ATR-I as a new therapeutic agent for the treatment of PD.
Collapse
|
38
|
The role of postictal laboratory blood analyses in the diagnosis and prognosis of seizures. Seizure 2017; 47:51-65. [DOI: 10.1016/j.seizure.2017.02.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/18/2022] Open
|
39
|
Thelin EP, Nelson DW, Bellander BM. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochir (Wien) 2017; 159:209-225. [PMID: 27957604 PMCID: PMC5241347 DOI: 10.1007/s00701-016-3046-3] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/28/2016] [Indexed: 12/12/2022]
Abstract
Background In order to improve injury assessment of brain injuries, protein markers of pathophysiological processes and tissue fate have been introduced in the clinic. The most studied protein “biomarker” of cerebral damage in traumatic brain injury (TBI) is the protein S100B. The aim of this narrative review is to thoroughly analyze the properties and capabilities of this biomarker with focus on clinical utility in the assessment of patients suffering from TBI. Results S100B has successfully been implemented in the clinic regionally (1) to screen mild TBI patients evaluating the need to perform a head computerized tomography, (2) to predict outcome in moderate-to-severe TBI patients, (3) to detect secondary injury development in brain-injured patients and (4) to evaluate treatment efficacy. The potential opportunities and pitfalls of S100B in the different areas usually refer to its specificity and sensitivity to detect and assess intracranial injury. Conclusion Given some shortcomings that should be realized, S100B can be used as a versatile screening, monitoring and prediction tool in the management of TBI patients.
Collapse
Affiliation(s)
- Eric Peter Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Neurosurgical Research Laboratory, Karolinska University Hospital, Building R2:02, S-171 76, Stockholm, Sweden.
| | - David W Nelson
- Division of Perioperative Medicine and Intensive Care (PMI), Section Neuro, Karolinska University Hospital, Stockholm, Sweden
- Department of Physiology and Pharmacology, Section of Anesthesiology and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
40
|
Jenny CA, Bertocci G, Fukuda T, Rangarajan N, Shams T. Biomechanical Response of the Infant Head to Shaking: An Experimental Investigation. J Neurotrauma 2017; 34:1579-1588. [PMID: 27931172 DOI: 10.1089/neu.2016.4687] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Controversy exists regarding whether violent shaking is harmful to infants in the absence of impact. In this study, our objective was to characterize the biomechanical response of the infant head during shaking through use of an instrumented anthropomorphic test device (commonly referred to as a "crash test dummy" or surrogate) representing a human infant and having improved biofidelity. A series of tests were conducted to simulate violent shaking of an infant surrogate. The Aprica 2.5 infant surrogate represented a 5th percentile Japanese newborn. A 50th percentile Japanese adult male was recruited to shake the infant surrogate in the sagittal plane. Triaxial linear accelerometers positioned at the center of mass and apex of the head recorded accelerations during shaking. Five shaking test series, each 3-4 sec in duration, were conducted. Outcome measures derived from accelerometer recordings were examined for trends. Head/neck kinematics were characterized during shaking events; mean peak neck flexion was 1.98 radians (113 degrees) and mean peak neck extension was 2.16 radians (123 degrees). The maximum angular acceleration across all test series was 13,260 radians/sec2 (during chin-to-chest contact). Peak angular velocity was 105.7 radians/sec (during chin-to-chest contact). Acceleration pulse durations ranged from 72.1 to 168.2 ms. Using an infant surrogate with improved biofidelity, we found higher angular acceleration and higher angular velocity than previously reported during infant surrogate shaking experiments. Findings highlight the importance of surrogate biofidelity when investigating shaking.
Collapse
Affiliation(s)
- Carole A Jenny
- 1 Department of Pediatrics, University of Washington School of Medicine , Seattle, Washington
| | - Gina Bertocci
- 2 Department of Bioengineering, University of Louisville , Louisville, Kentucky
| | | | | | | |
Collapse
|
41
|
Singh A, Kumar V, Ali S, Mahdi AA, Srivastava RN. Phosphorylated neurofilament heavy: A potential blood biomarker to evaluate the severity of acute spinal cord injuries in adults. Int J Crit Illn Inj Sci 2017; 7:212-217. [PMID: 29291173 PMCID: PMC5737062 DOI: 10.4103/ijciis.ijciis_73_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aims: The aim of this study is to analyze the serial estimation of phosphorylated neurofilament heavy (pNF-H) in blood plasma that would act as a potential biomarker for early prediction of the neurological severity of acute spinal cord injuries (SCI) in adults. Settings and Design: Pilot study/observational study. Subjects and Methods: A total of 40 patients (28 cases and 12 controls) of spine injury were included in this study. In the enrolled cases, plasma level of pNF-H was evaluated in blood samples and neurological evaluation was performed by the American Spinal Injury Association Injury Scale at specified period. Serial plasma neurofilament heavy values were then correlated with the neurological status of these patients during follow-up visits and were analyzed statistically. Statistical Analysis Used: Statistical analysis was performed using GraphPad InStat software (version 3.05 for Windows, San Diego, CA, USA). The correlation analysis between the clinical progression and pNF-H expression was done using Spearman's correlation. Results: The mean baseline level of pNF-H in cases was 6.40 ± 2.49 ng/ml, whereas in controls it was 0.54 ± 0.27 ng/ml. On analyzing the association between the two by Mann–Whitney U–test, the difference in levels was found to be statistically significant. The association between the neurological progression and pNF-H expression was determined using correlation analysis (Spearman's correlation). At 95% confidence interval, the correlation coefficient was found to be 0.64, and the correlation was statistically significant. Conclusions: Plasma pNF-H levels were elevated in accordance with the severity of SCI. Therefore, pNF-H may be considered as a potential biomarker to determine early the severity of SCI in adult patients.
Collapse
Affiliation(s)
- Ajai Singh
- Department of Orthopaedic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Vineet Kumar
- Department of Orthopaedic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Sabir Ali
- Department of Orthopaedic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | | |
Collapse
|
42
|
Thelin EP, Nelson DW, Bellander BM. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochir (Wien) 2017; 159. [PMID: 27957604 PMCID: PMC5241347 DOI: 10.1007/s00701-016-3046-3;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND In order to improve injury assessment of brain injuries, protein markers of pathophysiological processes and tissue fate have been introduced in the clinic. The most studied protein "biomarker" of cerebral damage in traumatic brain injury (TBI) is the protein S100B. The aim of this narrative review is to thoroughly analyze the properties and capabilities of this biomarker with focus on clinical utility in the assessment of patients suffering from TBI. RESULTS S100B has successfully been implemented in the clinic regionally (1) to screen mild TBI patients evaluating the need to perform a head computerized tomography, (2) to predict outcome in moderate-to-severe TBI patients, (3) to detect secondary injury development in brain-injured patients and (4) to evaluate treatment efficacy. The potential opportunities and pitfalls of S100B in the different areas usually refer to its specificity and sensitivity to detect and assess intracranial injury. CONCLUSION Given some shortcomings that should be realized, S100B can be used as a versatile screening, monitoring and prediction tool in the management of TBI patients.
Collapse
Affiliation(s)
- Eric Peter Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Neurosurgical Research Laboratory, Karolinska University Hospital, Building R2:02, S-171 76, Stockholm, Sweden.
| | - David W Nelson
- Division of Perioperative Medicine and Intensive Care (PMI), Section Neuro, Karolinska University Hospital, Stockholm, Sweden
- Department of Physiology and Pharmacology, Section of Anesthesiology and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
43
|
Namas R, Ghuma A, Hermus L, Zamora R, Okonkwo D, Billiar T, Vodovotz Y. The Acute Inflammatory Response in Trauma /Hemorrhage and Traumatic Brain Injury: Current State and Emerging Prospects. Libyan J Med 2016. [DOI: 10.3402/ljm.v4i3.4824] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
| | | | - L. Hermus
- Martini Hospital, Department of Surgery, Groningen, Netherlands
| | | | | | | | - Y. Vodovotz
- Department of Surgery
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
44
|
Identifying Diffuse Axonal Injury by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight. ACTA ACUST UNITED AC 2016; 37:279-283. [DOI: 10.1097/paf.0000000000000275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Abstract
Biomarkers are key tools and can provide crucial information on the complex cascade of events and molecular mechanisms underlying traumatic brain injury (TBI) pathophysiology. Obtaining a profile of distinct classes of biomarkers reflecting core pathologic mechanisms could enable us to identify and characterize the initial injury and the secondary pathologic cascades. Thus, they represent a logical adjunct to improve diagnosis, track progression and activity, guide molecularly targeted therapy, and monitor therapeutic response in TBI. Accordingly, great effort has been put into the identification of novel biomarkers in the past 25 years. However, the role of brain injury markers in clinical practice has been long debated, due to inconsistent regulatory standards and lack of reliable evidence of analytical validity and clinical utility. We present a comprehensive overview of the markers currently available while characterizing their potential role and applications in diagnosis, monitoring, drug discovery, and clinical trials in TBI. In reviewing these concepts, we discuss the recent inclusion of brain damage biomarkers in the diagnostic guidelines and provide perspectives on the validation of such markers for their use in the clinic.
Collapse
|
46
|
Reuter-Rice K, Eads JK, Berndt SB, Bennett E. Chapter 6 state of the science of pediatric traumatic brain injury: biomarkers and gene association studies. ANNUAL REVIEW OF NURSING RESEARCH 2016; 33:185-217. [PMID: 25946386 DOI: 10.1891/0739-6686.33.185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Our objective is to review the most widely used biomarkers and gene studies reported in pediatric traumatic brain injury (TBI) literature, to describe their findings, and to discuss the discoveries and gaps that advance the understanding of brain injury and its associated outcomes. Ultimately, we aim to inform the science for future research priorities. DATA SOURCES We searched PubMed, MEDLINE, CINAHL, and the Cochrane Database of Systematic Reviews for published English language studies conducted in the last 10 years to identify reviews and completed studies of biomarkers and gene associations in pediatric TBI. Of the 131 biomarker articles, only 16 were specific to pediatric TBI patients, whereas of the gene association studies in children with TBI, only four were included in this review. CONCLUSION Biomarker and gene attributes are grossly understudied in pediatric TBI in comparison to adults. Although recent advances recognize the importance of biomarkers in the study of brain injury, the limited number of studies and genomic associations in the injured brain has shown the need for common data elements, larger sample sizes, heterogeneity, and common collection methods that allow for greater understanding of the injured pediatric brain. By building on to the consortium of interprofessional scientists, continued research priorities would lead to improved outcome prediction and treatment strategies for children who experience a TBI. IMPLICATIONS FOR NURSING RESEARCH Understanding recent advances in biomarker and genomic studies in pediatric TBI is important because these advances may guide future research, collaborations, and interventions. It is also important to ensure that nursing is a part of this evolving science to promote improved outcomes in children with TBIs.
Collapse
|
47
|
The plasma levels of brain-derived neurotrophic factor are positively associated with emergence agitation in the elderly after gastrointestinal surgery. J Anesth 2016; 30:811-6. [DOI: 10.1007/s00540-016-2212-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/25/2016] [Indexed: 12/13/2022]
|
48
|
Ghoshal S, Bondada V, Saatman KE, Guttmann RP, Geddes JW. Phage display for identification of serum biomarkers of traumatic brain injury. J Neurosci Methods 2016; 272:33-37. [PMID: 27168498 DOI: 10.1016/j.jneumeth.2016.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND The extent and severity of traumatic brain injuries (TBIs) can be difficult to determine with current diagnostic methods. To address this, there has been increased interest in developing biomarkers to assist in the diagnosis, determination of injury severity, evaluation of recovery and therapeutic efficacy, and prediction of outcomes. Several promising serum TBI biomarkers have been identified using hypothesis-driven approaches, largely examining proteins that are abundant in neurons and non-neural cells in the CNS. NEW METHOD An unbiased approach, phage display, was used to identify serum TBI biomarkers. In this proof-of-concept study, mice received a TBI using the controlled cortical impact model of TBI (1mm injury depth, 3.5m/s velocity) and phage display was utilized to identify putative serum biomarkers at 6h postinjury. RESULTS An engineered phage which preferentially bound to injured serum was sequenced to identify the 12-mer 'recognizer' peptide expressed on the coat protein. Following synthesis of the recognizer peptide, pull down, and mass spectrometry analysis, the target protein was identified as glial fibrillary acidic protein (GFAP). COMPARISON WITH EXISTING METHODS AND CONCLUSIONS GFAP has previously been identified as a promising TBI biomarker. The results provide proof of concept regarding the ability of phage display to identify TBI serum biomarkers. This methodology is currently being applied to serum biomarkers of mild TBI.
Collapse
Affiliation(s)
- Sarbani Ghoshal
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Vimala Bondada
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Kathryn E Saatman
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Rodney P Guttmann
- Department of Gerontology, University of Kentucky, Lexington, KY, USA
| | - James W Geddes
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
49
|
Early CSF and Serum S100B Concentrations for Outcome Prediction in Traumatic Brain Injury and Subarachnoid Hemorrhage. Clin Neurol Neurosurg 2016; 145:79-83. [PMID: 27101088 DOI: 10.1016/j.clineuro.2016.04.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVES S100B has been proposed as a putative biochemical marker in determining the extent of brain injury and corresponding prognosis in neurotrauma. The aim of this study was to evaluate the prognostic value of S100B early concentrations in serum and cerebrospinal fluid (CSF) in traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH), to determine prognostically relevant threshold values and to evaluate fluctuation following EVD placement. PATIENTS AND METHODS In 102 patients (45 SAH and 57 TBI) under intensive care unit (ICU) treated between January 2011 and December 2012 with external ventricular drain (EVD) S100B measurements were performed simultaneously in serum and CSF during the first 5 days and before and after EVD exchange. Glasgow coma scale (GCS) was assessed on admission and Glasgow outcome scale (GOS) 6 months later. RESULTS Peak S100B levels in CSF and serum were measured on the first day after admission and concentrations decreased during the ensuing days post injury gradually. CSF and serum S100B concentrations in TBI patients were significantly higher than in SAH (p<0.005). Both in TBI and SAH patients S100B concentrations in CSF and serum were significantly higher in patients with an unfavorable outcome (GOS 1-3) in comparison to patients with a good outcome (GOS 4-5). Correlation of S100B concentrations in serum and GOS score at 6 months was significant both in TBI and SAH (p<0.05). Serum S100B concentrations >0.7μg/l correlated with 100% mortality. Correlation between S100B in CSF and GOS was significant in SAH (p<0.05), whereas it was not significant in TBI. After EVD exchange (n=53) we found a significant increase of S100B concentration in CSF (p<0.005). CONCLUSION Initial S100B levels have a limited prognostic value in neurotrauma with CSF concentrations being highly sensitive to smallest influences like EVD placement. However, high initial S100B levels of >0.7μg/dl in serum are associated with 100% mortality, which might help to guide therapy strategies in severe neurotrauma.
Collapse
|
50
|
What are the progesterone-induced changes of the outcome and the serum markers of injury, oxidant activity and inflammation in diffuse axonal injury patients? Int Immunopharmacol 2016; 32:103-110. [DOI: 10.1016/j.intimp.2016.01.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 01/10/2016] [Accepted: 01/14/2016] [Indexed: 02/06/2023]
|