1
|
Wei L, Chen S, Deng X, Liu Y, Wang H, Gao X, Huang Y. Metabolomic discoveries for early diagnosis and traditional Chinese medicine efficacy in ischemic stroke. Biomark Res 2024; 12:63. [PMID: 38902829 PMCID: PMC11188286 DOI: 10.1186/s40364-024-00608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
Ischemic stroke (IS), a devastating cerebrovascular accident, presents with high mortality and morbidity. Following IS onset, a cascade of pathological changes, including excitotoxicity, inflammatory damage, and blood-brain barrier disruption, significantly impacts prognosis. However, current clinical practices struggle with early diagnosis and identifying these alterations. Metabolomics, a powerful tool in systems biology, offers a promising avenue for uncovering early diagnostic biomarkers for IS. By analyzing dynamic metabolic profiles, metabolomics can not only aid in identifying early IS biomarkers but also evaluate Traditional Chinese Medicine (TCM) efficacy and explore its mechanisms of action in IS treatment. Animal studies demonstrate that TCM interventions modulate specific metabolite levels, potentially reflecting their therapeutic effects. Identifying relevant metabolites in cerebral ischemia patients holds immense potential for early diagnosis and improved outcomes. This review focuses on recent metabolomic discoveries of potential early diagnostic biomarkers for IS. We explore variations in metabolites observed across different ages, genders, disease severity, and stages. Additionally, the review examines how specific TCM extracts influence IS development through metabolic changes, potentially revealing their mechanisms of action. Finally, we emphasize the importance of integrating metabolomics with other omics approaches for a comprehensive understanding of IS pathophysiology and TCM efficacy, paving the way for precision medicine in IS management.
Collapse
Affiliation(s)
- Liangzhe Wei
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Siqi Chen
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, 315010, China
| | - Xinpeng Deng
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Yuchun Liu
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Haifeng Wang
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Xiang Gao
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China.
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, 315010, China.
| | - Yi Huang
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China.
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, 315010, China.
| |
Collapse
|
2
|
Xu L, Huang B, Hou Z, Huang S, Zhao Y. Solvent Effects Used for Optimal Simultaneous Analysis of Amino Acids via 19F NMR Spectroscopy. Anal Chem 2023; 95:3012-3018. [PMID: 36705609 DOI: 10.1021/acs.analchem.2c04949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
19F NMR has been extensively used in simultaneous analysis of multicomponent due to its 100% natural isotope abundance, high NMR-sensitivity, and wide-range chemical shifts. The solvent effects are usually observed in NMR spectroscopy and cause large changes in 19F chemical shifts. Herein, we propose that the simultaneous analysis of a complex mixture can be achieved using solvent effects via 19F NMR spectroscopy, such as a mixture solution of amino acids (AAs). AAs are not only cell-signaling molecules, but are also considered as biomarkers of some diseases. Hence, the analysis of AAs is important for human health and the diagnosis of diseases. In this work, the key to the success of sensing 19 biogenic AAs is the use of 2-fluorobenzaldehyde (2FBA) as a highly sensitive derivatizing agent and solvent effects to produce distinguishable 19F NMR signals. As a result, the resolution of 19F NMR spectroscopy of multiple 2FBA-labeled AAs is obviously higher than other methods based on 19F NMR. Moreover, 14 and 18 AAs can be satisfactorily differentiated and unambiguously identified in different complicated media supporting the growth of mammalian cells. Furthermore, quantification of the concentration of AAs can be made, and the limit of detection reaches 10 μM. Our work provides new insights into the simultaneous analysis of a multicomponent mixture based on solvent effects by 19F NMR spectroscopy.
Collapse
Affiliation(s)
- Lihua Xu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, P.R. China
| | - Biling Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, P.R. China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, 315211, P.R. China
| | - Zhiying Hou
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, P.R. China
| | - Shaohua Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, P.R. China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, 315211, P.R. China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, P.R. China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, 315211, P.R. China.,Department of Chemical Biology, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, P.R. China.,Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
3
|
Yang L, Su X, Lu F, Zong R, Ding S, Liu J, Wilson G, Li L, Yang Y, Wang W, Wang X, Chen J, Ma X. Serum and brain metabolomic study reveals the protective effects of Bai-Mi-Decoction on rats with ischemic stroke. Front Pharmacol 2022; 13:1005301. [PMID: 36506507 PMCID: PMC9729534 DOI: 10.3389/fphar.2022.1005301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Bai-Mi-Decoction (BMD), which is composed of Eugenia caryophyllata, Myristica fragrans, Moschus berezovskii, and Crocus sativu, is a characteristic TCM multi-herb formula for brain disease. However, the mechanism of protective effects of BMD on ischemic stroke (IS) still has not been clarified. Our study is designed to elucidate the protective effects and underlying mechanisms of BMD on IS by employing pharmacodynamic and serum and brain metabolomic methods. In this experiment, 90 adult male Sprague-Dawley rats were randomly divided into the sham operation group (SHAM, vehicle), middle cerebral artery occlusion-reperfusion injury model group (MCAO/R, vehicle), positive control group (NMDP, 36 mg/kg/day nimodipine), and low (BMDL, 0.805 g/kg/day), moderate (BMDM, 1.61 g/kg/day), and high (BMDH, 3.22 g/kg/day) dosage of BMD prophylactic administration groups. The drugs were dissolved in 0.5% CMC-Na and orally administered to rats with equal volumes (100 g/ml body weight) once a day for 14 consecutive days. Neurological deficit score, cerebral infarct volume, change in body weight, and serum NO, SOD, MDA, GSH, and GSSG levels were determined. Pathological abnormalities using hematoxylin and eosin staining and the expression of VEGF, caspase-3, and NF-κB were analyzed. Furthermore, serum and brain metabolic profiles were explored to reveal the underlying mechanism using UHPLC-QTOF-MS/MS technology. BMD exhibited significant neuroprotective effects on MCAO/R rats. As compared to the MCAO/R model group, it could reduce the neurological deficit score and cerebral infarct volume, increase body weight, enhance GSH, SOD, and GSSG activities, and decrease NO and MDA contents of MCAO/R rats. Meanwhile, BMD could ameliorate pathological abnormalities of MCAO/R rats through reducing neuronal loss, vacuolated spaces, shrunken neurons, and destructed neuron structure, as well as regulating the expression of VEGF, caspase-3, and NF-κB. UHPLC-QTOF-MS/MS-based serum and brain metabolomics analysis found a total of 53 differential metabolites between MCAO/R and SHAM groups, of which 30 were significantly regulated by BMD intervention, and further metabolic pathway analysis implied that the protective effects were mainly associated with amino acid and glycerophospholipid metabolisms. Our pharmacodynamic and metabolomic results revealed the neuroprotective effects of BMD on MCAO/R rats, and the underlying mechanisms were probably related to amino acid and glycerophospholipid metabolisms.
Collapse
Affiliation(s)
- Lingling Yang
- Department of Pharmaceutical Analysis, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xiaojuan Su
- Department of Pharmaceutical Analysis, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Fangfang Lu
- Department of Pharmaceutical Analysis, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Rong Zong
- Department of Pharmaceutical Analysis, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shuqin Ding
- Department of Pharmaceutical Analysis, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jing Liu
- Department of Pharmaceutical Analysis, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Gidion Wilson
- Department of Pharmaceutical Analysis, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Liuyan Li
- Department of Pharmaceutical Analysis, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Youyue Yang
- Department of Pharmaceutical Analysis, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Weibiao Wang
- Department of Pharmaceutical Analysis, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xiaoying Wang
- Department of Pharmaceutical Analysis, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jianyu Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou, China,*Correspondence: Jianyu Chen, ; Xueqin Ma,
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan, China,*Correspondence: Jianyu Chen, ; Xueqin Ma,
| |
Collapse
|
4
|
Taheri H, Khayatian G. PMMA/paper hybrid microfluidic chip for simultaneous determination of arginine and valine in human plasma. Mikrochim Acta 2022; 189:370. [PMID: 36063237 DOI: 10.1007/s00604-022-05464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
The simultaneous determination is reported of arginine (Arg) and valine (Val) amino acids in plasma using flower-shaped μPADs and PMMA/paper hybrid microfluidic chip based on AuNPs capped with R-thiazolidine-4-carboxylic acid (THP). In this article, the evaluation procedure is based on the smartphone colorimetric detection mechanism that results from the aggregation of the THP-AuNPs with the addition of amino acids and visual color change from red to blue. Arg and Val were selectively determined with good reproducibility and an acceptable linearity range. The flower-shaped (μPADs) provides many advantages, including low cost, reasonable sensitivity, simple and fast performance, simultaneous detection, disposable use, and high sample throughput compared with conventional colorimetric method using cuvette cells. The ratios between the absorbance wavelength at (A650/A525) and (A685/A525) are linearly proportional to the concentration of Arg and Val. Under the optimum conditions, the calibration range in aqueous solutions is 0.0068-100.0 and 0.0056-75.0 µM with a limit of detection of 2.25 and 1.86 nM for Arg and Val at pH 7.0, respectively. In the case of μPADs, the calibration curves for Arg and Val showed good linearity in the concentration range 0.01-75.0 µM. The detection limits for the analytes were 3.51 nM and 3.44 nM for Arg and Val, respectively. In addition, a PMMA/paper hybrid microfluidic chip was successfully employed to determine Arg and Val in plasma samples with a relative error below 5%.
Collapse
Affiliation(s)
- Hoda Taheri
- Department of Chemistry, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, 66177-15175, Iran
| | - Gholamreza Khayatian
- Department of Chemistry, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, 66177-15175, Iran.
| |
Collapse
|
5
|
Unlocking the Potential of the Human Microbiome for Identifying Disease Diagnostic Biomarkers. Diagnostics (Basel) 2022; 12:diagnostics12071742. [PMID: 35885645 PMCID: PMC9315466 DOI: 10.3390/diagnostics12071742] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023] Open
Abstract
The human microbiome encodes more than three million genes, outnumbering human genes by more than 100 times, while microbial cells in the human microbiota outnumber human cells by 10 times. Thus, the human microbiota and related microbiome constitute a vast source for identifying disease biomarkers and therapeutic drug targets. Herein, we review the evidence backing the exploitation of the human microbiome for identifying diagnostic biomarkers for human disease. We describe the importance of the human microbiome in health and disease and detail the use of the human microbiome and microbiota metabolites as potential diagnostic biomarkers for multiple diseases, including cancer, as well as inflammatory, neurological, and metabolic diseases. Thus, the human microbiota has enormous potential to pave the road for a new era in biomarker research for diagnostic and therapeutic purposes. The scientific community needs to collaborate to overcome current challenges in microbiome research concerning the lack of standardization of research methods and the lack of understanding of causal relationships between microbiota and human disease.
Collapse
|
6
|
Lan X, Han J, Wang B, Sun M. Integrated analysis of transcriptome profiling of lncRNAs and mRNAs in livers of type 2 diabetes mellitus. Physiol Genomics 2022; 54:86-97. [PMID: 35073196 DOI: 10.1152/physiolgenomics.00105.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) influence the progression of almost all human diseases, but the participation of lncRNAs in type 2 diabetes mellitus (T2DM) has not been fully elucidated. The present study aimed to systematically compare the transcriptome profiling of lncRNAs and mRNAs in livers between T2DM patients and controls, to identify key genes associated with T2DM pathogenesis, and to predict the underlying molecular mechanisms. As a result, a total of 1,512 differentially expressed (DE) lncRNAs and 1,923 DE mRNAs were identified through microarray analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that multiple metabolic processes were dysregulated such as small molecule, organic acid, lipid and branched chain amino acid metabolism. Protein-protein interaction network was constructed and 10 hub mRNAs were identified, including EHHADH, ATM, ACOX1, PIK3R1, EGFR, UQCRFS1, HMGCL, UQCRC2, NDUFS3 and F2. RT-qPCR was conducted to verify the validity of microarray results. Then, coding-noncoding co-expression network and competing endogenous RNA (ceRNA) network were analyzed to predict the lncRNA-mRNA and lncRNA-miRNA-mRNA regulatory patterns. Subsequently, 10 key intermediating miRNAs in ceRNA networks with a node degree > 80 were identified, including hsa-miR-5692a, hsa-miR-12136, hsa-miR-5680, hsa-miR-1305, hsa-miR-6833-5p, hsa-miR-7159-5p, hsa-miR-548as-3p, hsa-miR-6873-3p, hsa-miR-1290 and hsa-miR-4768-5p. In conclusion, the present study evaluated the transcriptome profiling of lncRNAs and mRNAs in livers from T2DM patients, with a value for understanding the molecular mechanism of disease pathogenesis and identifying effective biomarkers in clinical diagnosis.
Collapse
Affiliation(s)
- Xi Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, grid.43169.39Xi'an Jiaotong University, Xi'an, China
| | - Jing Han
- Talent Highland and Center for Gut Microbiome Research of Med-X Institute, grid.452438.cFirst Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Binxian Wang
- Department of Microbiology and Immunology, School of Basic Medical Science, grid.43169.39Xi'an Jiaotong University, Xi'an, China
| | - Mingzhu Sun
- Department of Endocrinology, grid.452672.0Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
7
|
Harder AVE, Vijfhuizen LS, Henneman P, Willems van Dijk K, van Duijn CM, Terwindt GM, van den Maagdenberg AMJM. Metabolic profile changes in serum of migraine patients detected using 1H-NMR spectroscopy. J Headache Pain 2021; 22:142. [PMID: 34819016 PMCID: PMC8903680 DOI: 10.1186/s10194-021-01357-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Background Migraine is a common brain disorder but reliable diagnostic biomarkers in blood are still lacking. Our aim was to identify, using proton nuclear magnetic resonance (1H-NMR) spectroscopy, metabolites in serum that are associated with lifetime and active migraine by comparing metabolic profiles of patients and controls. Methods Fasting serum samples from 313 migraine patients and 1512 controls from the Erasmus Rucphen Family (ERF) study were available for 1H-NMR spectroscopy. Data was analysed using elastic net regression analysis. Results A total of 100 signals representing 49 different metabolites were detected in 289 cases (of which 150 active migraine patients) and 1360 controls. We were able to identify profiles consisting of 6 metabolites predictive for lifetime migraine status and 22 metabolites predictive for active migraine status. We estimated with subsequent regression models that after correction for age, sex, BMI and smoking, the association with the metabolite profile in active migraine remained. Several of the metabolites in this profile are involved in lipid, glucose and amino acid metabolism. Conclusion This study indicates that metabolic profiles, based on serum concentrations of several metabolites, including lipids, amino acids and metabolites of glucose metabolism, can distinguish active migraine patients from controls. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-021-01357-w.
Collapse
Affiliation(s)
- Aster V E Harder
- Departments of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lisanne S Vijfhuizen
- Departments of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Peter Henneman
- Department of Clinical Genetics, Genome Diagnostic laboratory, Amsterdam Reproduction & Development research institute, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Ko Willems van Dijk
- Departments of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands.,Nuffield Department of Population Health, Oxford University, Oxford, UK
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Arn M J M van den Maagdenberg
- Departments of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands. .,Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.
| |
Collapse
|
8
|
Chumachenko MS, Waseem TV, Fedorovich SV. Metabolomics and metabolites in ischemic stroke. Rev Neurosci 2021; 33:181-205. [PMID: 34213842 DOI: 10.1515/revneuro-2021-0048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/09/2021] [Indexed: 12/27/2022]
Abstract
Stroke is a major reason for disability and the second highest cause of death in the world. When a patient is admitted to a hospital, it is necessary to identify the type of stroke, and the likelihood for development of a recurrent stroke, vascular dementia, and depression. These factors could be determined using different biomarkers. Metabolomics is a very promising strategy for identification of biomarkers. The advantage of metabolomics, in contrast to other analytical techniques, resides in providing low molecular weight metabolite profiles, rather than individual molecule profiles. Technically, this approach is based on mass spectrometry and nuclear magnetic resonance. Furthermore, variations in metabolite concentrations during brain ischemia could alter the principal neuronal functions. Different markers associated with ischemic stroke in the brain have been identified including those contributing to risk, acute onset, and severity of this pathology. In the brain, experimental studies using the ischemia/reperfusion model (IRI) have shown an impaired energy and amino acid metabolism and confirmed their principal roles. Literature data provide a good basis for identifying markers of ischemic stroke and hemorrhagic stroke and understanding metabolic mechanisms of these diseases. This opens an avenue for the successful use of identified markers along with metabolomics technologies to develop fast and reliable diagnostic tools for ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Maria S Chumachenko
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Kurchatova St., 10, Minsk220030, Belarus
| | | | - Sergei V Fedorovich
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Kurchatova St., 10, Minsk220030, Belarus
| |
Collapse
|
9
|
Li X, Li Y, Liang Y, Hu R, Xu W, Liu Y. Plasma Targeted Metabolomics Analysis for Amino Acids and Acylcarnitines in Patients with Prediabetes, Type 2 Diabetes Mellitus, and Diabetic Vascular Complications. Diabetes Metab J 2021; 45:195-208. [PMID: 33685035 PMCID: PMC8024149 DOI: 10.4093/dmj.2019.0209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/26/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND We hypothesized that specific amino acids or acylcarnitines would have benefits for the differential diagnosis of diabetes. Thus, a targeted metabolomics for amino acids and acylcarnitines in patients with diabetes and its complications was carried out. METHODS A cohort of 54 normal individuals and 156 patients with type 2 diabetes mellitus and/or diabetic complications enrolled from the First Affiliated Hospital of Jinzhou Medical University was studied. The subjects were divided into five main groups: normal individuals, impaired fasting glucose, overt diabetes, diabetic microvascular complications, and diabetic peripheral vascular disease. The technique of tandem mass spectrometry was applied to obtain the plasma metabolite profiles. Metabolomics multivariate statistics were applied for the metabolic data analysis and the differential metabolites determination. RESULTS A total of 10 cross-comparisons within diabetes and its complications were designed to explore the differential metabolites. The results demonstrated that eight comparisons existed and yielded significant metabolic differences. A total number of 24 differential metabolites were determined from six selected comparisons, including up-regulated amino acids, down-regulated medium-chain and long-chain acylcarnitines. Altered differential metabolites provided six panels of biomarkers, which were helpful in distinguishing diabetic patients. CONCLUSION Our results demonstrated that the biomarker panels consisted of specific amino acids and acylcarnitines which could reflect the metabolic variations among the different stages of diabetes and might be useful for the differential diagnosis of prediabetes, overt diabetes and diabetic complications.
Collapse
Affiliation(s)
- Xin Li
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Yancheng Li
- Department of Biostatistics, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yuanhao Liang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Ruixue Hu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Wenli Xu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Yufeng Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
- Natural Products Pharmaceutical Engineering Technology Research Center of Liaoning Province, Shenyang, China
- Corresponding author: Yufeng Liu https://orcid.org/0000-0001-7972-8771 School of Pharmaceutical Sciences, Liaoning University, Zheli Rd, Huanggu District, Shenyang 110036, China E-mail:
| |
Collapse
|
10
|
Delaye JB, Lanznaster D, Veyrat-Durebex C, Fontaine A, Bacle G, Lefevre A, Hergesheimer R, Lecron JC, Vourc'h P, Andres CR, Maillot F, Corcia P, Emond P, Blasco H. Behavioral, Hormonal, Inflammatory, and Metabolic Effects Associated with FGF21-Pathway Activation in an ALS Mouse Model. Neurotherapeutics 2021; 18:297-308. [PMID: 33021723 PMCID: PMC8116478 DOI: 10.1007/s13311-020-00933-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
In amyotrophic lateral sclerosis (ALS), motor neuron degeneration occurs simultaneously with systemic metabolic dysfunction and neuro-inflammation. The fibroblast growth factor 21 (FGF21) plays an important role in the regulation of both phenomena and is a major hormone of energetic homeostasis. In this study, we aimed to determine the relevance of FGF21 pathway stimulation in a male mouse model of ALS (mutated SOD1-G93A mice) by using a pharmacological agonist of FGF21, R1Mab1. Mice (SOD1-WT and mutant SOD1-G93A) were treated with R1Mab1 or vehicle. Longitudinal data about clinical status (motor function, body weight) and biological parameters (including hormonal, immunological, and metabolomics profiles) were collected from the first symptoms to euthanasia at week 20. Multivariate models were performed to identify the main parameters associated with R1Mab1 treatment and to link them with clinical status, and metabolic pathways involving the discriminant metabolites were also determined. A beneficial clinical effect of R1Mab1 was revealed on slow rotarod (p = 0.032), despite a significant decrease in body weight of ALS mice (p < 0.001). We observed a decrease in serum TNF-α, MCP-1, and insulin levels (p = 0.0059, p = 0.003, and p = 0.01, respectively). At 16 weeks, metabolomics analyses revealed a clear discrimination (CV-ANOVA = 0.0086) according to the treatment and the most discriminant pathways, including sphingolipid metabolism, butanoate metabolism, pantothenate and CoA biosynthesis, and the metabolism of amino acids like tyrosine, arginine, proline, glycine, serine, alanine, aspartate, and glutamate. Mice treated with R1Mab1 had mildly higher performance on slow rotarod despite a decrease on body weight and could be linked with the anti-inflammatory effect of R1Mab1. These results indicate that FGF21 pathway is an interesting target in ALS, with a slight improvement in motor function combined with metabolic and anti-inflammatory effects.
Collapse
Affiliation(s)
- J B Delaye
- Laboratoire de Biochimie et de Biologie Moléculaire, Centre Hospitalier Régional Universitaire de Tours, 2 Bd Tonnellé, 37044, Tours Cedex, France.
| | - D Lanznaster
- Unité mixte de recherche 1253, iBrain, University of Tours, Inserm, 37044, Tours, France
| | - C Veyrat-Durebex
- Laboratoire de Biochimie et de Biologie Moléculaire, Centre Hospitalier Régional Universitaire de Tours, 2 Bd Tonnellé, 37044, Tours Cedex, France
- Unité mixte de recherche 1253, iBrain, University of Tours, Inserm, 37044, Tours, France
| | - A Fontaine
- Service d'anatomie et cytologie pathologique, Centre Hospitalier Régional Universitaire de Tours, hôpital Bretonneau, 37044, Tours, France
| | - G Bacle
- Unité mixte de recherche 1253, iBrain, University of Tours, Inserm, 37044, Tours, France
- Service de chirurgie orthopédique, Centre Hospitalier Régional Universitaire de Tours, hôpital Trousseau, 37044, Tours, France
| | - A Lefevre
- Unité mixte de recherche 1253, iBrain, University of Tours, Inserm, 37044, Tours, France
| | - R Hergesheimer
- Unité mixte de recherche 1253, iBrain, University of Tours, Inserm, 37044, Tours, France
| | - J C Lecron
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines Université de Poitiers Equipe d'acceuil 4331, 86073, Poitiers, France
| | - P Vourc'h
- Laboratoire de Biochimie et de Biologie Moléculaire, Centre Hospitalier Régional Universitaire de Tours, 2 Bd Tonnellé, 37044, Tours Cedex, France
- Unité mixte de recherche 1253, iBrain, University of Tours, Inserm, 37044, Tours, France
| | - C R Andres
- Laboratoire de Biochimie et de Biologie Moléculaire, Centre Hospitalier Régional Universitaire de Tours, 2 Bd Tonnellé, 37044, Tours Cedex, France
- Unité mixte de recherche 1253, iBrain, University of Tours, Inserm, 37044, Tours, France
| | - F Maillot
- Unité mixte de recherche 1253, iBrain, University of Tours, Inserm, 37044, Tours, France
- Service de médecine interne, Centre Hospitalier Régional Universitaire de Tours, 37044, Tours, France
| | - P Corcia
- Unité mixte de recherche 1253, iBrain, University of Tours, Inserm, 37044, Tours, France
- Centre SLA, Service de Neurologie, Centre Hospitalier Régional Universitaire de Tours, 37044, Tours, France
| | - P Emond
- Unité mixte de recherche 1253, iBrain, University of Tours, Inserm, 37044, Tours, France
- Service de Médecine Nucléaire in vitro, Centre Hospitalier Régional Universitaire de Tours, 37044, Tours, France
| | - H Blasco
- Laboratoire de Biochimie et de Biologie Moléculaire, Centre Hospitalier Régional Universitaire de Tours, 2 Bd Tonnellé, 37044, Tours Cedex, France
- Unité mixte de recherche 1253, iBrain, University of Tours, Inserm, 37044, Tours, France
| |
Collapse
|
11
|
Humer E, Pieh C, Brandmayr G. Metabolomics in Sleep, Insomnia and Sleep Apnea. Int J Mol Sci 2020; 21:ijms21197244. [PMID: 33008070 PMCID: PMC7583860 DOI: 10.3390/ijms21197244] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
Sleep-wake disorders are highly prevalent disorders, which can lead to negative effects on cognitive, emotional and interpersonal functioning, and can cause maladaptive metabolic changes. Recent studies support the notion that metabolic processes correlate with sleep. The study of metabolite biomarkers (metabolomics) in a large-scale manner offers unique opportunities to provide insights into the pathology of diseases by revealing alterations in metabolic pathways. This review aims to summarize the status of metabolomic analyses-based knowledge on sleep disorders and to present knowledge in understanding the metabolic role of sleep in psychiatric disorders. Overall, findings suggest that sleep-wake disorders lead to pronounced alterations in specific metabolic pathways, which might contribute to the association of sleep disorders with other psychiatric disorders and medical conditions. These alterations are mainly related to changes in the metabolism of branched-chain amino acids, as well as glucose and lipid metabolism. In insomnia, alterations in branched-chain amino acid and glucose metabolism were shown among studies. In obstructive sleep apnea, biomarkers related to lipid metabolism seem to be of special importance. Future studies are needed to examine severity, subtypes and treatment of sleep-wake disorders in the context of metabolite levels.
Collapse
Affiliation(s)
- Elke Humer
- Department for Psychotherapy and Biopsychosocial Health, Danube University Krems, 3500 Krems, Austria;
- Correspondence: ; Tel.: +43-273-2893-2676
| | - Christoph Pieh
- Department for Psychotherapy and Biopsychosocial Health, Danube University Krems, 3500 Krems, Austria;
| | - Georg Brandmayr
- Section for Artificial Intelligence and Decision Support, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
12
|
Leskanicova A, Chovancova O, Babincak M, Verboova L, Benetinova Z, Macekova D, Kostolny J, Smajda B, Kiskova T. Sexual Dimorphism in Energy Metabolism of Wistar Rats Using Data Analysis. Molecules 2020; 25:molecules25102353. [PMID: 32443550 PMCID: PMC7287681 DOI: 10.3390/molecules25102353] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/25/2022] Open
Abstract
The prevalence of some chronic diseases, such as cancer or neurodegenerative disorders, differs between sexes. Animal models provide an important tool to adopt potential therapies from preclinical studies to humans. Laboratory rats are the most popular animals in toxicology, neurobehavioral, or cancer research. Our study aimed to reveal the basic differences in blood metabolome (amino acids, biogenic amines, and acylcarnitines) of the adult male (n = 10) and female (n = 10) Wistar rats. Partial least square-discrimination analysis (PLS-DA) and a variance im portance in projection (VIP) score was used to identify the key sex-specific metabolites. All groups of metabolites, as the main markers of energy metabolism, showed a significant sex-dependent pattern. The most important features calculated in PLS-DA according to VIP score were free carnitine (C0), tyrosine (Tyr), and acylcarnitine C5-OH. While aromatic amino acids, such as Tyr and phenylalanine (Phe), were significantly elevated in the blood plasma of males, tryptophan (Trp) was found in higher levels in the blood plasma of females. Besides, significant sex-related changes in urea cycle were found. Our study provides an important insight into sex-specific differences in energy metabolism in rats and indicates that further studies should consider sex as the main aspect in design and data interpretation.
Collapse
Affiliation(s)
- Andrea Leskanicova
- Institute of Biology and Ecology, Faculty of Sciences, University of Pavol Jozef Šafárik in Košice, Šrobárova 2, 041 80 Košice, Slovakia; (A.L.); (M.B.)
| | - Olga Chovancova
- Department of Informatics, Faculty of Management Sciences and Informatics, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia; (O.C.); (D.M.); (J.K.)
| | - Marian Babincak
- Institute of Biology and Ecology, Faculty of Sciences, University of Pavol Jozef Šafárik in Košice, Šrobárova 2, 041 80 Košice, Slovakia; (A.L.); (M.B.)
| | - Ludmila Verboova
- Department of Pathology, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Rastislavova 43, 040 01 Košice, Slovakia; (L.V.); (Z.B.)
| | - Zuzana Benetinova
- Department of Pathology, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Rastislavova 43, 040 01 Košice, Slovakia; (L.V.); (Z.B.)
| | - Denisa Macekova
- Department of Informatics, Faculty of Management Sciences and Informatics, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia; (O.C.); (D.M.); (J.K.)
| | - Jozef Kostolny
- Department of Informatics, Faculty of Management Sciences and Informatics, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia; (O.C.); (D.M.); (J.K.)
| | - Benadik Smajda
- Institute of Biology and Ecology, Faculty of Sciences, University of Pavol Jozef Šafárik in Košice, Šrobárova 2, 041 80 Košice, Slovakia; (A.L.); (M.B.)
- Correspondence: (B.S.); (T.K.); Tel.: +421-55-234-1216 (T.K.); Fax: +421-55-622-2124 (T.K.)
| | - Terezia Kiskova
- Institute of Biology and Ecology, Faculty of Sciences, University of Pavol Jozef Šafárik in Košice, Šrobárova 2, 041 80 Košice, Slovakia; (A.L.); (M.B.)
- Correspondence: (B.S.); (T.K.); Tel.: +421-55-234-1216 (T.K.); Fax: +421-55-622-2124 (T.K.)
| |
Collapse
|
13
|
Rakvaag E, Fuglsang-Nielsen R, Bach Knudsen KE, Hermansen K, Gregersen S. The Combination of Whey Protein and Dietary Fiber Does Not Alter Low-Grade Inflammation or Adipose Tissue Gene Expression in Adults with Abdominal Obesity. Rev Diabet Stud 2020; 15:83-94. [PMID: 31904760 DOI: 10.1900/rds.2019.15.83] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Abdominal obesity is characterized by low-grade inflammation and plays a central role in the development of type 2 diabetes and cardiovascular diseases. Dietary factors can influence low-grade inflammation and affect adipose tissue function. AIM To investigate the separate and combined effects of whey protein and cereal fiber on inflammatory markers and adipose tissue gene expression in abdominal obesity. METHODS We performed a 12-week, double-blind, randomized controlled dietary intervention in 65 adults with abdominal obesity. The participants were randomized to 4 groups using a 2 × 2 factorial design; they received either 60 g/day of whey protein or maltodextrin in combination with high-fiber wheat bran products (30 g fiber/day) or low-fiber refined wheat products (10 g fiber/day). Plasma concentrations of tumor necrosis factor α (TNF-α), high-sensitivity C-reactive protein (hs-CRP), monocyte chemoattractant protein-1 (MCP-1), interleukin 1 receptor antagonist (IL-1Ra), and adiponectin were measured before and after intervention. Changes in gene expression related to inflammation, insulin signaling, and lipid metabolism were measured in abdominal subcutaneous adipose tissue. RESULTS After intervention, TNF-α was reduced for both high-fiber groups compared with baseline, but did not significantly differ from the low-fiber groups. There were no differences in fasting or postprandial inflammatory markers between the groups. The relative gene expression of ribosomal protein S6 kinase B1 (S6K1) was increased after whey protein compared with maltodextrin consumption. CONCLUSION Intake of whey protein in combination with high cereal fiber content did not differentially affect low-grade inflammation or adipose tissue gene expression compared with maltodextrin and low fiber content in individuals with abdominal obesity.
Collapse
Affiliation(s)
- Elin Rakvaag
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Rasmus Fuglsang-Nielsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | | | - Kjeld Hermansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Søren Gregersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark; Steno Diabetes Center Aarhus, 8200 Aarhus N, Denmark
| |
Collapse
|
14
|
Ding M, Zeleznik OA, Guasch-Ferre M, Hu J, Lasky-Su J, Lee IM, Jackson RD, Shadyab AH, LaMonte MJ, Clish C, Eliassen AH, Sacks F, Willett WC, Hu FB, Rexrode KM, Kraft P. Metabolome-Wide Association Study of the Relationship Between Habitual Physical Activity and Plasma Metabolite Levels. Am J Epidemiol 2019; 188:1932-1943. [PMID: 31364705 DOI: 10.1093/aje/kwz171] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/19/2022] Open
Abstract
We identified plasma metabolites associated with habitual physical activity among 5,197 US participants from the Nurses' Health Study (NHS), Nurses' Health Study II (NHS II), and the Health Professionals Follow-up Study (HPFS). Physical activity was assessed every 2-4 years via self-report questionnaires. Blood was collected in the NHS in 1989-1990, in NHS II during 1996-1999, and in the HPFS during 1993-1995. Metabolic profiling was conducted by liquid chromatography-mass spectrometry. Our study included 337 known metabolites, with 256 of them classified as lipids. We corrected for multiple testing by controlling the tail probability of the proportion of false positives (TPPFP) and accounted for correlated tests using bootstrapping. Physical activity was significantly associated with 20 metabolites after correction for multiple testing (TPPFP < 0.05), and positive associations were found for most of the metabolites, including 2 amino acids (citrulline and glycine), 4 cholesteryl esters (C18:2, C18:1, C16:0, C18:3), 8 phosphocholines (PCs) (C36:4 PC-A, C34:3 PC plasmalogen, C36:3 PC plasmalogen, C34:2 PC plasmalogen, C36:2 PC) and lysophosphatidylcholines (C18:2, C20:5, C18:1), and 3 phosphatidylethanolamines (PEs) (C38:3 PE plasmalogen) and lysophosphatidylethanolamines (C18:2, C18:1). We independently replicated the 20 metabolites among 2,305 women in the Women's Health Initiative using 1993 data, and half of the metabolites were replicated. Our study may help identify biomarkers of physical activity and provide insight into biological mechanisms underlying the beneficial effect of being physically active on cardiometabolic health.
Collapse
Affiliation(s)
- Ming Ding
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Oana A Zeleznik
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marta Guasch-Ferre
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jie Hu
- Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Women’s Health, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - I-Min Lee
- Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Rebecca D Jackson
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Ohio State University, Columbus, Ohio
| | - Aladdin H Shadyab
- Department of Family Medicine and Public Health, School of Medicine, University of California, San Diego, La Jolla, California
| | - Michael J LaMonte
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, New York
| | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - A Heather Eliassen
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Frank Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kathryn M Rexrode
- Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Women’s Health, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
15
|
Sun R, Li Y, Cai M, Cao Y, Piao X. Discovery of a New Biomarker Pattern for Differential Diagnosis of Acute Ischemic Stroke Using Targeted Metabolomics. Front Neurol 2019; 10:1011. [PMID: 31608005 PMCID: PMC6761218 DOI: 10.3389/fneur.2019.01011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/04/2019] [Indexed: 12/30/2022] Open
Abstract
Stroke is one of the leading causes of disability all over the world. However, biomarkers for fast differential diagnosis of acute ischemic stroke (AIS) from vertigo or headache, remains lacking. Using a direct-infusion mass spectrometry method, it is possible to establish an efficient method for AIS differential diagnosis that requires only a few minutes. Thirty-eight clearly diagnosed AIS patients and 46 patients with a main complaint of vertigo were enrolled in this study. There was a total of 58 metabolites that were measured by our targeted metabolomics method, and the data were analyzed by pattern recognition algorithms. As a result, a clear classification between AIS and vertigo patients was achieved. Acylcarnitines are the major discriminating metabolites between the two groups. Arginine and its ratio, which is related to urea cycle metabolites, including arginine/ornithine and citrulline/arginine, also accounted for the classification. Interestingly, the levels of these metabolites were also found to be restored among recovering AIS patients (n = 11), which indicated that the metabolic alterations are possibly related to AIS development. Based on the characters from the data pattern reorganization, a novel biomarkers pattern was established using a binary logistic model, which contained arginine, arginine/ornithine, vaccenylcarnitine, and hydroxylbutyrylcarnitine. This biomarkers pattern achieved an area under the receiver operating characteristic curve of 0.89 for the differential diagnosis of AIS. Considering the efficiency and the diagnostic performance of the biomarkers pattern, our method has potential future use for the clinical application.
Collapse
Affiliation(s)
- Ruitan Sun
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yan Li
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ming Cai
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yunfeng Cao
- Department of Instrumentation and Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
| | - Xiangyu Piao
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
16
|
Pang Y, Kartsonaki C, Du H, Millwood IY, Guo Y, Chen Y, Bian Z, Yang L, Walters R, Bragg F, Lv J, Yu C, Chen J, Peto R, Clarke R, Collins R, Bennett DA, Li L, Holmes MV, Chen Z. Physical Activity, Sedentary Leisure Time, Circulating Metabolic Markers, and Risk of Major Vascular Diseases. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:386-396. [PMID: 31461308 PMCID: PMC6752700 DOI: 10.1161/circgen.118.002527] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Physical inactivity and sedentary behavior are associated with higher risk of cardiovascular disease (CVD). Little is known about the relevance of circulating metabolites for these associations. METHODS A nested case-control study within the prospective China Kadoorie Biobank included 3195 incident CVD cases (2057 occlusive CVD and 1138 intracerebral hemorrhage) and 1465 controls aged 30 to 79 years without prior CVD or statin use at baseline. Nuclear magnetic resonance spectroscopy was used to measure 225 metabolic markers and derived traits in baseline plasma samples. Linear regression was used to relate self-reported physical activity and sedentary leisure time to biomarkers, adjusting for potential confounders. These were contrasted with associations of biomarkers with occlusive CVD risk. RESULTS Physical activity and sedentary leisure time were associated with >100 metabolic markers, with patterns of associations generally mirroring each other. Physical activity was inversely associated with very low and low-density and positively with large and very large HDL (high-density lipoprotein) particle concentrations. Physical activity was also inversely associated with alanine, glucose, lactate, acetoacetate, and the inflammatory marker glycoprotein acetyls. In general, associations of physical activity and sedentary leisure time with specific metabolic markers were directionally consistent with the associations of these metabolic markers with occlusive CVD risk. Overall, metabolic markers potentially explained ≈70% of the protective associations of physical activity and ≈50% of the positive associations of sedentary leisure time with occlusive CVD. CONCLUSIONS Among Chinese adults, physical activity and sedentary behavior have opposing associations with a diverse range of circulating metabolites, which may partially explain their associations with CVD risk.
Collapse
Affiliation(s)
- Yuanjie Pang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China (Y.P., J.L., C.Y., L.L.).,Clinical Trial Service Unit and Epidemiological Studies Unit (Y.P., C.K., H.D., I.Y.M., Y.C., L.Y., R.W., F.B., R.P., R. Clarke, R. Collins, D.A.B., L.L., M.V.H., Z.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Christiana Kartsonaki
- Clinical Trial Service Unit and Epidemiological Studies Unit (Y.P., C.K., H.D., I.Y.M., Y.C., L.Y., R.W., F.B., R.P., R. Clarke, R. Collins, D.A.B., L.L., M.V.H., Z.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom.,Medical Research Council Population Health Research Unit (C.K., H.D., I.Y.M., Y.C., L.Y., R.W., M.V.H., Z.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Huaidong Du
- Clinical Trial Service Unit and Epidemiological Studies Unit (Y.P., C.K., H.D., I.Y.M., Y.C., L.Y., R.W., F.B., R.P., R. Clarke, R. Collins, D.A.B., L.L., M.V.H., Z.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom.,Medical Research Council Population Health Research Unit (C.K., H.D., I.Y.M., Y.C., L.Y., R.W., M.V.H., Z.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Iona Y Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit (Y.P., C.K., H.D., I.Y.M., Y.C., L.Y., R.W., F.B., R.P., R. Clarke, R. Collins, D.A.B., L.L., M.V.H., Z.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom.,Medical Research Council Population Health Research Unit (C.K., H.D., I.Y.M., Y.C., L.Y., R.W., M.V.H., Z.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Yu Guo
- Chinese Academy of Medical Sciences, Beijing, China (Y.G., Z.B., L.L.)
| | - Yiping Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (Y.P., C.K., H.D., I.Y.M., Y.C., L.Y., R.W., F.B., R.P., R. Clarke, R. Collins, D.A.B., L.L., M.V.H., Z.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom.,Medical Research Council Population Health Research Unit (C.K., H.D., I.Y.M., Y.C., L.Y., R.W., M.V.H., Z.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Zheng Bian
- Chinese Academy of Medical Sciences, Beijing, China (Y.G., Z.B., L.L.)
| | - Ling Yang
- Clinical Trial Service Unit and Epidemiological Studies Unit (Y.P., C.K., H.D., I.Y.M., Y.C., L.Y., R.W., F.B., R.P., R. Clarke, R. Collins, D.A.B., L.L., M.V.H., Z.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom.,Medical Research Council Population Health Research Unit (C.K., H.D., I.Y.M., Y.C., L.Y., R.W., M.V.H., Z.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Robin Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit (Y.P., C.K., H.D., I.Y.M., Y.C., L.Y., R.W., F.B., R.P., R. Clarke, R. Collins, D.A.B., L.L., M.V.H., Z.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom.,Medical Research Council Population Health Research Unit (C.K., H.D., I.Y.M., Y.C., L.Y., R.W., M.V.H., Z.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Fiona Bragg
- Clinical Trial Service Unit and Epidemiological Studies Unit (Y.P., C.K., H.D., I.Y.M., Y.C., L.Y., R.W., F.B., R.P., R. Clarke, R. Collins, D.A.B., L.L., M.V.H., Z.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China (Y.P., J.L., C.Y., L.L.)
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China (Y.P., J.L., C.Y., L.L.)
| | - Junshi Chen
- National Center for Food Safety Risk Assessment, Beijing, China (J.C.)
| | - Richard Peto
- Clinical Trial Service Unit and Epidemiological Studies Unit (Y.P., C.K., H.D., I.Y.M., Y.C., L.Y., R.W., F.B., R.P., R. Clarke, R. Collins, D.A.B., L.L., M.V.H., Z.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Robert Clarke
- Clinical Trial Service Unit and Epidemiological Studies Unit (Y.P., C.K., H.D., I.Y.M., Y.C., L.Y., R.W., F.B., R.P., R. Clarke, R. Collins, D.A.B., L.L., M.V.H., Z.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Rory Collins
- Clinical Trial Service Unit and Epidemiological Studies Unit (Y.P., C.K., H.D., I.Y.M., Y.C., L.Y., R.W., F.B., R.P., R. Clarke, R. Collins, D.A.B., L.L., M.V.H., Z.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Derrick A Bennett
- Clinical Trial Service Unit and Epidemiological Studies Unit (Y.P., C.K., H.D., I.Y.M., Y.C., L.Y., R.W., F.B., R.P., R. Clarke, R. Collins, D.A.B., L.L., M.V.H., Z.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China (Y.P., J.L., C.Y., L.L.).,Clinical Trial Service Unit and Epidemiological Studies Unit (Y.P., C.K., H.D., I.Y.M., Y.C., L.Y., R.W., F.B., R.P., R. Clarke, R. Collins, D.A.B., L.L., M.V.H., Z.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom.,Chinese Academy of Medical Sciences, Beijing, China (Y.G., Z.B., L.L.)
| | - Michael V Holmes
- Clinical Trial Service Unit and Epidemiological Studies Unit (Y.P., C.K., H.D., I.Y.M., Y.C., L.Y., R.W., F.B., R.P., R. Clarke, R. Collins, D.A.B., L.L., M.V.H., Z.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom.,Medical Research Council Population Health Research Unit (C.K., H.D., I.Y.M., Y.C., L.Y., R.W., M.V.H., Z.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom.,National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital, United Kingdom (M.V.H.)
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (Y.P., C.K., H.D., I.Y.M., Y.C., L.Y., R.W., F.B., R.P., R. Clarke, R. Collins, D.A.B., L.L., M.V.H., Z.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom.,Medical Research Council Population Health Research Unit (C.K., H.D., I.Y.M., Y.C., L.Y., R.W., M.V.H., Z.C.), Nuffield Department of Population Health, University of Oxford, United Kingdom
| |
Collapse
|
17
|
Zhao L, Wang M, Li J, Bi Y, Li M, Yang J. Association of Circulating Branched-Chain Amino Acids with Gestational Diabetes Mellitus: A Meta-Analysis. Int J Endocrinol Metab 2019; 17:e85413. [PMID: 31497040 PMCID: PMC6679587 DOI: 10.5812/ijem.85413] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/14/2019] [Accepted: 05/25/2019] [Indexed: 12/20/2022] Open
Abstract
CONTEXT Recently, the relationship between branched-chain amino acids (BCAAs) and diabetes mellitus (DM) has attracted worldwide attention. However, the results related to plasma BCAAs concentrations and gestational diabetes mellitus (GDM) lack statistical power due to the small sample size of a single article. OBJECTIVES This study quantitatively summarized current observational studies to evaluate the association between plasma BCAAs concentration levels and GDM. METHODS A systematic search was performed to select eligible publications using PubMed and EMBASE databases until July 23, 2018. The references of relevant articles were also manually searched. The quality evaluation of included studies was according to the guidelines of the Newcastle-Ottawa Scale (NOS). Data were analyzed with Review Manager 5.3 and STATA 14.0 software. In total, seven articles (including eight studies) involving 432 subjects were included. RESULTS The results showed that all three-individual plasma BCAAs concentration levels in the GDM group were higher than those in the control group (leucine: SMD = 3.76, 95% CI: 1.70 - 5.82, P (SMD) < 0.001; isoleucine: SMD = 3.15, 95% CI: 1.42 - 4.87, P (SMD) < 0.001; valine: SMD = 2.77, 95% CI: 1.21 - 4.32, P (SMD) = 0.001), and the differences were statistically significant. In addition, subgroup analysis indicated that age, body mass index (BMI), publication year, and ethnicity were positively associated with plasma BCAAs concentrations in GDM. CONCLUSIONS Plasma BCAAs, as potential biomarkers, might be associated with GDM risk, which provides useful information for the prevention and early diagnosis of GDM.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- The Second Department of Endocrinology, The Central Hospital of Taian, Taian, China
| | - Meng Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Department of Endocrinology, Yidu Central Hospital of Weifang, Weifang, China
| | - Jun Li
- Department of Anesthesiology, The Affiliated Hospital of Taishan Medical University, Taian, China
| | - Ye Bi
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Minglong Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Corresponding Author: Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.
| | - Jie Yang
- The Second Department of Endocrinology, The Central Hospital of Taian, Taian, China
| |
Collapse
|
18
|
Fu X, Wang J, Liao S, Lv Y, Xu D, Yang M, Kong L. 1H NMR-Based Metabolomics Reveals Refined-Huang-Lian-Jie-Du-Decoction (BBG) as a Potential Ischemic Stroke Treatment Drug With Efficacy and a Favorable Therapeutic Window. Front Pharmacol 2019; 10:337. [PMID: 31031621 PMCID: PMC6474285 DOI: 10.3389/fphar.2019.00337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/19/2019] [Indexed: 12/16/2022] Open
Abstract
Huang-Lian-Jie-Du-Decoction (HLJDD) is a traditional Chinese medicine (TCM) used to treat ischemic stroke. However, the complexity of its chemical composition makes quality control difficult. Berberine, baicalin, and geniposide are the three main ingredients in HLJDD. Here, a formula of BBG comprised of berberine, baicalin, and geniposide, known as Refined-Huang-Lian-Jie-Du-Decoction, was investigated for its efficacy, therapeutic window, and mechanisms of action. BBG was assessed on two major types of ischemic stroke, cerebral ischemia-reperfusion (I/R) injury, and continuous ischemia injury, respectively. BBG showed efficacy comparable to HLJDD in the treatment of cerebral I/R injury within 5 h after injury initiation but did poorly in treating continuous ischemia injury. BBG exhibited neuroprotective effects on cerebral I/R injury by regaining the balance in energy metabolism, oxidative stress, amino acid metabolism, inflammation, and nucleic acid metabolism. These results suggested that BBG could be a good alternative to HLJDD, with high efficacy and a long therapeutic window, which shows great potential for drug development to treat stroke.
Collapse
Affiliation(s)
- Xiaowei Fu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Shanting Liao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yan Lv
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Dingqiao Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Minghua Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
19
|
Rebholz CM, Zheng Z, Grams ME, Appel LJ, Sarnak MJ, Inker LA, Levey A, Coresh J. Serum metabolites associated with dietary protein intake: results from the Modification of Diet in Renal Disease (MDRD) randomized clinical trial. Am J Clin Nutr 2019; 109:517-525. [PMID: 30753252 PMCID: PMC6408209 DOI: 10.1093/ajcn/nqy202] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/22/2017] [Accepted: 07/24/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Accurate assessment of dietary intake is essential, but self-report of dietary intake is prone to measurement error and bias. Discovering metabolic consequences of diets with lower compared with higher protein intake could elucidate new, objective biomarkers of protein intake. OBJECTIVES The goal of this study was to identify serum metabolites associated with dietary protein intake. METHODS Metabolites were measured with the use of untargeted, reverse-phase ultra-performance liquid chromatography-tandem mass spectrometry quantification in serum specimens collected at the 12-mo follow-up visit in the Modification of Diet in Renal Disease (MDRD) Study from 482 participants in study A (glomerular filtration rate: 25-55 mL · min-1 · 1.73 m-2) and 192 participants in study B (glomerular filtration rate: 13-24 mL · min-1 · 1.73 m-2). We used multivariable linear regression to test for differences in log-transformed metabolites (outcome) according to randomly assigned dietary protein intervention groups (exposure). Statistical significance was assessed at the Bonferroni-corrected threshold: 0.05/1193 = 4.2 × 10-5. RESULTS In study A, 130 metabolites (83 known from 28 distinct pathways, including 7 amino acid pathways; 47 unknown) were significantly different between participants randomly assigned to the low-protein diet compared with the moderate-protein diet. In study B, 32 metabolites (22 known from 8 distinct pathways, including 4 amino acid pathways; 10 unknown) were significantly different between participants randomly assigned to the very-low-protein diet compared with the low-protein diet. A total of 11 known metabolites were significantly associated with protein intake in the same direction in both studies A and B: 3-methylhistidine, N-acetyl-3-methylhistidine, xanthurenate, isovalerylcarnitine, creatine, kynurenate, 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPE (P-16:0/20:4), 1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (P-18:0/20:4), 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4), sulfate, and γ-glutamylalanine. CONCLUSIONS Among patients with chronic kidney disease, an untargeted serum metabolomics platform identified multiple pathways and metabolites associated with dietary protein intake. Further research is necessary to characterize unknown compounds and to examine these metabolites in association with dietary protein intake among individuals without kidney disease.This trial was registered at clinicaltrials.gov as NCT03202914.
Collapse
Affiliation(s)
- Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health,Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University,Address correspondence to CMR (e-mail: )
| | - Zihe Zheng
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health,Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University
| | - Morgan E Grams
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University,Division of Nephrology, Baltimore, MD
| | - Lawrence J Appel
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University,Division of General Internal Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Mark J Sarnak
- Division of Nephrology, Tufts Medical Center, Boston, MA
| | - Lesley A Inker
- Division of Nephrology, Tufts Medical Center, Boston, MA
| | - Andrew S Levey
- Division of Nephrology, Tufts Medical Center, Boston, MA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health,Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University,Division of General Internal Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
20
|
Thoen RU, Barther NN, Schemitt E, Bona S, Fernandes S, Coral G, Marroni NP, Tovo C, Guedes RP, Porawski M. Zinc supplementation reduces diet-induced obesity and improves insulin sensitivity in rats. Appl Physiol Nutr Metab 2018; 44:580-586. [PMID: 30339765 DOI: 10.1139/apnm-2018-0519] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rates of obesity have been growing at alarming rates, compromising the health of the world population. Thus, the search for interventions that address the metabolic repercussions of obesity are necessary. Here we evaluated the metabolic and antioxidant effects of zinc and branched-chain amino acids (BCAA) supplementation on obese rats. Male Wistar rats were fed either a high-fat/high-fructose diet (HFD) or a standard diet (SD) for 19 weeks. From the fifteenth week until the end of the experiment, HFD- and SD-fed rats received zinc (6 mg/kg) or BCAA (750 mg/kg) supplementation. Body weight, abdominal fat, lipid profile, blood glucose, insulin, leptin, and hepatic transaminases were evaluated. In the liver, superoxide dismutase and catalase activities and lipid peroxidation were also analyzed. HFD-fed animals showed increased weight gain, abdominal fat pad, plasma insulin, leptin, and triglycerides levels in comparison with SD-fed rats. Zinc supplementation reduced all these parameters, suggesting a beneficial role for the treatment of obesity. BCAA, on the other hand, did not show any beneficial effect. Liver antioxidant enzymes and hepatic transaminases plasma levels did not change among groups. Lipid peroxidation was higher in HFD-fed rats and was not reverted by zinc or BCAA supplementation. In conclusion, zinc supplementation may be a useful strategy for the treatment of the metabolic dysfunction associated with obesity.
Collapse
Affiliation(s)
- Rutiane Ullmann Thoen
- a Postgraduate Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS 90050-170, Brazil
| | - Nathaniele Nebel Barther
- a Postgraduate Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS 90050-170, Brazil
| | - Elizângela Schemitt
- b Postgraduate Program in Medical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-007, Brazil
| | - Sílvia Bona
- b Postgraduate Program in Medical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-007, Brazil
| | - Sabrina Fernandes
- a Postgraduate Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS 90050-170, Brazil
| | - Gabriela Coral
- a Postgraduate Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS 90050-170, Brazil
| | - Norma Possa Marroni
- b Postgraduate Program in Medical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-007, Brazil
| | - Cristiane Tovo
- a Postgraduate Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS 90050-170, Brazil
| | - Renata Padilha Guedes
- c Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, RS 90050-170, Brazil.,d Postgraduate Program in Biosciences, UFCSPA, Porto Alegre, RS 90050-170, Brazil
| | - Marilene Porawski
- a Postgraduate Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS 90050-170, Brazil.,d Postgraduate Program in Biosciences, UFCSPA, Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
21
|
Haydar S, Paillot T, Fagot C, Cogne Y, Fountas A, Tutuncu Y, Vintila M, Tsatsoulis A, Thanh Chi P, Garandeau P, Chetea D, Badiu C, Gheorghiu M, Ylli D, Lautier C, Jarec M, Monnier L, Normand C, Šarac J, Barakat A, Missoni S, Pugeat M, Poucheret P, Hanzu F, Gomis R, Macias JM, Litvinov S, Khusnutdinova E, Poiana C, Pasquali R, Lauro D, Sesti G, Trischitta V, Abdelhak S, Zenati A, Ylli A, Satman I, Kanninen T, Rinato Y, Grigorescu F. Branched-Chain Amino Acid Database Integrated in MEDIPAD Software as a Tool for Nutritional Investigation of Mediterranean Populations. Nutrients 2018; 10:E1392. [PMID: 30275383 PMCID: PMC6213539 DOI: 10.3390/nu10101392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/24/2022] Open
Abstract
Branched-chained amino acids (BCAA) are essential dietary components for humans and can act as potential biomarkers for diabetes development. To efficiently estimate dietary intake, we developed a BCAA database for 1331 food items found in the French Centre d'Information sur la Qualité des Aliments (CIQUAL) food table by compiling BCAA content from international tables, published measurements, or by food similarity as well as by calculating 267 items from Greek, Turkish, Romanian, and Moroccan mixed dishes. The database embedded in MEDIPAD software capable of registering 24 h of dietary recalls (24HDR) with clinical and genetic data was evaluated based on archived 24HDR of the Saint Pierre Institute (France) from 2957 subjects, which indicated a BCAA content up to 4.2 g/100 g of food and differences among normal weight and obese subjects across BCAA quartiles. We also evaluated the database of 119 interviews of Romanians, Turkish and Albanians in Greece (27⁻65 years) during the MEDIGENE program, which indicated mean BCAA intake of 13.84 and 12.91 g/day in males and females, respectively, comparable to other studies. The MEDIPAD is user-friendly, multilingual, and secure software and with the BCAA database is suitable for conducting nutritional assessment in the Mediterranean area with particular facilities for food administration.
Collapse
Affiliation(s)
- Sara Haydar
- Unité Mixte de Recherche (UMR)204 NUTRIPASS (Nutrition et Alimentation des Populations aux Suds, IRD, UM, SupAgro), Molecular Endocrinology, Institut Universitaire de Recherche Clinique (IURC), Faculty of Medicine, University of Montpellier, 34093 Montpellier, France.
| | | | | | - Yannick Cogne
- Unité Mixte de Recherche (UMR)204 NUTRIPASS (Nutrition et Alimentation des Populations aux Suds, IRD, UM, SupAgro), Molecular Endocrinology, Institut Universitaire de Recherche Clinique (IURC), Faculty of Medicine, University of Montpellier, 34093 Montpellier, France.
| | - Athanasios Fountas
- Department of Endocrinology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece.
| | - Yildiz Tutuncu
- Department of Internal Medicine, Istanbul University, 34093 Istanbul, Turkey.
| | - Madalina Vintila
- Department of Endocrinology, Universitatea de Medicina si Farmacie Carol Davila, 011863 Bucharest, Romania.
| | - Agathocles Tsatsoulis
- Department of Endocrinology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece.
| | - Pham Thanh Chi
- Unité Mixte de Recherche (UMR)204 NUTRIPASS (Nutrition et Alimentation des Populations aux Suds, IRD, UM, SupAgro), Molecular Endocrinology, Institut Universitaire de Recherche Clinique (IURC), Faculty of Medicine, University of Montpellier, 34093 Montpellier, France.
| | - Patrick Garandeau
- Unité Mixte de Recherche (UMR)204 NUTRIPASS (Nutrition et Alimentation des Populations aux Suds, IRD, UM, SupAgro), Molecular Endocrinology, Institut Universitaire de Recherche Clinique (IURC), Faculty of Medicine, University of Montpellier, 34093 Montpellier, France.
| | - Dan Chetea
- Nicolae Paulescu National Institute, 020475 Bucharest, Romania.
| | - Corin Badiu
- Department of Endocrinology, Universitatea de Medicina si Farmacie Carol Davila, 011863 Bucharest, Romania.
| | - Monica Gheorghiu
- Department of Endocrinology, Universitatea de Medicina si Farmacie Carol Davila, 011863 Bucharest, Romania.
| | - Dorina Ylli
- Faculty of Medicine, Mjekesise University of Tirana, 1005 Tirana, Albania.
| | - Corinne Lautier
- Unité Mixte de Recherche (UMR)204 NUTRIPASS (Nutrition et Alimentation des Populations aux Suds, IRD, UM, SupAgro), Molecular Endocrinology, Institut Universitaire de Recherche Clinique (IURC), Faculty of Medicine, University of Montpellier, 34093 Montpellier, France.
| | - Morana Jarec
- Institute for Anthropological Research, 10000 Zagreb, Croatia.
| | - Louis Monnier
- Unité Mixte de Recherche (UMR)204 NUTRIPASS (Nutrition et Alimentation des Populations aux Suds, IRD, UM, SupAgro), Molecular Endocrinology, Institut Universitaire de Recherche Clinique (IURC), Faculty of Medicine, University of Montpellier, 34093 Montpellier, France.
| | - Christophe Normand
- Unité Mixte de Recherche (UMR)204 NUTRIPASS (Nutrition et Alimentation des Populations aux Suds, IRD, UM, SupAgro), Molecular Endocrinology, Institut Universitaire de Recherche Clinique (IURC), Faculty of Medicine, University of Montpellier, 34093 Montpellier, France.
| | - Jelena Šarac
- Institute for Anthropological Research, 10000 Zagreb, Croatia.
| | | | - Sasa Missoni
- Institute for Anthropological Research, 10000 Zagreb, Croatia.
| | - Michel Pugeat
- Fédération d'Endocrinologie, Cardio-Neuro Hospital, University Claude Bernard de Lyon 1, 69677 Lyon-Bron, France.
| | - Patrick Poucheret
- Faculty of Pharmacy, UMR 95 Qualisud, University of Montpellier, 34398 Montpellier, France.
| | - Felicia Hanzu
- Institut d'Investigacions Biomediques August Pi i Sunyer, 08036 Barcelona, Spain.
| | - Ramon Gomis
- Institut d'Investigacions Biomediques August Pi i Sunyer, 08036 Barcelona, Spain.
| | | | | | | | - Catalina Poiana
- Department of Endocrinology, Universitatea de Medicina si Farmacie Carol Davila, 011863 Bucharest, Romania.
| | - Renato Pasquali
- Division of Endocrinology, University Alma Mater Studiorum, 40138 Bologna, Italy.
| | - Davide Lauro
- Department of Internal Medicine, Universita degli Studi di Roma Tor Vergata, 00173 Roma, Italy.
| | - Giorgio Sesti
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy.
| | | | - Sonia Abdelhak
- Institut Pasteur de Tunis, Laboratory of Biomedical Genomics and Oncogenetics, 1002 Tunis, Tunisia.
| | - Akila Zenati
- Laboratoire de Biochimie Génétique, CHU Bab-El-Oued, Université d'Alger, Alger 16000, Algeria.
| | - Agron Ylli
- Faculty of Medicine, Mjekesise University of Tirana, 1005 Tirana, Albania.
| | - Ilhan Satman
- Department of Internal Medicine, Istanbul University, 34093 Istanbul, Turkey.
| | | | - Yves Rinato
- Intactile Design SA, 34000 Montpellier, France.
| | - Florin Grigorescu
- Unité Mixte de Recherche (UMR)204 NUTRIPASS (Nutrition et Alimentation des Populations aux Suds, IRD, UM, SupAgro), Molecular Endocrinology, Institut Universitaire de Recherche Clinique (IURC), Faculty of Medicine, University of Montpellier, 34093 Montpellier, France.
| |
Collapse
|
22
|
Huang J, Mondul AM, Weinstein SJ, Karoly ED, Sampson JN, Albanes D. Prospective serum metabolomic profile of prostate cancer by size and extent of primary tumor. Oncotarget 2018; 8:45190-45199. [PMID: 28423352 PMCID: PMC5542177 DOI: 10.18632/oncotarget.16775] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/21/2017] [Indexed: 12/14/2022] Open
Abstract
Two recent investigations found serum lipid and energy metabolites related to aggressive prostate cancer up to 20 years prior to diagnosis. To elucidate whether those metabolomic profiles represent etiologic or tumor biomarker signals, we prospectively examined serum metabolites of prostate cancer cases by size and extent of primary tumors in a nested case-control analysis in the ATBC Study cohort that compared cases diagnosed with T2 (n = 71), T3 (n = 51), or T4 (n = 15) disease to controls (n = 200). Time from fasting serum collection to diagnosis averaged 10 years (range 1-20). LC/MS-GC/MS identified 625 known compounds, and logistic regression estimated odds ratios (ORs) associated with one-standard deviation differences in log-metabolites. N-acetyl-3-methylhistidine, 3-methylhistidine and 2'-deoxyuridine were elevated in men with T2 cancers compared to controls (ORs = 1.38-1.79; 0.0002 ≤ p ≤ 0.01). By contrast, four lipid metabolites were inversely associated with T3 tumors: oleoyl-linoleoyl-glycerophosphoinositol (GPI), palmitoyl-linoleoyl-GPI, cholate, and inositol 1-phosphate (ORs = 0.49-0.60; 0.000017 ≤ p ≤ 0.003). Secondary bile acid lipids, sex steroids and caffeine-related xanthine metabolites were elevated, while two Krebs cycle metabolites were decreased, in men diagnosed with T4 cancers. Men with T2, T3, and T4 prostate cancer primaries exhibit qualitatively different metabolite profiles years in advance of diagnosis that may represent etiologic factors, molecular patterns reflective of distinct primary tumors, or a combination of both.
Collapse
Affiliation(s)
- Jiaqi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD, USA
| | - Alison M Mondul
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD, USA
| | | | - Joshua N Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
23
|
Merz B, Frommherz L, Rist MJ, Kulling SE, Bub A, Watzl B. Dietary Pattern and Plasma BCAA-Variations in Healthy Men and Women-Results from the KarMeN Study. Nutrients 2018; 10:E623. [PMID: 29762522 PMCID: PMC5985475 DOI: 10.3390/nu10050623] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 01/04/2023] Open
Abstract
Branched-chain amino acids (BCAA) in plasma are discussed as risk factors for the onset of several diseases. Information about the contribution of the overall diet to plasma BCAA concentrations is controversial. Our objective was to investigate which dietary pattern is associated with plasma BCAA concentrations and whether other additional nutrients besides BCAA further characterize this dietary pattern. Based on the cross-sectional KarMeN study, fasting plasma amino acid (AA) concentrations, as well as current and habitual dietary intake were assessed in 298 healthy individuals. Using reduced rank regression, we derived a habitual dietary pattern that explained 32.5% of plasma BCAA variation. This pattern was high in meat, sausages, sauces, eggs, and ice cream but low in nuts, cereals, mushrooms, and pulses. The age, sex, and energy intake adjusted dietary pattern score was associated with an increase in animal-based protein together with a decrease in plant-based protein, dietary fiber, and an unfavorable fatty acid composition. Besides BCAA, alanine, lysine and the aromatic AA were positively associated with the dietary pattern score as well. All of these factors were reported to be associated with risk of type 2 diabetes and cardiovascular diseases before. Our data suggest that rather than the dietary intake of BCAA, the overall dietary pattern that contributes to high BCAA plasma concentrations may modulate chronic diseases risk.
Collapse
Affiliation(s)
- Benedikt Merz
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany.
| | - Lara Frommherz
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, 76131 Karlsruhe, Germany.
| | - Manuela J Rist
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany.
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, 76131 Karlsruhe, Germany.
| | - Achim Bub
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany.
| | - Bernhard Watzl
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany.
| |
Collapse
|
24
|
Haydar S, Lautier C, Grigorescu F. BRANCHED CHAIN AMINO ACIDS AT THE EDGE BETWEEN MENDELIAN AND COMPLEX DISORDERS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2018; 14:238-247. [PMID: 31149264 PMCID: PMC6516512 DOI: 10.4183/aeb.2018.238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Branched chained amino acids (BCAA) are essential components of the human diet and important nutrient signals, which regain particular interest in recent years with the avenue of metabolomics studies suggesting their potential role as biomarkers. There is now compelling evidence for predictive role of BCAA in progression of diabetes, but causality relationship is still debated concerning insulin resistance and genetic versus non-genetic pathogenesis. Mendelian randomization studies in large cohorts of diabetes indicated pathogenic role of PPM1K (protein phosphatase Mg2+/Mn2+ dependent 1K) on Chr 4q22.1 gene, encoding for a phosphatase that activates BCKDH (branched chain keto acid dehydrogenase) complex. Recent studies indicated that insulin rapidly and dose-dependently regulates gene expression of the same complex, but the relationship with systemic insulin resistance and glucose levels is complex. Rare genetic syndromes due to Mendelian mutations in key genes in BCAA catabolism may be good models to understand potential role of gene of BCAA catabolism. However, in studying complex disorders geneticists are faced to complete new aspects of metabolic regulation complicating understanding genetics of obesity, diabetes or metabolic syndrome. A review of genetic syndromes of BCAA metabolism suggests that insulin resistance is not present, except rare cases of methylmalonic aciduria due to MUT (methylmalonyl-coA mutase) gene on Chr 6p12.3. Another aspect that complicates understanding is the new role of central nervous system (CNS) in insulin resistance. For a long time the hypothalamic hunger/satiety neuronal system was considered a key site of nutrient regulation. Genes may also affect the brain rewarding system (BRS) that would regulate food intake by modulating the motivation to obtain food and considering hedonic properties. Nutrigenomic and nutrigenetic investigations taking into account concurrently BCAA intake, metabolic regulation and gene variation have large perspectives to merge genetic and nutritional understanding in complex disorders.
Collapse
Affiliation(s)
| | | | - F. Grigorescu
- University of Montpellier, UMR204 NUTRIPASS (IRD, UM, SupAgro), Montpellier, France
| |
Collapse
|
25
|
Nie C, He T, Zhang W, Zhang G, Ma X. Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int J Mol Sci 2018; 19:E954. [PMID: 29570613 PMCID: PMC5979320 DOI: 10.3390/ijms19040954] [Citation(s) in RCA: 383] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/01/2018] [Accepted: 03/14/2018] [Indexed: 12/14/2022] Open
Abstract
Branched chain amino acids (BCAAs), including leucine (Leu), isoleucine (Ile), and valine (Val), play critical roles in the regulation of energy homeostasis, nutrition metabolism, gut health, immunity and disease in humans and animals. As the most abundant of essential amino acids (EAAs), BCAAs are not only the substrates for synthesis of nitrogenous compounds, they also serve as signaling molecules regulating metabolism of glucose, lipid, and protein synthesis, intestinal health, and immunity via special signaling network, especially phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signal pathway. Current evidence supports BCAAs and their derivatives as the potential biomarkers of diseases such as insulin resistance (IR), type 2 diabetes mellitus (T2DM), cancer, and cardiovascular diseases (CVDs). These diseases are closely associated with catabolism and balance of BCAAs. Hence, optimizing dietary BCAA levels should have a positive effect on the parameters associated with health and diseases. This review focuses on recent findings of BCAAs in metabolic pathways and regulation, and underlying the relationship of BCAAs to related disease processes.
Collapse
Affiliation(s)
- Cunxi Nie
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing 100193, China.
- College of Animal Science and Technology, Shihezi University, No. 221. Beisi Road, Shihezi, Xinjiang 832003, China.
| | - Ting He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing 100193, China.
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, No. 221. Beisi Road, Shihezi, Xinjiang 832003, China.
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing 100193, China.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
26
|
Siomkajło M, Rybka J, Mierzchała-Pasierb M, Gamian A, Stankiewicz-Olczyk J, Bolanowski M, Daroszewski J. Specific plasma amino acid disturbances associated with metabolic syndrome. Endocrine 2017; 58:553-562. [PMID: 29075976 PMCID: PMC5693976 DOI: 10.1007/s12020-017-1460-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/17/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE The primary objective of the present study was to examine the association between branched chain and aromatic amino acid profiles (BCAA and AAA respectively) and the metabolic syndrome (MS), and to evaluate the clinical utility of these associations in the diagnostic process. METHODS Two hundred and sixty three healthy men with MS [MS(+): n = 165] and without MS [MS(-): n = 98] were enrolled in the observational study. Anthropometrical, biochemical, and amino acid measurements were performed. The ability of the BCAA and AAA to discriminate subjects with MS and insulin resistance was tested. Based on logistic discrimination, a multivariate early MS diagnostic model was built, and its discrimination properties were evaluated. RESULTS Two functionally independent amino acid clusters were identified. BCAA and phenylalanine differed significantly between MS(+) and MS(-) participants (P = 0.003). These factors were also found to be indicators of MS(+) individuals (AUC: 0.66; 95% CI: 0.5757-0.7469), and correlated with cardiometabolic factors. No statistically significant differences in amino acid concentrations between those with and without insulin resistance were noted, and none of the amino groups were indicators of insulin resistance. The proposed MS multivariate diagnostic model consisted of phenylalanine, insulin, leptin, and adiponectin, and had good discrimination properties [AUC 0.79; 95% CI: 0.7239-0.8646]. CONCLUSIONS MS is associated with selective BCAA and AAA profile disturbances, which could be part of cardiometabolic disease pathogenesis and derive neither directly from insulin sensitivity impairment, nor obesity or muscle mass. The MS diagnostic model developed and described herein should be validated in future studies.
Collapse
Affiliation(s)
- Marta Siomkajło
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, L. Pasteur 4, Wroclaw, 50-367, Poland
| | - Jacek Rybka
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigl 12, Wroclaw, 53-114, Poland
| | | | - Andrzej Gamian
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigl 12, Wroclaw, 53-114, Poland
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, Wroclaw, 50-368, Poland
| | - Joanna Stankiewicz-Olczyk
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, L. Pasteur 4, Wroclaw, 50-367, Poland
| | - Marek Bolanowski
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, L. Pasteur 4, Wroclaw, 50-367, Poland
| | - Jacek Daroszewski
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, L. Pasteur 4, Wroclaw, 50-367, Poland.
| |
Collapse
|
27
|
Association of leisure time physical activity and NMR-detected circulating amino acids in peripubertal girls: A 7.5-year longitudinal study. Sci Rep 2017; 7:14026. [PMID: 29070851 PMCID: PMC5656647 DOI: 10.1038/s41598-017-14116-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/02/2017] [Indexed: 11/08/2022] Open
Abstract
This study investigated the longitudinal associations of physical activity and circulating amino acids concentration in peripubertal girls. Three hundred ninety-six Finnish girls participated in the longitudinal study from childhood (mean age 11.2 years) to early adulthood (mean age 18.2 years). Circulating amino acids were assessed by nuclear magnetic resonance spectroscopy. LTPA was assessed by self-administered questionnaire. We found that isoleucine, leucine and tyrosine levels were significantly higher in individuals with lower LTPA than their peers at age 11 (p < 0.05 for all), independent of BMI. In addition, isoleucine and leucine levels increased significantly (~15%) from childhood to early adulthood among the individuals with consistently low LTPA (p < 0.05 for both), while among the individuals with consistently high LTPA the level of these amino acids remained virtually unchanged. In conclusion, high level of physical activity is associated lower serum isoleucine and leucine in peripubertal girls, independent of BMI, which may serve as a mechanistic link between high level of physical activity in childhood and its health benefits later in life. Further studies in peripubertal boys are needed to assess whether associations between physical activity and circulating amino acids in children adolescents are sex-specific.
Collapse
|
28
|
Association of circulating branched-chain amino acids with cardiometabolic traits differs between adults and the oldest-old. Oncotarget 2017; 8:88882-88893. [PMID: 29179484 PMCID: PMC5687654 DOI: 10.18632/oncotarget.21489] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/24/2017] [Indexed: 01/05/2023] Open
Abstract
Branched-chain amino acids (BCAAs) are promising for their potential anti-aging effects. However, findings in adults suggest that circulating BCAAs are associated with cardiometabolic risk. Moreover, little information is available about how BCAAs influence clustered cardiometabolic traits in the oldest-old (>85 years), which are the fastest-growing segment of the population in developed countries. Here, we applied a targeted metabolomics approach to measure serum BCAAs in Chinese participants (aged 21-110 years) based on a longevity cohort. The differences of quantitative and dichotomous cardiometabolic traits were compared across BCAAs tertiles. A generalized additive model (GAM) was used to explore the dose-response relationship between BCAAs and the risk of metabolic syndrome (MetS). Overall, BCAAs were correlated with most of the examined cardiometabolic traits. The odds ratios for MetS across the increasing BCAA tertiles were 3.22 (1.70 - 6.12) and 5.27 (2.88 - 9.94, referenced to tertile 1) after adjusting for age and gender (Ptrend < 0.001). The association still existed after further controlling for lifestyle factors and inflammation factors. However, the correlations between circulating BCAAs and quantitative traits were weakened in the oldest-old, except for lipids, the levels of which were distinctly different from those in adults. The stratified analysis also suggested that the risky BCAAs-MetS association was more pronounced in adults than in the oldest-old. Moreover, generalized additive model (GAM)-based curve-fitting suggested that only when BCAAs exceeded a threshold (approximately 450 μmol/L) was the BCAAs-MetS association significant. The relationship might be aging-dependent and was more pronounced in adults than in the oldest-old.
Collapse
|
29
|
Gene-Diet Interactions in Type 2 Diabetes: The Chicken and Egg Debate. Int J Mol Sci 2017; 18:ijms18061188. [PMID: 28574454 PMCID: PMC5486011 DOI: 10.3390/ijms18061188] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Consistent evidence from both experimental and human studies indicates that Type 2 diabetes mellitus (T2DM) is a complex disease resulting from the interaction of genetic, epigenetic, environmental, and lifestyle factors. Nutrients and dietary patterns are important environmental factors to consider in the prevention, development and treatment of this disease. Nutritional genomics focuses on the interaction between bioactive food components and the genome and includes studies of nutrigenetics, nutrigenomics and epigenetic modifications caused by nutrients. There is evidence supporting the existence of nutrient-gene and T2DM interactions coming from animal studies and family-based intervention studies. Moreover, many case-control, cohort, cross-sectional cohort studies and clinical trials have identified relationships between individual genetic load, diet and T2DM. Some of these studies were on a large scale. In addition, studies with animal models and human observational studies, in different countries over periods of time, support a causative relationship between adverse nutritional conditions during in utero development, persistent epigenetic changes and T2DM. This review provides comprehensive information on the current state of nutrient-gene interactions and their role in T2DM pathogenesis, the relationship between individual genetic load and diet, and the importance of epigenetic factors in influencing gene expression and defining the individual risk of T2DM.
Collapse
|
30
|
Bifari F, Nisoli E. Branched-chain amino acids differently modulate catabolic and anabolic states in mammals: a pharmacological point of view. Br J Pharmacol 2017; 174:1366-1377. [PMID: 27638647 PMCID: PMC5429325 DOI: 10.1111/bph.13624] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/28/2016] [Accepted: 08/03/2016] [Indexed: 12/21/2022] Open
Abstract
Substantial evidence has been accumulated suggesting that branched-chain amino acid (BCAA) supplementation or BCAA-rich diets have a positive effect on the regulation of body weight, muscle protein synthesis, glucose homeostasis, the ageing process and extend healthspan. Despite these beneficial effects, epidemiological studies have shown that BCAA plasma concentrations and BCAA metabolism are altered in several metabolic disorders, including type 2 diabetes mellitus and cardiovascular diseases. In this review article, we present an overview of the current literature on the different effects of BCAAs in health and disease. We also highlight the results showing the most promising therapeutic effects of dietary BCAA supplementation and discuss how BCAAs can trigger different and even opposite effects, depending on the catabolic and anabolic states of the organisms. Moreover, we consider the effects of BCAAs when metabolism is abnormal, in the presence of a mixture of different anabolic and catabolic signals. These unique pharmacodynamic properties may partially explain some of the markedly different effects found in BCAA supplementation studies. To predict accurately these effects, the overall catabolic/anabolic status of patients should be carefully considered. In wider terms, a correct modulation of metabolic disorders would make nutraceutical interventions with BCAAs more effective. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| |
Collapse
|
31
|
Wang J, Zhou L, Lei H, Hao F, Liu X, Wang Y, Tang H. Simultaneous Quantification of Amino Metabolites in Multiple Metabolic Pathways Using Ultra-High Performance Liquid Chromatography with Tandem-mass Spectrometry. Sci Rep 2017; 7:1423. [PMID: 28469184 PMCID: PMC5431165 DOI: 10.1038/s41598-017-01435-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/28/2017] [Indexed: 01/09/2023] Open
Abstract
Metabolites containing amino groups cover multiple pathways and play important roles in redox homeostasis and biosyntheses of proteins, nucleotides and neurotransmitters. Here, we report a new method for simultaneous quantification of 124 such metabolites. This is achieved by derivatization-assisted sensitivity enhancement with 5-aminoisoquinolyl-N-hydroxysuccinimidyl carbamate (5-AIQC) followed with comprehensive analysis using ultra-high performance liquid chromatography and electrospray ionization tandem mass spectrometry (UHPLC-MS/MS). In an one-pot manner, this quantification method enables simultaneous coverage of 20 important metabolic pathways including protein biosynthesis/degradation, biosyntheses of catecholamines, arginine and glutathione, metabolisms of homocysteine, taurine-hypotaurine etc. Compared with the reported ones, this method is capable of simultaneously quantifying thiols, disulfides and other oxidation-prone analytes in a single run and suitable for quantifying aromatic amino metabolites. This method is also much more sensitive for all tested metabolites with LODs well below 50 fmol (at sub-fmol for most tested analytes) and shows good precision for retention time and quantitation with inter-day and intra-day relative standard deviations (RSDs) below 15% and good recovery from renal cancer tissue, rat urine and plasma. The method was further applied to quantify the amino metabolites in silkworm hemolymph from multiple developmental stages showing its applicability in metabolomics and perhaps some clinical chemistry studies.
Collapse
Affiliation(s)
- Jin Wang
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Fudan University, Shanghai International Centre for Molecular Phenomics, Collaborative Innovation Center for Genetics and Development, Shanghai, 200438, China.,CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lihong Zhou
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fuhua Hao
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xin Liu
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310058, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Fudan University, Shanghai International Centre for Molecular Phenomics, Collaborative Innovation Center for Genetics and Development, Shanghai, 200438, China.
| |
Collapse
|
32
|
Xiao Q, Derkach A, Moore SC, Zheng W, Shu XO, Gu F, Caporaso NE, Sampson JN, Matthews CE. Habitual Sleep and human plasma metabolomics. Metabolomics 2017; 13:63. [PMID: 29657561 PMCID: PMC5897041 DOI: 10.1007/s11306-017-1205-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Sleep plays an important role in cardiometabolic health. The sleep-wake cycle is partially driven by the endogenous circadian clock, which governs a range of metabolic pathways. The association between sleep and cardiometabolic health may be mediated by alterations of the human metabolome. OBJECTIVES To better understand the biological mechanism underlying the association between sleep and health, we examined human plasma metabolites in relation to sleep duration and sleep timing. METHODS Using an untargeted approach, 329 fasting plasma metabolites were measured in 277 Chinese participants. We measured sleep timing (midpoint between bedtime and wake up time) using repeated time-use surveys (4 weeks during one year) and previous night sleep duration from questionnaires completed before sample donation. RESULTS We found 64 metabolites that were associated with sleep timing with a false discovery rate of 0.2 or lower, after adjusting for potential confounders. Notably, we found that later sleep timing was associated with higher levels of multiple metabolites in amino acid metabolism, including branched chain amino acids and their gamma-glutamyl dipeptides. We also found widespread associations between sleep timing and numerous metabolites in lipid metabolism, including bile acids, carnitines and fatty acids. In contrast, previous night sleep duration was not associated with plasma metabolites in our study. CONCLUSION Sleep timing was associated with a large number of metabolites across a variety of biochemical pathways. Some metabolite associations are consistent with a relationship between late chronotype and adverse effects on cardiometabolic health.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA
- Correspondence: Qian Xiao, PhD, Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA (; phone: 319-335-9348)
| | - Andriy Derkach
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Steven C Moore
- Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Fangyi Gu
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Neil E Caporaso
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Joshua N Sampson
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Charles E Matthews
- Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
33
|
Saito R, Rocanin-Arjo A, You YH, Darshi M, Van Espen B, Miyamoto S, Pham J, Pu M, Romoli S, Natarajan L, Ju W, Kretzler M, Nelson R, Ono K, Thomasova D, Mulay SR, Ideker T, D'Agati V, Beyret E, Belmonte JCI, Anders HJ, Sharma K. Systems biology analysis reveals role of MDM2 in diabetic nephropathy. JCI Insight 2016; 1:e87877. [PMID: 27777973 DOI: 10.1172/jci.insight.87877] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To derive new insights in diabetic complications, we integrated publicly available human protein-protein interaction (PPI) networks with global metabolic networks using metabolomic data from patients with diabetic nephropathy. We focused on the participating proteins in the network that were computationally predicted to connect the urine metabolites. MDM2 had the highest significant number of PPI connections. As validation, significant downregulation of MDM2 gene expression was found in both glomerular and tubulointerstitial compartments of kidney biopsy tissue from 2 independent cohorts of patients with diabetic nephropathy. In diabetic mice, chemical inhibition of MDM2 with Nutlin-3a led to reduction in the number of podocytes, increased blood urea nitrogen, and increased mortality. Addition of Nutlin-3a decreased WT1+ cells in embryonic kidneys. Both podocyte- and tubule-specific MDM2-knockout mice exhibited severe glomerular and tubular dysfunction, respectively. Interestingly, the only 2 metabolites that were reduced in both podocyte and tubule-specific MDM2-knockout mice were 3-methylcrotonylglycine and uracil, both of which were also reduced in human diabetic kidney disease. Thus, our bioinformatics tool combined with multi-omics studies identified an important functional role for MDM2 in glomeruli and tubules of the diabetic nephropathic kidney and links MDM2 to a reduction in 2 key metabolite biomarkers.
Collapse
Affiliation(s)
- Rintaro Saito
- Institute of Metabolomic Medicine.,Center for Renal Translational Medicine, Division of Nephrology-Hypertension.,Division of Medical Genetics, Department of Medicine, UCSD, San Diego, California, USA
| | - Anaïs Rocanin-Arjo
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Young-Hyun You
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension.,Division of Medical Genetics, Department of Medicine, UCSD, San Diego, California, USA
| | - Manjula Darshi
- Institute of Metabolomic Medicine.,Division of Medical Genetics, Department of Medicine, UCSD, San Diego, California, USA
| | - Benjamin Van Espen
- Institute of Metabolomic Medicine.,Division of Medical Genetics, Department of Medicine, UCSD, San Diego, California, USA
| | - Satoshi Miyamoto
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension.,Division of Medical Genetics, Department of Medicine, UCSD, San Diego, California, USA
| | - Jessica Pham
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension.,Division of Medical Genetics, Department of Medicine, UCSD, San Diego, California, USA
| | - Minya Pu
- Institute of Metabolomic Medicine.,Department of Family Medicine and Epidemiology, UCSD, San Diego, California, USA
| | - Simone Romoli
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Loki Natarajan
- Institute of Metabolomic Medicine.,Department of Family Medicine and Epidemiology, UCSD, San Diego, California, USA
| | - Wenjun Ju
- Department of Internal Medicine, Nephrology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthias Kretzler
- Department of Internal Medicine, Nephrology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert Nelson
- National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Keiichiro Ono
- Division of Medical Genetics, Department of Medicine, UCSD, San Diego, California, USA
| | - Dana Thomasova
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Shrikant R Mulay
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Trey Ideker
- Division of Medical Genetics, Department of Medicine, UCSD, San Diego, California, USA
| | - Vivette D'Agati
- Renal Pathology Laboratory, Columbia University, College of Physicians and Surgeons, Department of Pathology, New York, New York, USA
| | - Ergin Beyret
- Salk Institute for Biological Studies, San Diego, California, USA
| | | | - Hans Joachim Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Kumar Sharma
- Institute of Metabolomic Medicine.,Center for Renal Translational Medicine, Division of Nephrology-Hypertension.,Division of Medical Genetics, Department of Medicine, UCSD, San Diego, California, USA.,Veterans Affairs Health Systems, San Diego, California, USA
| |
Collapse
|
34
|
Patin F, Baranek T, Vourc'h P, Nadal-Desbarats L, Goossens JF, Marouillat S, Dessein AF, Descat A, Hounoum BM, Bruno C, Watier H, Si-Tahar M, Leman S, Lecron JC, Andres CR, Corcia P, Blasco H. Combined Metabolomics and Transcriptomics Approaches to Assess the IL-6 Blockade as a Therapeutic of ALS: Deleterious Alteration of Lipid Metabolism. Neurotherapeutics 2016; 13:905-917. [PMID: 27444617 PMCID: PMC5081117 DOI: 10.1007/s13311-016-0461-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In amyotrophic lateral sclerosis (ALS), motor neuron degeneration occurs simultaneously with systemic metabolic impairment and neuroinflammation. Playing an important role in the regulation of both phenomena, interleukin (IL)-6, a major cytokine of the inflammatory response has been proposed as a target for management of ALS. Although a pilot clinical trial provided promising results in humans, another recent preclinical study showed that knocking out the IL-6 gene in mice carrying ALS did not improve clinical outcome. In this study, we aimed to determine the relevance of the IL-6 pathway blockade in a mouse model of ALS by using a pharmacological antagonist of IL-6, a murine surrogate of tocilizumab, namely MR16-1. We analyzed the immunological and metabolic effects of IL-6 blockade by cytokine measurement, blood cell immunophenotyping, targeted metabolomics, and transcriptomics. A deleterious clinical effect of MR16-1 was revealed, with a speeding up of weight loss (p = 0.0041) and decreasing body weight (p < 0.05). A significant increase in regulatory T-cell count (p = 0.0268) and a decrease in C-X-C ligand-1 concentrations in plasma (p = 0.0479) were observed. Metabolomic and transcriptomic analyses revealed that MR16-1 mainly affected branched-chain amino acid, lipid, arginine, and proline metabolism. IL-6 blockade negatively affected body weight, despite a moderated anti-inflammatory effect. Metabolic effects of IL-6 were mild compared with metabolic disturbances observed in ALS, but a modification of lipid metabolism by therapy was identified. These results indicate that IL-6 blockade did not improve clinical outcome of a mutant superoxide dismutase 1 mouse model of ALS.
Collapse
Affiliation(s)
- Franck Patin
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France.
- CHRU de Tours, Laboratoire de Biochimie et de Biologie Moléculaire, Tours, France.
| | - Thomas Baranek
- INSERM, UMR 1100 "Centre d'étude des Pathologies Respiratoires, Université François Rabelais, Tours, France
| | - Patrick Vourc'h
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
- CHRU de Tours, Laboratoire de Biochimie et de Biologie Moléculaire, Tours, France
- PPF "Analyse des systèmes biologiques", Université François Rabelais de Tours, Tours, France
| | - Lydie Nadal-Desbarats
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
- PPF "Analyse des systèmes biologiques", Université François Rabelais de Tours, Tours, France
| | - Jean-François Goossens
- Centre Universitaire de Mesures et d'Analyses (CUMA), Université de Lille 2, Lille, France
| | - Sylviane Marouillat
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
| | | | - Amandine Descat
- Centre Universitaire de Mesures et d'Analyses (CUMA), Université de Lille 2, Lille, France
| | | | - Clément Bruno
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
- CHRU de Tours, Laboratoire de Biochimie et de Biologie Moléculaire, Tours, France
| | - Hervé Watier
- CHRU de Tours, Laboratoire d'Immunologie, Tours, France
| | - Mustafa Si-Tahar
- INSERM, UMR 1100 "Centre d'étude des Pathologies Respiratoires, Université François Rabelais, Tours, France
| | - Samuel Leman
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
| | - Jean-Claude Lecron
- CHU de Poitiers, Laboratoire d'Immunologie, Poitiers, France
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UPRES EA4331, Pôle Biologie Santé, Université de Poitiers, Poitiers, France
| | - Christian R Andres
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
- CHRU de Tours, Laboratoire de Biochimie et de Biologie Moléculaire, Tours, France
| | - Philippe Corcia
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
- CHRU de Tours, Fédération des CRCSLA Tours-Limoges (LITORALS), Tours, France
| | - Hélène Blasco
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
- CHRU de Tours, Laboratoire de Biochimie et de Biologie Moléculaire, Tours, France
| |
Collapse
|
35
|
Xiao Q, Moore SC, Keadle SK, Xiang YB, Zheng W, Peters TM, Leitzmann MF, Ji BT, Sampson JN, Shu XO, Matthews CE. Objectively measured physical activity and plasma metabolomics in the Shanghai Physical Activity Study. Int J Epidemiol 2016; 45:1433-1444. [PMID: 27073263 PMCID: PMC5100606 DOI: 10.1093/ije/dyw033] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Physical activity is associated with a variety of health benefits, but the biological mechanisms that explain these associations remain unclear. Metabolomics is a powerful tool to comprehensively evaluate global metabolic signature associated with physical activity and helps to pinpoint the pathways that mediate the health effects of physical activity. There has been limited research on metabolomics and habitual physical activity, and no metabolomics study has examined sedentary behaviour and physical activity of different intensities. METHODS In a group of Chinese adults (N = 277), we used an untargeted approach to examine 328 plasma metabolites in relation to accelerometer-measured physical activity, including overall volume of physical activity (physical activity energy expenditure (PAEE) and duration of physically active time) and sedentary time, and measures related to different intensities of physical activity (moderate-to-vigorous activity (MVPA), light activity, average physical activity intensity). RESULTS We identified 11 metabolites that were associated with total activity, with a false discovery rate of 0.2 or lower. Notably, we observed generally lower levels of amino acids in the valine, leucine and isoleucine metabolism pathway and of carbohydrates in sugar metabolism among participants with higher activity levels. Moreover, we found that PAEE, time spent in light activity and duration of physically active time were associated with a similar metabolic pattern, whereas the metabolic signature associated with sedentary time mirrored this pattern. In contrast, average activity intensity and time spent in MVPA appeared to be associated with somewhat different metabolic patterns. CONCLUSIONS Overall, the metabolomics patterns support a beneficial role of higher volume of physical activity in cardiometabolic health. Our findings identified candidate pathways and provide insight into the mechanisms underlying the health effects of physical activity.
Collapse
Affiliation(s)
- Qian Xiao
- Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Steven C Moore
- Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Sarah K Keadle
- Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Yong-Bing Xiang
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Wei Zheng
- Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tricia M Peters
- Department of Internal Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Michael F Leitzmann
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Bu-Tian Ji
- Occupational and Environmental Epidemiology Branch
| | - Joshua N Sampson
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Xiao-Ou Shu
- Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Charles E Matthews
- Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
36
|
Baranyi A, Amouzadeh-Ghadikolai O, von Lewinski D, Rothenhäusler HB, Theokas S, Robier C, Mangge H, Reicht G, Hlade P, Meinitzer A. Branched-Chain Amino Acids as New Biomarkers of Major Depression - A Novel Neurobiology of Mood Disorder. PLoS One 2016; 11:e0160542. [PMID: 27490818 PMCID: PMC4973973 DOI: 10.1371/journal.pone.0160542] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/21/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The proteinogenic branched-chain amino acids (BCAAs) valine, leucine and isoleucine might play an unrecognised crucial role in the development of depression through their activation of the mammalian target of rapamycin (mTor) pathway. The aim of this research project is to evaluate whether BCAAs are altered in patients with major depression and might thus be appropriate biomarkers for major depression. METHODS The concentrations of valine, leucine and isoleucine were determined in 71 in-patients with major depression and 48 healthy controls by high-pressure liquid chromatography. Psychiatric and laboratory assessments were obtained at the time of in-patient admittance. RESULTS The BCAAs are significantly decreased in patients with major depression in comparison with healthy subjects (valine: Mann-Whitney-U: 968.0; p <0.0001, leucine: Mann-Whitney-U: 1246.5; p = 0.013, isoleucine: Mann-Whitney-U: 1252.5; p = 0.014). Furthermore, as shown by Spearman's rank correlation coefficients, there is a significant negative correlation between valine, leucine and isoleucine concentrations and the Hamilton Depression Rating Scale (HAMD-17) as well as Beck Depression Inventory (BDI-II) scores. CONCLUSIONS Our study results are strong evidence that in patients with major depression, BCAAs might be appropriate biomarkers for depression. Reduced activation of the mammalian target of rapamycin (mTor) due to a reduction of BCAAs might play a crucial unrecognised factor in the etiology of depression and may evoke depressive symptomatology and lower energy metabolism in patients with major depression. In the future, mTor and its up- and downstream signalling partners might be important targets for the development of novel antidepressants.
Collapse
Affiliation(s)
- Andreas Baranyi
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
- Institute for International Management Practice, ARU Cambridge, Cambridge, UK
| | | | - Dirk von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Hans-Bernd Rothenhäusler
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Simon Theokas
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Christoph Robier
- Hospital of the Brothers of St. John of God, Graz, Austria
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Gerhard Reicht
- Hospital of the Brothers of St. John of God, Graz, Austria
| | - Peter Hlade
- Hospital of the Brothers of St. John of God, Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
37
|
Liu X, Gao J, Chen J, Wang Z, Shi Q, Man H, Guo S, Wang Y, Li Z, Wang W. Identification of metabolic biomarkers in patients with type 2 diabetic coronary heart diseases based on metabolomic approach. Sci Rep 2016; 6:30785. [PMID: 27470195 PMCID: PMC4965763 DOI: 10.1038/srep30785] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetic coronary heart disease (T2DM-CHD) is a kind of serious and complex disease. Great attention has been paid to exploring its mechanism; however, the detailed understanding of T2DM-CHD is still limited. Plasma samples from 15 healthy controls, 13 coronary heart disease (CHD) patients, 15 type 2 diabetes mellitus (T2DM) patients and 28 T2DM-CHD patients were analyzed in this research. The potential biomarkers of CHD and T2DM were detected and screened out by (1)H NMR-based plasma metabolic profiling and multivariate data analysis. About 11 and 12 representative metabolites of CHD and T2DM were identified respectively, mainly including alanine, arginine, proline, glutamine, creatinine and acetate. Then the diagnostic model was further constructed based on the previous metabolites of CHD and T2DM to detect T2DM-CHD with satisfying sensitivity of 92.9%, specificity of 93.3% and accuracy of 93.2%, validating the robustness of (1)H NMR-based plasma metabolic profiling to diagnostic strategy. The results demonstrated that the NMR-based metabolomics approach processed good performance to identify diagnostic plasma biomarkers and most identified metabolites related to T2DM and CHD could be considered as predictors of T2DM-CHD as well as the therapeutic targets for prevention, which provided new insight into diagnosing and forecasting of complex diseases.
Collapse
Affiliation(s)
- Xinfeng Liu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jian Gao
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianxin Chen
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhiyong Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Shi
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hongxue Man
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Shuzhen Guo
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yingfeng Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhongfeng Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China.,Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
38
|
Nowak C, Sundström J, Gustafsson S, Giedraitis V, Lind L, Ingelsson E, Fall T. Protein Biomarkers for Insulin Resistance and Type 2 Diabetes Risk in Two Large Community Cohorts. Diabetes 2016; 65:276-84. [PMID: 26420861 PMCID: PMC5860375 DOI: 10.2337/db15-0881] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/21/2015] [Indexed: 12/12/2022]
Abstract
Insulin resistance (IR) is a precursor of type 2 diabetes (T2D), and improved risk prediction and understanding of the pathogenesis are needed. We used a novel high-throughput 92-protein assay to identify circulating biomarkers for HOMA of IR in two cohorts of community residents without diabetes (n = 1,367) (mean age 73 ± 3.6 years). Adjusted linear regression identified cathepsin D and confirmed six proteins (leptin, renin, interleukin-1 receptor antagonist [IL-1ra], hepatocyte growth factor, fatty acid-binding protein 4, and tissue plasminogen activator [t-PA]) as IR biomarkers. Mendelian randomization analysis indicated a positive causal effect of IR on t-PA concentrations. Two biomarkers, IL-1ra (hazard ratio [HR] 1.28, 95% CI 1.03-1.59) and t-PA (HR 1.30, 1.02-1.65) were associated with incident T2D, and t-PA predicted 5-year transition to hyperglycemia (odds ratio 1.30, 95% CI 1.02-1.65). Additional adjustment for fasting glucose rendered both coefficients insignificant and revealed an association between renin and T2D (HR 0.79, 0.62-0.99). LASSO regression suggested a risk model including IL-1ra, t-PA, and the Framingham Offspring Study T2D score, but prediction improvement was nonsignificant (difference in C-index 0.02, 95% CI -0.08 to 0.12) over the T2D score only. In conclusion, proteomic blood profiling indicated cathepsin D as a new IR biomarker and suggested a causal effect of IR on t-PA.
Collapse
Affiliation(s)
- Christoph Nowak
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan Sundström
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K. Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Tove Fall
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
39
|
Klein MS, Shearer J. Metabolomics and Type 2 Diabetes: Translating Basic Research into Clinical Application. J Diabetes Res 2016; 2016:3898502. [PMID: 26636104 PMCID: PMC4655283 DOI: 10.1155/2016/3898502] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/11/2015] [Accepted: 03/25/2015] [Indexed: 01/14/2023] Open
Abstract
Type 2 diabetes (T2D) and its comorbidities have reached epidemic proportions, with more than half a billion cases expected by 2030. Metabolomics is a fairly new approach for studying metabolic changes connected to disease development and progression and for finding predictive biomarkers to enable early interventions, which are most effective against T2D and its comorbidities. In metabolomics, the abundance of a comprehensive set of small biomolecules (metabolites) is measured, thus giving insight into disease-related metabolic alterations. This review shall give an overview of basic metabolomics methods and will highlight current metabolomics research successes in the prediction and diagnosis of T2D. We summarized key metabolites changing in response to T2D. Despite large variations in predictive biomarkers, many studies have replicated elevated plasma levels of branched-chain amino acids and their derivatives, aromatic amino acids and α-hydroxybutyrate ahead of T2D manifestation. In contrast, glycine levels and lysophosphatidylcholine C18:2 are depressed in both predictive studies and with overt disease. The use of metabolomics for predicting T2D comorbidities is gaining momentum, as are our approaches for translating basic metabolomics research into clinical applications. As a result, metabolomics has the potential to enable informed decision-making in the realm of personalized medicine.
Collapse
Affiliation(s)
- Matthias S. Klein
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
- *Matthias S. Klein:
| | - Jane Shearer
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| |
Collapse
|
40
|
Joyce R, Kuziene V, Zou X, Wang X, Pullen F, Loo RL. Development and validation of an ultra-performance liquid chromatography quadrupole time of flight mass spectrometry method for rapid quantification of free amino acids in human urine. Amino Acids 2015; 48:219-34. [PMID: 26319643 PMCID: PMC4710665 DOI: 10.1007/s00726-015-2076-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/17/2015] [Indexed: 12/18/2022]
Abstract
An ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-qTOF-MS) method using hydrophilic interaction liquid chromatography was developed and validated for simultaneous quantification of 18 free amino acids in urine with a total acquisition time including the column re-equilibration of less than 18 min per sample. This method involves simple sample preparation steps which consisted of 15 times dilution with acetonitrile to give a final composition of 25 % aqueous and 75 % acetonitrile without the need of any derivatization. The dynamic range for our calibration curve is approximately two orders of magnitude (120-fold from the lowest calibration curve point) with good linearity (r (2) ≥ 0.995 for all amino acids). Good separation of all amino acids as well as good intra- and inter-day accuracy (<15 %) and precision (<15 %) were observed using three quality control samples at a concentration of low, medium and high range of the calibration curve. The limits of detection (LOD) and lower limit of quantification of our method were ranging from approximately 1-300 nM and 0.01-0.5 µM, respectively. The stability of amino acids in the prepared urine samples was found to be stable for 72 h at 4 °C, after one freeze thaw cycle and for up to 4 weeks at -80 °C. We have applied this method to quantify the content of 18 free amino acids in 646 urine samples from a dietary intervention study. We were able to quantify all 18 free amino acids in these urine samples, if they were present at a level above the LOD. We found our method to be reproducible (accuracy and precision were typically <10 % for QCL, QCM and QCH) and the relatively high sample throughput nature of this method potentially makes it a suitable alternative for the analysis of urine samples in clinical setting.
Collapse
Affiliation(s)
- Richard Joyce
- Medway Metabonomics Research Group, Medway School of Pharmacy, Universities of Kent and Greenwich, Kent, UK
- RJMS Consultancy, Rochester, Kent, UK
| | - Viktorija Kuziene
- Medway Metabonomics Research Group, Medway School of Pharmacy, Universities of Kent and Greenwich, Kent, UK
| | - Xin Zou
- Medway Metabonomics Research Group, Medway School of Pharmacy, Universities of Kent and Greenwich, Kent, UK
| | - Xueting Wang
- Medway Metabonomics Research Group, Medway School of Pharmacy, Universities of Kent and Greenwich, Kent, UK
| | - Frank Pullen
- Medway Metabonomics Research Group, School of Science, University of Greenwich, Kent, UK
| | - Ruey Leng Loo
- Medway Metabonomics Research Group, Medway School of Pharmacy, Universities of Kent and Greenwich, Kent, UK.
| |
Collapse
|
41
|
Edwards C, Canfield J, Copes N, Brito A, Rehan M, Lipps D, Brunquell J, Westerheide SD, Bradshaw PC. Mechanisms of amino acid-mediated lifespan extension in Caenorhabditis elegans. BMC Genet 2015; 16:8. [PMID: 25643626 PMCID: PMC4328591 DOI: 10.1186/s12863-015-0167-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 01/16/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Little is known about the role of amino acids in cellular signaling pathways, especially as it pertains to pathways that regulate the rate of aging. However, it has been shown that methionine or tryptophan restriction extends lifespan in higher eukaryotes and increased proline or tryptophan levels increase longevity in C. elegans. In addition, leucine strongly activates the TOR signaling pathway, which when inhibited increases lifespan. RESULTS Therefore each of the 20 proteogenic amino acids was individually supplemented to C. elegans and the effects on lifespan were determined. All amino acids except phenylalanine and aspartate extended lifespan at least to a small extent at one or more of the 3 concentrations tested with serine and proline showing the largest effects. 11 of the amino acids were less potent at higher doses, while 5 even decreased lifespan. Serine, proline, or histidine-mediated lifespan extension was greatly inhibited in eat-2 worms, a model of dietary restriction, in daf-16/FOXO, sir-2.1, rsks-1 (ribosomal S6 kinase), gcn-2, and aak-2 (AMPK) longevity pathway mutants, and in bec-1 autophagy-defective knockdown worms. 8 of 10 longevity-promoting amino acids tested activated a SKN-1/Nrf2 reporter strain, while serine and histidine were the only amino acids from those to activate a hypoxia-inducible factor (HIF-1) reporter strain. Thermotolerance was increased by proline or tryptophan supplementation, while tryptophan-mediated lifespan extension was independent of DAF-16/FOXO and SKN-1/Nrf2 signaling, but tryptophan and several related pyridine-containing compounds induced the mitochondrial unfolded protein response and an ER stress response. High glucose levels or mutations affecting electron transport chain (ETC) function inhibited amino acid-mediated lifespan extension suggesting that metabolism plays an important role. Providing many other cellular metabolites to C. elegans also increased longevity suggesting that anaplerosis of tricarboxylic acid (TCA) cycle substrates likely plays a role in lifespan extension. CONCLUSIONS Supplementation of C. elegans with 18 of the 20 individual amino acids extended lifespan, but lifespan often decreased with increasing concentration suggesting hormesis. Lifespan extension appears to be caused by altered mitochondrial TCA cycle metabolism and respiratory substrate utilization resulting in the activation of the DAF-16/FOXO and SKN-1/Nrf2 stress response pathways.
Collapse
Affiliation(s)
- Clare Edwards
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - John Canfield
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - Neil Copes
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - Andres Brito
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - Muhammad Rehan
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - David Lipps
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - Jessica Brunquell
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - Sandy D Westerheide
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - Patrick C Bradshaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|