1
|
Smardz J, Jenca A, Orzeszek S. The Importance of Genetic Background and Neurotransmission in the Pathogenesis of the Co-Occurrence of Sleep Bruxism and Sleep-Disordered Breathing-Review of a New Perspective. J Clin Med 2024; 13:7091. [PMID: 39685550 DOI: 10.3390/jcm13237091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Sleep bruxism (SB) and sleep-disordered breathing (SDB) are two prevalent conditions that significantly impact overall health. Studies suggest that up to 49.7% of individuals with SDB also exhibit symptoms of SB. This review aims to provide a comprehensive analysis of the role of genetic background and neurotransmission in the pathogenesis of the co-occurrence of SB and SDB. It seeks to synthesize current knowledge, highlight gaps in the existing literature, and propose a new perspective that integrates genetic and neurobiological factors. This review shows that both SB and SDB may be influenced by a combination of genetic, neurochemical, and environmental factors that contribute to their shared pathophysiology. The key neurotransmitters-dopamine, serotonin, and GABA-may play a significant role in their co-occurrence by regulating motor activity, sleep architecture, and respiratory control. Understanding genetic and neurochemical mechanisms may allow for more precise diagnostic tools and more personalized treatment approaches regarding SB and SDB. Clinically, there is a need for interdisciplinary collaboration between sleep specialists, dentists, neurologists, and geneticists. There is also a need to conduct large-scale genetic studies, coupled with neuroimaging and neurophysiological research, uncovering additional insights into the shared mechanisms of SB and SDB.
Collapse
Affiliation(s)
- Joanna Smardz
- Department of Experimental Dentistry, Wroclaw Medical University, 50-425 Wroclaw, Poland
| | - Andrej Jenca
- Clinic of Stomatology and Maxillofacial Surgery, Faculty of Medicine, University Pavol Josef Safarik and Akademia Kosice, 041 90 Kosice, Slovakia
| | - Sylwia Orzeszek
- Department of Experimental Dentistry, Wroclaw Medical University, 50-425 Wroclaw, Poland
| |
Collapse
|
2
|
Tahiri J, Mian M, Aftan F, Habbal S, Salehi F, Reddy PH, Reddy AP. Serotonin in depression and Alzheimer's disease: Focus on SSRI's beneficial effects. Ageing Res Rev 2024; 101:102537. [PMID: 39389238 PMCID: PMC11531385 DOI: 10.1016/j.arr.2024.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Depression is a complex and pervasive mental health disorder affecting millions globally. Serotonin, a critical neurotransmitter, plays a central role in the pathophysiology of depression. This review explores serotonin's multifaceted role in depression, focusing on its synthesis, bioavailability, receptor interactions, and the impact of various factors, including diet, stress, and gender differences. This review aims to provide a comprehensive understanding of serotonin's role in depression by examining its synthesis and structure, its bioavailability and dietary influences, and its interactions with stress and immune responses. Additionally, it investigates the influence of age, socioeconomic status, and gender on depression, and integrates findings from animal research to elucidate serotonin's impact on mood disorders and cognitive decline. A literature review was conducted using PubMed, Google Scholar, and Embase databases. Key focus areas included serotonin synthesis and receptor interactions, dietary effects on serotonin bioavailability, and the relationship between serotonin, immune responses, and stress. Gender differences, age-related factors, and socioeconomic influences on depression were also examined. Studies were thematically categorized and analyzed to provide a cohesive overview. Our review highlights that serotonin synthesis involves a complex enzymatic process, with recent structural studies revealing intricate receptor interactions. Dietary factors significantly impact serotonin levels, with interventions potentially modulating mood disorders. Stress and immune responses are linked to serotonin dynamics, with chronic stress exacerbating mood disorders and influencing cognitive decline. Animal studies underscore serotonin's role in mood regulation and cognitive function, while human research reveals how age, gender, and socioeconomic factors affect depression. The findings emphasize the need for a multidimensional approach to understanding and treating depression. Various factors, including diet, stress, and immune responses, influence serotonin's role in mood disorders. The review suggests potential therapeutic pathways involving dietary interventions and stress management. Furthermore, gender-specific considerations and the impact of age and socioeconomic status on depression outcomes highlight the need for tailored treatment strategies.
Collapse
Affiliation(s)
- Jihane Tahiri
- School of Biology, Texas Tech University, Lubbock, TX 79430, USA.
| | - Maamoon Mian
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Fatima Aftan
- School of Biology, University of North Texas, Denton, TX 76201, USA.
| | - Saadeddine Habbal
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Farhood Salehi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Arubala P Reddy
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
3
|
Bertollo AG, Mingoti MED, Ignácio ZM. Neurobiological mechanisms in the kynurenine pathway and major depressive disorder. Rev Neurosci 2024:revneuro-2024-0065. [PMID: 39245854 DOI: 10.1515/revneuro-2024-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Major depressive disorder (MDD) is a prevalent psychiatric disorder that has damage to people's quality of life. Tryptophan is the precursor to serotonin, a critical neurotransmitter in mood modulation. In mammals, most free tryptophan is degraded by the kynurenine pathway (KP), resulting in a range of metabolites involved in inflammation, immune response, and neurotransmission. The imbalance between quinolinic acid (QA), a toxic metabolite, and kynurenic acid (KynA), a protective metabolite, is a relevant phenomenon involved in the pathophysiology of MDD. Proinflammatory cytokines increase the activity of the enzyme indoleamine 2,3-dioxygenase (IDO), leading to the degradation of tryptophan in the KP and an increase in the release of QA. IDO activates proinflammatory genes, potentiating neuroinflammation and deregulating other physiological mechanisms related to chronic stress and MDD. This review highlights the physiological mechanisms involved with stress and MDD, which are underlying an imbalance of the KP and discuss potential therapeutic targets.
Collapse
Affiliation(s)
- Amanda Gollo Bertollo
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Maiqueli Eduarda Dama Mingoti
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| |
Collapse
|
4
|
Zou J, Li J, Wang X, Tang D, Chen R. Neuroimmune modulation in liver pathophysiology. J Neuroinflammation 2024; 21:188. [PMID: 39090741 PMCID: PMC11295927 DOI: 10.1186/s12974-024-03181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
The liver, the largest organ in the human body, plays a multifaceted role in digestion, coagulation, synthesis, metabolism, detoxification, and immune defense. Changes in liver function often coincide with disruptions in both the central and peripheral nervous systems. The intricate interplay between the nervous and immune systems is vital for maintaining tissue balance and combating diseases. Signaling molecules and pathways, including cytokines, inflammatory mediators, neuropeptides, neurotransmitters, chemoreceptors, and neural pathways, facilitate this complex communication. They establish feedback loops among diverse immune cell populations and the central, peripheral, sympathetic, parasympathetic, and enteric nervous systems within the liver. In this concise review, we provide an overview of the structural and compositional aspects of the hepatic neural and immune systems. We further explore the molecular mechanisms and pathways that govern neuroimmune communication, highlighting their significance in liver pathology. Finally, we summarize the current clinical implications of therapeutic approaches targeting neuroimmune interactions and present prospects for future research in this area.
Collapse
Affiliation(s)
- Ju Zou
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Li
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoxu Wang
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
5
|
Burtscher J, Strasser B, Pepe G, Burtscher M, Kopp M, Di Pardo A, Maglione V, Khamoui AV. Brain-Periphery Interactions in Huntington's Disease: Mediators and Lifestyle Interventions. Int J Mol Sci 2024; 25:4696. [PMID: 38731912 PMCID: PMC11083237 DOI: 10.3390/ijms25094696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Prominent pathological features of Huntington's disease (HD) are aggregations of mutated Huntingtin protein (mHtt) in the brain and neurodegeneration, which causes characteristic motor (such as chorea and dystonia) and non-motor symptoms. However, the numerous systemic and peripheral deficits in HD have gained increasing attention recently, since those factors likely modulate disease progression, including brain pathology. While whole-body metabolic abnormalities and organ-specific pathologies in HD have been relatively well described, the potential mediators of compromised inter-organ communication in HD have been insufficiently characterized. Therefore, we applied an exploratory literature search to identify such mediators. Unsurprisingly, dysregulation of inflammatory factors, circulating mHtt, and many other messenger molecules (hormones, lipids, RNAs) were found that suggest impaired inter-organ communication, including of the gut-brain and muscle-brain axis. Based on these findings, we aimed to assess the risks and potentials of lifestyle interventions that are thought to improve communication across these axes: dietary strategies and exercise. We conclude that appropriate lifestyle interventions have great potential to reduce symptoms and potentially modify disease progression (possibly via improving inter-organ signaling) in HD. However, impaired systemic metabolism and peripheral symptoms warrant particular care in the design of dietary and exercise programs for people with HD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Barbara Strasser
- Ludwig Boltzmann Institute for Rehabilitation Research, 1100 Vienna, Austria;
- Faculty of Medicine, Sigmund Freud Private University, 1020 Vienna, Austria
| | - Giuseppe Pepe
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.P.); (A.D.P.); (V.M.)
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (M.K.)
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (M.K.)
| | - Alba Di Pardo
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.P.); (A.D.P.); (V.M.)
| | | | - Andy V. Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33458, USA;
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
6
|
Zhu H, Yang X, Zhao Y. Recent Advances in Current Uptake Situation, Metabolic and Nutritional Characteristics, Health, and Safety of Dietary Tryptophan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6787-6802. [PMID: 38512048 DOI: 10.1021/acs.jafc.3c06419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Tryptophan (Trp) is an essential amino acid which is unable to be synthesized in the body. Main sources of Trp are uptake of foods such as oats and bananas. In this review, we describe the status of current dietary consumption, metabolic pathways and nutritional characteristics of Trp, as well as its ingestion and downstream metabolites for maintaining body health and safety. This review also summarizes the recent advances in Trp metabolism, particularly the 5-HT, KYN, and AhR activation pathways, revealing that its endogenous host metabolites are not only differentially affected in the body but also are closely linked to health. More attention should be paid to targeting its specific metabolic pathways and utilizing food molecules and probiotics for manipulating Trp metabolism. However, the complexity of microbiota-host interactions requires further exploration to precisely refine targets for innovating the gut microbiota-targeted diagnostic approaches and informing subsequent studies and targeted treatments of diseases.
Collapse
Affiliation(s)
- Haoyan Zhu
- Key Laboratory of the Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
7
|
Chakraborty N. Metabolites: a converging node of host and microbe to explain meta-organism. Front Microbiol 2024; 15:1337368. [PMID: 38505556 PMCID: PMC10949987 DOI: 10.3389/fmicb.2024.1337368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 03/21/2024] Open
Abstract
Meta-organisms encompassing the host and resident microbiota play a significant role in combatting diseases and responding to stress. Hence, there is growing traction to build a knowledge base about this ecosystem, particularly to characterize the bidirectional relationship between the host and microbiota. In this context, metabolomics has emerged as the major converging node of this entire ecosystem. Systematic comprehension of this resourceful omics component can elucidate the organism-specific response trajectory and the communication grid across the ecosystem embodying meta-organisms. Translating this knowledge into designing nutraceuticals and next-generation therapy are ongoing. Its major hindrance is a significant knowledge gap about the underlying mechanisms maintaining a delicate balance within this ecosystem. To bridge this knowledge gap, a holistic picture of the available information has been presented with a primary focus on the microbiota-metabolite relationship dynamics. The central theme of this article is the gut-brain axis and the participating microbial metabolites that impact cerebral functions.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, United States
| |
Collapse
|
8
|
Willems DJ, Kumar A, Nguyen TV, Beale DJ, Nugegoda D. Environmentally relevant concentrations of chemically complex shale gas wastewater led to reduced fitness of water fleas (Daphnia carinata): Multiple lines of evidence approach. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132839. [PMID: 37926015 DOI: 10.1016/j.jhazmat.2023.132839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Shale gas hydraulic fracturing generates flowback waters that pose a threat to aquatic organisms if released into the environment. In order to prevent adverse effects on aquatic ecosystems, multiple lines of evidence are needed to guide better decisions and management actions. This study employed a multi-disciplinary approach, combining direct toxicity assessment (DTA) on the water flea Daphnia carinata and LC-MS metabolomics analysis to determine the impact of a major ion salinity control (SC) and a cumulative flowback shale gas wastewater (SGW) from a well in the Beetaloo Sub-basin, Northern Territory, Australia. The exposures included a culture water control, simply further referred to as 'control', SC at 1% and 2% (v/v) and SGW at 0.125, 0.25, 0.5, 1% and 2% (v/v). The results showed that reproduction was significantly increased at SGW 0.5%, and significantly decreased when exposed to SC 2%. SGW 2% was found to be acutely toxic for the D. carinata (< 48-h). Second generation (F1) of D. carinata exposed to 0.125-1% SGW generally saw reduced activity in four oxidative biomarkers: glutathione S-transferase, lipid peroxidation, reactive oxygen species, and superoxide dismutase. At the metabolomics level, we observed significant changes in 103 metabolites in Daphnia exposed to both SGW and elevated salinity, in comparison to the control group. These changes indicate a range of metabolic disturbances induced by SGW and salinity, such as lipid metabolism, amino acid metabolism, nucleotide synthesis, energy production, and the biosynthesis of crucial molecules like hormones and pigments. These multiple lines of evidence approach not only highlights the complexities of SGW's impact on aquatic ecosystems but also underscores the importance of informed decision-making and management practices to safeguard the environment and its inhabitants.
Collapse
Affiliation(s)
- Daniel J Willems
- Ecotoxicology Research Group, School of Science, Bundoora West Campus, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia; Environment Business Unit, Commonwealth Scientific and Industrial Research Organisation, Urrbrae 5064, South Australia, Australia.
| | - Anupama Kumar
- Environment Business Unit, Commonwealth Scientific and Industrial Research Organisation, Urrbrae 5064, South Australia, Australia
| | - Thao V Nguyen
- Environment Business Unit, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia; NTT Institute of High Technology, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh 700000, VietNam
| | - David J Beale
- Environment Business Unit, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of Science, Bundoora West Campus, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| |
Collapse
|
9
|
Bargellini A, Mannari E, Cugliari G, Deregibus A, Castroflorio T, Es Sebar L, Serino G, Roggia A, Scotti N. Short-Term Effects of 3D-Printed Occlusal Splints and Conventional Splints on Sleep Bruxism Activity: EMG-ECG Night Recordings of a Sample of Young Adults. J Clin Med 2024; 13:776. [PMID: 38337469 PMCID: PMC10856225 DOI: 10.3390/jcm13030776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
(1) Background: This study aims to compare the effects of 3D-printed splints and conventional manufactured splints on sleep bruxism (SB) EMG activity. (2) Methods: Twenty-six patients (19 M, 7 F, 25.8 ± 2.6 years) were randomly allocated to a study group (3D splints) and a control group (conventional manufactured splints) and followed for a period of three months with night EMG-ECG recordings. Samples of the involved materials were analyzed for nanoindentation. The outcomes of interest considered were the overall SB index, the total amount of surface masseter muscle activity (sMMA), and general and SB-related phasic and tonic contractions. A statistical evaluation was performed with a confidence interval (CI) between 2.5% and 97.5%. (3) Results: Differences between groups with OAs were observed for general tonic contraction (p = 0.0009), while differences between recording times were observed for general phasic contractions (p = 0.002) and general tonic contractions (p = 0.00001). Differences between recording times were observed for the total amount of sMMA (p = 0.01), for general phasic contractions (p = 0.0001), and for general tonic contractions (p = 0.000009) during night recordings without OAs. (4) Conclusions: Three-dimensional splints seem to have a higher impact on SB-related electromyographic activity but not on the overall sleep bruxism index. The more regular surfaces offered by 3D splints could be related to phasic contraction stabilization.
Collapse
Affiliation(s)
- Andrea Bargellini
- Department of Surgical Sciences, Specialization School of Orthodontics, Dental School, University of Torino, 10126 Torino, Italy; (A.B.); (A.D.); (T.C.)
- Department of Surgical Sciences, Gnathology Unit, Dental School, University of Torino, 10126 Torino, Italy
| | - Elena Mannari
- Department of Surgical Sciences, Dental School, University of Torino, 10126 Torino, Italy; (E.M.); (A.R.)
| | - Giovanni Cugliari
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy;
| | - Andrea Deregibus
- Department of Surgical Sciences, Specialization School of Orthodontics, Dental School, University of Torino, 10126 Torino, Italy; (A.B.); (A.D.); (T.C.)
- Department of Surgical Sciences, Gnathology Unit, Dental School, University of Torino, 10126 Torino, Italy
| | - Tommaso Castroflorio
- Department of Surgical Sciences, Specialization School of Orthodontics, Dental School, University of Torino, 10126 Torino, Italy; (A.B.); (A.D.); (T.C.)
- Department of Surgical Sciences, Gnathology Unit, Dental School, University of Torino, 10126 Torino, Italy
| | - Leila Es Sebar
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy;
| | - Gianpaolo Serino
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy;
- PolitoBioMedLab, Politecnico di Torino, 10129 Turin, Italy
| | - Andrea Roggia
- Department of Surgical Sciences, Dental School, University of Torino, 10126 Torino, Italy; (E.M.); (A.R.)
| | - Nicola Scotti
- Department of Surgical Sciences, Restorative Dentistry Unit, Dental School, University of Torino, 10126 Torino, Italy
| |
Collapse
|
10
|
Qu Z, Wu S, Zheng Y, Bing Y, Liu X, Li S, Li W, Zou X. Fecal metabolomics combined with metagenomics sequencing to analyze the antidepressant mechanism of Yueju Wan. J Pharm Biomed Anal 2024; 238:115807. [PMID: 37924576 DOI: 10.1016/j.jpba.2023.115807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Yueju Wan (YJW), defined in Danxi's Mastery of Medicine, has Qi-regulating and Qi-promoting effects. YJW has frequently been applied in the clinic for the treatment of depression. Substantial evidence has shown that depression is related to metabolic abnormalities of the gut microbiota, and traditional Chinese medicine (TCM) can treat depression by adjusting gut microbiota metabolism. The antidepressant effect of YJW is well established, but thus far, whether its mechanism of action is achieved by regulating the intestinal flora has not been elucidated. METHODS In this study, chronic unpredictable mild stress (CUMS) along with isolated feeding created a rat depression model, and YJW was administered for intervention. Rats were put through behavioral tests to determine their level of depression, and ELISA was utilized for measuring the level of monoamine neurotransmitters (MNTs) in the hippocampus. Metagenomic gene sequencing analysis was used to study the effect of depression on the intestinal flora in rats and the regulatory mechanism of YJW on the intestinal flora. Furthermore, ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was utilized for fecal metabolomics studies to further reveal the antidepressant mechanism of YJW. The antidepressant mechanism of YJW was explored and further verified by Western blot analysis. RESULTS Different doses of YJW improved the depressive state of rats and raised the levels of MNTs in the hippocampus. The results of metagenomic sequencing indicated that the YJW recovered the structure and diversity of the intestinal flora in depressed rats. Metabolomics revealed sustained changes in 21 metabolites after the treatment of YJW, suggesting that YJW can play an antidepressant role by improving abnormal metabolic pathways. The results of correlation analysis suggested that YJW might mediate Eubacterium, Oscillibacter, Roseburia, Romboutsia and Bacterium to regulate purine metabolism, tryptophan metabolism, primary bile acid biosynthesis, and glutamate metabolism and exert antidepressant effects. Western blot analysis showed that YJW reduced the content of IL-1β in the hippocampus, inhibited the activation of the NLRP3 inflammasome in the hippocampus of rats, and increased the content of ZO-1 in the colon of rats. CONCLUSION YJW can alleviate depressive symptoms in depressed rats, and its mechanism is connected to improving intestinal flora and regulating body metabolism.
Collapse
Affiliation(s)
- Zhongyuan Qu
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Shuang Wu
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Yan Zheng
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Yifan Bing
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Xueqin Liu
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Sunan Li
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Xiang Zou
- Engineering Research Center on Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
11
|
Meneguzzo P, Baron E, Marchesin S, Andretta AM, Nalesso L, Stella S, Todisco P. Tuning in to recovery: influence of music on emotional well-being during mealtime in inpatient facilities for eating disorders. J Eat Disord 2024; 12:7. [PMID: 38225626 PMCID: PMC10789025 DOI: 10.1186/s40337-024-00970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND In rehabilitating eating disorders (ED), mealtimes are critical but often induce stress, both for restrictive and binge-purge disorders. Although preliminary data indicate a positive effect of music during mealtime, few studies employ an experimental approach. This study examines the influence of background music during mealtime in an inpatient ward setting, offering a real-world perspective. METHODS Fifty-one women diagnosed with ED participated in this within-subjects study. Over two weeks, during lunch and dinner, they were exposed to three randomized music conditions: no music, focus piano music, and pop music. The self-report questionnaires captured affective states, noise levels, and hunger, while trained dietitians recorded food consumption and eating rituals. RESULTS The absence of music led to an increase in uneaten food (p = 0.001) and the presence of eating rituals (p = 0.012) during mealtimes. Significantly, only silence during mealtime reduced positive emotional states, while background music maintained positive emotions (p < 0.001). No specific differences emerged between the two types of music (focus piano and pop). CONCLUSIONS These findings affirm the positive impact of background music during mealtime in real-world settings, enhancing the potential of inpatient eating rehabilitation programs for individuals with ED. More studies are needed to validate and extend these results, particularly in outpatient settings.
Collapse
Affiliation(s)
- Paolo Meneguzzo
- Department of Neuroscience, University of Padova, 35128, Padua, Italy.
- Padova Neuroscience Center, University of Padova, Padua, Italy.
| | - Elisa Baron
- Eating Disorders Unit, Villa Margherita - Neomesia, Arcugnano, Vicenza, Italy
| | - Silvia Marchesin
- Eating Disorders Unit, Villa Margherita - Neomesia, Arcugnano, Vicenza, Italy
| | - Anna Maria Andretta
- Eating Disorders Unit, Villa Margherita - Neomesia, Arcugnano, Vicenza, Italy
| | - Lisa Nalesso
- Eating Disorders Unit, Villa Margherita - Neomesia, Arcugnano, Vicenza, Italy
| | - Sonia Stella
- Eating Disorders Unit, Villa Margherita - Neomesia, Arcugnano, Vicenza, Italy
| | - Patrizia Todisco
- Eating Disorders Unit, Villa Margherita - Neomesia, Arcugnano, Vicenza, Italy
| |
Collapse
|
12
|
Muthukutty B, Doan TC, Yoo H. Binary metal oxide (NiO/SnO 2) composite with electrochemical bifunction: Detection of neuro transmitting drug and catalysis for hydrogen evolution reaction. ENVIRONMENTAL RESEARCH 2024; 241:117655. [PMID: 37980995 DOI: 10.1016/j.envres.2023.117655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/22/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
The synergetic effect between dual oxides in binary metal oxides (BMO) makes them promising electrode materials for the detection of toxic chemicals, and biological compounds. In addition, the interaction between the cations and anions of diverse metals in BMO tends to create more oxygen vacancies which are beneficial for energy storage devices. However, specifically targeted synthesis of BMO is still arduous. In this work, we prepared a nickel oxide/tin oxide composite (NiO/SnO2) through a simple solvothermal technique. The crystallinity, specific surface area, and morphology were fully characterized. The synthesized BMO is used as a bifunctional electrocatalyst for the electrochemical detection of dopamine (DPA) and for the hydrogen evolution reaction (HER). As expected, the active metals in the NiO/SnO2 composite afforded a higher redox current at a reduced redox potential with a nanomolar level detection limit (4 nm) and excellent selectivity. Moreover, a better recovery rate is achieved in the real-time detection of DPA in human urine and DPA injection solution. Compared to other metal oxides, NiO/SnO2 composite afforded lower overpotential (157 mV @10 mA cm-2), Tafel slope (155 mV dec-1), and long-term durability, with a minimum retention rate. These studies conclude that NiO/SnO2 composite can act as a suitable electrode modifier for electrochemical sensing and the HER.
Collapse
Affiliation(s)
- Balamurugan Muthukutty
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| | - Thang Cao Doan
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| | - Hyojong Yoo
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
13
|
Paviani L, Girotto E, Rumiato AC, Rodrigues R, González AD. Association between self-reported food intake and subjective sleep quality among truck drivers in a city in Southern Brazil. DIALOGUES IN HEALTH 2023; 2:100098. [PMID: 38515466 PMCID: PMC10953964 DOI: 10.1016/j.dialog.2023.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 03/23/2024]
Abstract
Introduction Sleep is an activity of great importance for maintaining the homeostasis of the human body and some components may interfere with the quality of sleep, including the pattern of food consumption. Truck drivers may constitute a population particularly sensitive to this association, since they are routinely exposed to situations that may interfere with food intake and sleep quality. Thus, this study investigated the association between self-reported food intake and sleep quality in truck drivers. Methods This was a cross-sectional study, with drivers who traveled in a city in southern Brazil. Food intake was evaluated through the average of food intake over the last 30 days. Food intake was evaluated in two forms: division in food groups and evaluation only tryptophan-rich foods. Sleep quality was measured by the Pittsburgh Sleep Quality Index (PSQI). In addition to the descriptive analysis, to identify possible associations between food intake and sleep quality, linear regression, crude and adjusted for confounding variables, were performed to obtain the Beta and Beta adjusted (Betaadj), respectively, and p-value. Results A total of 352 truck drivers, mostly males, mean age 48.4 (±11.6) years, with a frequent consumption of meat, fruits, vegetables, sweets, and energy drinks participated in this study. The frequent consumption of dairy products (Betaadj: --0.614. p-value 0.004) and fruits (Betaadj: --0.342. p-value 0.034) was associated with lower PSQI score, while the consumption of energy drinks was associated with a higher PSQI score (Betaadj: 0.923. p-value <0.001). The frequency of consumption of tryptophan-rich foods was not associated with sleep quality. Conclusion Fruits and dairy products are associated with better subjective sleep quality, while energy drinks are associated with worse sleep quality in truck drivers, whereas dietary tryptophan-rich foods intake was not associated with sleep quality.
Collapse
Affiliation(s)
- Letícia Paviani
- Universidade Estadual de Londrina, Postgraduate Program in Public Health, Londrina, Paraná, Brazil
| | - Edmarlon Girotto
- Universidade Estadual de Londrina, Postgraduate Program in Public Health, Londrina, Paraná, Brazil
- Universidade Estadual de Londrina, Department of Pharmaceutical Science, Londrina, Paraná, Brazil
| | - Anne Cristine Rumiato
- Universidade Estadual de Londrina, Department Pathology and Clinical Analysis, Londrina, Paraná, Brazil
| | - Renne Rodrigues
- Universidade Estadual de Londrina, Postgraduate Program in Public Health, Londrina, Paraná, Brazil
- Universidade Estadual de Londrina, Department of Public Health, Londrina, Paraná, Brazil
| | - Alberto Durán González
- Universidade Estadual de Londrina, Postgraduate Program in Public Health, Londrina, Paraná, Brazil
- Universidade Estadual de Londrina, Department of Public Health, Londrina, Paraná, Brazil
| |
Collapse
|
14
|
Fadhilah F, Indrati AR, Dewi S, Santoso P. The Kynurenine/Tryptophan Ratio as a Promising Metabolomic Biomarker for Diagnosing the Spectrum of Tuberculosis Infection and Disease. Int J Gen Med 2023; 16:5587-5595. [PMID: 38045904 PMCID: PMC10693202 DOI: 10.2147/ijgm.s438364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/11/2023] [Indexed: 12/05/2023] Open
Abstract
The metabolic system and immunology used to be seen as distinct fields of study. Recent developments in our understanding of how the immune system operates in health and disease have connected these fields to complex systems. An effective technique for identifying probable abnormalities of metabolic homeostasis brought on by disease is metabolomics, which is defined as the thorough study of small molecule metabolic intermediates within a biological system that collectively make up the metabolome. A prognostic metabolic biomarker with adequate prognostic accuracy for tuberculosis progression has recently been created. The rate-limiting host enzyme for the conversion of tryptophan to kynurenine, indoleamine 2,3-dioxygenase (IDO), is greatly elevated in the lungs of tuberculosis disease patients. Targeted study on tryptophan in tuberculosis disease indicates that such decreases may also resembled this upregulation. Although tuberculosis diagnosis has improved with the use of interferon release assay and tuberculosis nucleic acid amplification, tuberculosis control is made difficult by the lack of a biomarker to diagnose active tuberculosis disease. We hope that the reader of this work can develop an understanding of the advantages of metabolomics testing, particularly as a sort of testing that can be used for both diagnosing and monitoring a patient's response to treatment for tuberculosis.
Collapse
Affiliation(s)
- Fitri Fadhilah
- Doctorate in Medicine Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Agnes Rengga Indrati
- Clinical Pathology Department, Hasan Sadikin General Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Sumartini Dewi
- Internal Medicine Department, Hasan Sadikin General Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Prayudi Santoso
- Internal Medicine Department, Hasan Sadikin General Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| |
Collapse
|
15
|
Parolisi S, Montanari C, Borghi E, Cazzorla C, Zuvadelli J, Tosi M, Barone R, Bensi G, Bonfanti C, Dionisi Vici C, Biasucci G, Burlina A, Carbone MT, Verduci E. Possible role of tryptophan metabolism along the microbiota-gut-brain axis on cognitive & behavioral aspects in Phenylketonuria. Pharmacol Res 2023; 197:106952. [PMID: 37804926 DOI: 10.1016/j.phrs.2023.106952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Cognitive and psychiatric disorders are well documented across the lifetime of patients with inborn errors of metabolism (IEMs). Gut microbiota impacts behavior and cognitive functions through the gut-brain axis (GBA). According to recent research, a broad spectrum of GBA disorders may be influenced by a perturbed Tryptophan (Trp) metabolism and are associated with alterations in composition or function of the gut microbiota. Furthermore, early-life diets may influence children's neurodevelopment and cognitive deficits in adulthood. In Phenylketonuria (PKU), since the main therapeutic intervention is based on a life-long restrictive diet, important alterations of gut microbiota have been observed. Studies on PKU highlight the impact of alterations of gut microbiota on the central nervous system (CNS), also investigating the involvement of metabolic pathways, such as Trp and kynurenine (KYN) metabolisms, involved in numerous neurodegenerative disorders. An alteration of Trp metabolism with an imbalance of the KYN pathway towards the production of neurotoxic metabolites implicated in numerous neurodegenerative and inflammatory diseases has been observed in PKU patients supplemented with Phe-free amino acid medical foods (AA-MF). The present review investigates the possible link between gut microbiota and the brain in IEMs, focusing on Trp metabolism in PKU. Considering the evidence collected, cognitive and behavioral well-being should always be monitored in routine IEMs clinical management. Further studies are required to evaluate the possible impact of Trp metabolism, through gut microbiota, on cognitive and behavioral functions in IEMs, to identify innovative dietetic strategies and improve quality of life and mental health of these patients.
Collapse
Affiliation(s)
- Sara Parolisi
- UOSD Metabolic Diseases, AORN Santobono-Pausilipon, Naples, Italy
| | - Chiara Montanari
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Elisa Borghi
- Department of Health Science, University of Milan, Milan, Italy
| | - Chiara Cazzorla
- Division of Inherited Metabolic Diseases, DIDAS Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Juri Zuvadelli
- Clinical Department of Pediatrics, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy
| | - Martina Tosi
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Health Science, University of Milan, Milan, Italy
| | - Rita Barone
- Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, AOU Policlinico "G.Rodolico-San Marco", University of Catania, Catania, Italy
| | - Giulia Bensi
- Paediatrics & Neonatology Unit, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Cristina Bonfanti
- Rare metabolic disease unit, Pediatric Department, San Gerardo Hospital, Monza, Italy
| | | | - Giacomo Biasucci
- Paediatrics & Neonatology Unit, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, DIDAS Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Maria T Carbone
- UOSD Metabolic Diseases, AORN Santobono-Pausilipon, Naples, Italy
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Health Science, University of Milan, Milan, Italy.
| |
Collapse
|
16
|
Thomson-Casey C, Adams J, McIntyre E. The engagement of psychology with complementary medicine: A critical integrative review. Heliyon 2023; 9:e21201. [PMID: 37928398 PMCID: PMC10622697 DOI: 10.1016/j.heliyon.2023.e21201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/27/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023] Open
Abstract
Amidst the global rise in complementary medicine (CM) use for mental health, a substantial number of clients consulting a psychologist also utilise at least one form of CM. Yet, how psychologists should engage with CM in their clinical practice (e.g., how to respond to a client disclosing CM use or enquiries regarding CM products or services for mental health) remains contested and unclear. In response, a systematic integrative review was conducted to examine empirical literature reporting on one or more aspects of the relationship between psychology (incorporating clinical practice, professional associations and academia) and CM, and how that relationship may relate to or inform psychologists' engagement with CM in their clinical practice. Twenty-seven peer-reviewed articles met the specific inclusion criteria and quality appraisal was employed. Analysis shows a substantial number of psychologists are engaging with, or are interested in engaging with, CM in their clinical practice. Analysis identified a dissonance between psychologists' engagement with CM in clinical practice and the limited engagement of the broader discipline of psychology with CM. Further research is required to understand these differing types of engagement with a view to helping inform relevant policy and practice guidelines, and ultimately assist psychologists in navigating CM in their clinical practice.
Collapse
Affiliation(s)
- Carrie Thomson-Casey
- School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
| | - Jon Adams
- School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
| | - Erica McIntyre
- School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
- Institute for Sustainable Futures, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
17
|
Anaeigoudari F, Anaeigoudari A, Kheirkhah‐Vakilabad A. A review of therapeutic impacts of saffron (Crocus sativus L.) and its constituents. Physiol Rep 2023; 11:e15785. [PMID: 37537722 PMCID: PMC10400758 DOI: 10.14814/phy2.15785] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
Application of herbal medicines in the treatment of diseases is in the center of attention of medical scientific societies. Saffron (Cricus sativus L.) is a medicinal plant belonging to the Iridaceae family with different therapeutic properties. The outcomes of human and animal experiments indicate that therapeutic impacts of saffron and its constituents, crocin, crocetin, and safranal, mainly are mediated via inhibiting the inflammatory reactions and scavenging free radicals. It has been suggested that saffron and crocin extracted from it also up-regulate the expression of sirtuin 1 (SIRT1) and nuclear factor erythroid 2-related factor 2 (Nrf2), down-regulate nuclear factor kappa B (NF-κB) signaling pathway and untimely improve the body organs dysfunction. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 (COX2) also is attributed to crocin. The current review narrates the therapeutic effects of saffron and its constituents on various body systems through looking for the scientific databases including Web of Science, PubMed, Scopus, and Google Scholar from the beginning of 2010 until the end of 2022.
Collapse
Affiliation(s)
- Fatemeh Anaeigoudari
- Student Research Committee, Afzalipour Faculty of MedicineKerman University of Medical SciencesKermanIran
| | - Akbar Anaeigoudari
- Department of Physiology, School of MedicineJiroft University of Medical SciencesJiroftIran
| | | |
Collapse
|
18
|
Wieckiewicz M, Martynowicz H, Lavigne G, Lobbezoo F, Kato T, Winocur E, Wezgowiec J, Danel D, Wojakowska A, Mazur G, Smardz J. An exploratory study on the association between serotonin and sleep breathing disorders. Sci Rep 2023; 13:11800. [PMID: 37479853 PMCID: PMC10362063 DOI: 10.1038/s41598-023-38842-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023] Open
Abstract
This exploratory observational study aimed to evaluate whether the blood levels of serotonin and enzymes involved in serotonin synthesis are associated with sleep breathing parameters. A total of 105 patients were included in this study, who were subjected to single-night polysomnography with simultaneous audio-video recordings. Peripheral blood samples were collected to estimate the serum levels of serotonin, tryptophan hydroxylase 1 (TPH1), and aromatic l-amino acid decarboxylase (AADC). Results showed a negative correlation between blood serotonin levels, and oxygen desaturation index (ODI) (p = 0.027), central apnea (p = 0.044) and obstructive apnea (OA) (p = 0.032) scores. Blood TPH1 levels were negatively correlated with average (p = 0.003) and minimal saturation (p = 0.035) and positively correlated with apnea-hypopnea index (p = 0.010), OA (p = 0.049), and hypopnea index (p = 0.007) scores. A tendency to sleep-disordered breathing seemed to co-occur with lower blood serotonin and higher TPH1 levels.Clinical Trial Registration : www.ClinicalTrials.gov , identifier NCT04214561.
Collapse
Affiliation(s)
- Mieszko Wieckiewicz
- Department of Experimental Dentistry, Wroclaw Medical University, Wroclaw, Poland.
| | - Helena Martynowicz
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Gilles Lavigne
- Faculty of Dental Medicine, Universite de Montreal, CIUSSS Nord Ile de Montreal and CHUM, Montreal, Canada
| | - Frank Lobbezoo
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Efraim Winocur
- Department of Oral Rehabilitation, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joanna Wezgowiec
- Department of Experimental Dentistry, Wroclaw Medical University, Wroclaw, Poland
| | - Dariusz Danel
- Department of Anthropology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anna Wojakowska
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Grzegorz Mazur
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Joanna Smardz
- Department of Experimental Dentistry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
19
|
Lima GPP, Costa VE, Nunes A, Basílio LSP, Borges CV, Monteiro GC, Minatel IO, Denadai JC, Orsi R, Vianello F, Maraschin M. Biogenic amines and stable isotopes in the quality and authenticity of honeys from Brazil. Food Chem 2023; 427:136702. [PMID: 37393636 DOI: 10.1016/j.foodchem.2023.136702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
The identification of biogenic amines and some precursor amino acids and the adulteration through stable isotopes was carried out in 114 honey from different geographic regions in Brazil (states of São Paulo (SP) and Santa Catarina (SC)) as support for evaluating quality control and food safety. Serotonin was detected in all samples, while melatonin was quantified in 92.2% of honey from SP and in 94% of SC. l-Dopa, dopamine and histamine appeared at higher levels in honey from SP. Cadaverine, putrescine, spermidine and spermine, varied little according to botanical source. Three honey from the metropolitan region of SP were considered adulterated (C4SUGARS > 7%), 92 were authentic samples (C4SUGARS - 7 to 7%) and 19 unadulterated (C4SUGARS less than - 7%), with isotopic values of δ13CH and δ13CP > 7%. The data were important for differentiating quality as a function of biogenic amines and stable isotope technique was important in detecting honey adulteration.
Collapse
Affiliation(s)
- Giuseppina Pace Pereira Lima
- São Paulo State University, Department of Chemical and Biological Sciences, Institute of Biosciences, Botucatu, São Paulo, Brazil.
| | - Vladmir Eliodoro Costa
- São Paulo State University, Stable Isotopes Center, Institute of Biosciences, Botucatu, São Paulo, Brazil
| | - Aline Nunes
- Federal University of Santa Catarina, Plant Morphogenesis and Biochemistry Laboratory, Florianópolis, Santa Catarina, Brazil
| | - Leticia Silva Pereira Basílio
- São Paulo State University, Department of Chemical and Biological Sciences, Institute of Biosciences, Botucatu, São Paulo, Brazil
| | - Cristine Vanz Borges
- Health Sciences, Universidade Alto Vale do Rio do Peixe (UNIARP), Caçador, Santa Catarina, Brazil
| | - Gean Charles Monteiro
- São Paulo State University, Department of Chemical and Biological Sciences, Institute of Biosciences, Botucatu, São Paulo, Brazil
| | - Igor Otavio Minatel
- São Paulo State University, Department of Chemical and Biological Sciences, Institute of Biosciences, Botucatu, São Paulo, Brazil
| | - Juliana Celia Denadai
- São Paulo State University, Stable Isotopes Center, Institute of Biosciences, Botucatu, São Paulo, Brazil
| | - Ricardo Orsi
- São Paulo State University, Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, Botucatu, São Paulo, Brazil
| | - Fabio Vianello
- University of Padua, Department of Comparative Biomedicine and Food Science, Legnaro, Italy
| | - Marcelo Maraschin
- Federal University of Santa Catarina, Plant Morphogenesis and Biochemistry Laboratory, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
20
|
Contreras-Rodriguez O, Reales-Moreno M, Fernández-Barrès S, Cimpean A, Arnoriaga-Rodríguez M, Puig J, Biarnés C, Motger-Albertí A, Cano M, Fernández-Real JM. Consumption of ultra-processed foods is associated with depression, mesocorticolimbic volume, and inflammation. J Affect Disord 2023; 335:340-348. [PMID: 37207947 DOI: 10.1016/j.jad.2023.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND The consumption of ultra-processed foods and drinks (UPF) has been associated with depression and inflammation and preclinical studies showed that some UPF components disrupt the amygdala-hippocampal complex. We combine diet, clinical and brain imaging data to investigate the relationship between the UPF consumption, depressive symptoms, and brain volumes in humans, considering interactions with obesity, and the mediation effect of inflammation biomarkers. METHODS One-hundred fifty-two adults underwent diet, depressive symptoms, anatomic magnetic resonance imaging assessments and laboratory tests. Relationships between the % of UPF consumption (in grams) of the total diet, depressive symptoms, and gray matter brain volumes were explored using several adjusted regression models, and in interaction with the presence of obesity. Whether inflammatory biomarkers (i.e., white blood cell count, lipopolysaccharide-binding protein, c-reactive protein) mediate the previous associations was investigated using R mediation package. RESULTS High UPF consumption was associated with higher depressive symptoms in all participants (β = 0.178, CI = 0.008-0.261) and in those with obesity (β = 0.214, CI = -0.004-0.333). Higher consumption was also associated with lower volumes in the posterior cingulate cortex and the left amygdala, which in the participants with obesity also encompassed the left ventral putamen and the dorsal frontal cortex. White blood count levels mediated the association between UPF consumption and depressive symptoms (p = 0.022). LIMITATIONS The present study precludes any causal conclusions. CONCLUSIONS UPF consumption is associated with depressive symptoms and lower volumes within the mesocorticolimbic brain network implicated in reward processes and conflict monitoring. Associations were partially dependent on obesity and white blood cell count.
Collapse
Affiliation(s)
- Oren Contreras-Rodriguez
- Department of Radiology-Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain; Department of Psychiatry and Legal Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Health Institute Carlos III (ISCIII) and CIBERSAM, Madrid, Spain.
| | - Marta Reales-Moreno
- Department of Radiology-Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Spain
| | | | - Anna Cimpean
- Department of Radiology-Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain
| | - María Arnoriaga-Rodríguez
- Department of Medical Sciences, School of Medicine, University of Girona, Spain; Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain
| | - Josep Puig
- Department of Radiology-Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Spain; Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain
| | - Carles Biarnés
- Department of Radiology-Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain
| | - Anna Motger-Albertí
- Department of Medical Sciences, School of Medicine, University of Girona, Spain; Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain
| | - Marta Cano
- Health Institute Carlos III (ISCIII) and CIBERSAM, Madrid, Spain; Sant Pau Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Manuel Fernández-Real
- Department of Medical Sciences, School of Medicine, University of Girona, Spain; Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain.
| |
Collapse
|
21
|
Bruncsics B, Hullam G, Bolgar B, Petschner P, Millinghoffer A, Gecse K, Eszlari N, Gonda X, Jones DJ, Burden ST, Antal P, Deakin B, Bagdy G, Juhasz G. Genetic risk of depression is different in subgroups of dietary ratio of tryptophan to large neutral amino acids. Sci Rep 2023; 13:4976. [PMID: 36973313 PMCID: PMC10042855 DOI: 10.1038/s41598-023-31495-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Manipulation of intake of serotonin precursor tryptophan has been exploited to rapidly induce and alleviate depression symptoms. While studies show that this latter effect is dependent on genetic vulnerability to depression, the effect of habitual tryptophan intake in the context of predisposing genetic factors has not been explored. Our aim was to investigate the effect of habitual tryptophan intake on mood symptoms and to determine the effect of risk variants on depression in those with high and low tryptophan intake in the whole genome and specifically in serotonin and kynurenine pathways. 63,277 individuals in the UK Biobank with data on depressive symptoms and tryptophan intake were included. We compared two subpopulations defined by their habitual diet of a low versus a high ratio of tryptophan to other large amino acids (TLR). A modest protective effect of high dietary TLR against depression was found. NPBWR1 among serotonin genes and POLI in kynurenine pathway genes were significantly associated with depression in the low but not in the high TLR group. Pathway-level analyses identified significant associations for both serotonin and kynurenine pathways only in the low TLR group. In addition, significant association was found in the low TLR group between depressive symptoms and biological process related to adult neurogenesis. Our findings demonstrate a markedly distinct genetic risk profile for depression in groups with low and high dietary TLR, with association with serotonin and kynurenine pathway variants only in case of habitual food intake leading to low TLR. Our results confirm the relevance of the serotonin hypothesis in understanding the neurobiological background of depression and highlight the importance of understanding its differential role in the context of environmental variables such as complexity of diet in influencing mental health, pointing towards emerging possibilities of personalised prevention and intervention in mood disorders in those who are genetically vulnerable.
Collapse
Grants
- BME NC TKP2020, BME IE-BIO TKP2020, Artificial Intelligence National Laboratory Programme NRDI Fund based on the charter of bolster issued by the NRDI Office under the auspices of the Ministry for Innovation and Technology
- TKP2021-EGA-02 National Research, Development, and Innovation Fund of Hungary
- OTKA 139330 National Research, Development and Innovation Office, Hungary
- ÚNKP-21-5-BME-362 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund
- ÚNKP-21-4-II-BME-143 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund
- ÚNKP-22-3-II-SE-27 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund
- ÚNKP-22-4-II-SE-1 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund
- ERAPERMED2019-108 National Research, Development and Innovation Office, Hungary , under the frame of ERA PerMed (2019-2.1.7-ERA-NET-2020-00005)
- ERAPERMED2019-108 National Research, Development and Innovation Office, Hungary , under the frame of ERA PerMed (2019-2.1.7-ERA-NET-2020-00005)
- ERAPERMED2019-108 National Research, Development and Innovation Office, Hungary , under the frame of ERA PerMed (2019-2.1.7-ERA-NET-2020-00005)
- ERAPERMED2019-108 National Research, Development and Innovation Office, Hungary , under the frame of ERA PerMed (2019-2.1.7-ERA-NET-2020-00005)
- 2017-1.2.1-NKP-2017-00002 Hungarian Brain Research Program
- NAP2022-I-4/2022 Hungarian Brain Research Program
- 2017-1.2.1-NKP-2017-00002 Hungarian Brain Research Program
- 2017-1.2.1-NKP-2017-00002 Hungarian Brain Research Program
- 2017-1.2.1-NKP-2017-00002 Hungarian Brain Research Program
- 2017-1.2.1-NKP-2017-00002 Hungarian Brain Research Program
- P20809 Japan Society for the Promotion of Science (Postdoctoral Fellowships for Research in Japan, standard program)
- TKP2021-EGA-25 Thematic Excellence Programme, Ministry of Innovation and Technology in Hungary, from the National Research, Development and Innovation Fund
Collapse
Affiliation(s)
- Bence Bruncsics
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Muegyetem Rkp. 3., 1111, Budapest, Hungary
| | - Gabor Hullam
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Muegyetem Rkp. 3., 1111, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4., 1089, Budapest, Hungary
| | - Bence Bolgar
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Muegyetem Rkp. 3., 1111, Budapest, Hungary
| | - Peter Petschner
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4., 1089, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Andras Millinghoffer
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Muegyetem Rkp. 3., 1111, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Kinga Gecse
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4., 1089, Budapest, Hungary
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4., 1089, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Xenia Gonda
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Debra J Jones
- School of Health Sciences, University of Manchester, Manchester, UK
| | - Sorrel T Burden
- School of Health Sciences, University of Manchester, Manchester, UK
| | - Peter Antal
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Muegyetem Rkp. 3., 1111, Budapest, Hungary
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4., 1089, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4., 1089, Budapest, Hungary.
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
22
|
Deep Eutectic Solvent Based Reversed-Phase Dispersive Liquid-Liquid Microextraction and High-Performance Liquid Chromatography for the Determination of Free Tryptophan in Cold-Pressed Oils. Molecules 2023; 28:molecules28052395. [PMID: 36903640 PMCID: PMC10005200 DOI: 10.3390/molecules28052395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
A fast and straightforward reversed-phase dispersive liquid-liquid microextraction (RP-DLLME) using a deep eutectic solvent (DES) procedure to determine free tryptophan in vegetable oils was developed. The influence of eight variables affecting the RP-DLLME efficiency has been studied by a multivariate approach. A Plackett-Burman design for screening the most influential variables followed by a central composite response surface methodology led to an optimum RP-DLLME setup for a 1 g oil sample: 9 mL hexane as the diluting solvent, vortex extraction with 0.45 mL of DES (choline chloride-urea) at 40 °C, without addition of salt, and centrifugation at 6000 rpm for 4.0 min. The reconstituted extract was directly injected into a high-performance liquid chromatography (HPLC) system working in the diode array mode. At the studied concentration levels, the obtained method detection limits (MDL) was 11 mg/kg, linearity in matrix-matched standards was R2 ≥ 0.997, relative standard deviations (RSD) was 7.8%, and average recovery was 93%. The combined use of the recently developed DES -based RP-DLLME and HPLC provides an innovative, efficient, cost-effective, and more sustainable method for the extraction and quantification of free tryptophan in oily food matrices. The method was employed to analyze cold-pressed oils from nine vegetables (Brazil nut, almond, cashew, hazelnut, peanut, pumpkin, sesame, sunflower, and walnut) for the first time. The results showed that free tryptophan was present in the range of 11-38 mg/100 g. This article is important for its contributions to the field of food analysis, and for its development of a new and efficient method for the determination of free tryptophan in complex matrices, which has the potential to be applied to other analytes and sample types.
Collapse
|
23
|
Salehi Z, Ghosn B, Rahbarinejad P, Azadbakht L. Macronutrients and the state of happiness and mood in undergraduate youth of a military training course. Clin Nutr ESPEN 2023; 53:33-42. [PMID: 36657928 DOI: 10.1016/j.clnesp.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS Previous studies have reported a high prevalence of mental disorders among military organizations. Depression and anxiety are among the most important mental disorders, and depression, suicidal ideation, and violence have been found to be negatively associated with happiness and social support. Therefore, improving mood and increasing happiness can reduce the prevalence of mental disorders in military centers. Diet can improve happiness through specific molecular mechanisms and change our mood by affecting the chemical composition of the brain. Therefore, the present study examined the relationship between the quality and quantity of macronutrients in soldiers' diets with their mood and happiness. METHODS In the current cross-sectional study, 300 healthy soldiers were selected. Food intake data was collected using 168-item semi-quantitative food frequency questionnaire during the last year of their military training 2-year period. Then, we calculated the quality and quantity of macronutrients. Mood was assessed using the Profile of Mood States (POMS) questionnaire and happiness with the Oxford Happiness Questionnaire (OHQ). RESULTS The mean ± standard deviation of participants' age was 23.70 ± 1.76 years. A significant relationship was observed between mood score and carbohydrate quantity (OR: 0.32, 95% CI: 0.12-0.88, P-value for trend = 0.03). This suggests that increasing carbohydrate intake improved the participants' mood. No association was found between mood score with protein quantity (OR: 2.15, 95% CI: 0.80-5.75; P-value for trend = 0.12), and gram of fat intake (OR: 1.95, 95% CI: 0.74-5.13; P-value for trend = 0.15). None of the indicators related to macronutrient quality were significantly associated with happiness and mood scores in young soldiers (P ≥ 0.05). CONCLUSIONS Findings presented in this study showed that increased carbohydrate intake was significantly associated with better mood. However, mood is not related to the amount of proteins and fats and none of the parameters of macronutrient quality. Also, there was no significant relationship between the quantity and quality of macronutrients with happiness score.
Collapse
Affiliation(s)
- Zahra Salehi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Batoul Ghosn
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Rahbarinejad
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
24
|
Li H, Lockwood MB, Schlaeger JM, Liu T, Danciu OC, Doorenbos AZ. Tryptophan and Kynurenine Pathway Metabolites and Psychoneurological Symptoms Among Breast Cancer Survivors. Pain Manag Nurs 2023; 24:52-59. [PMID: 36229337 PMCID: PMC9925397 DOI: 10.1016/j.pmn.2022.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Among breast cancer survivors, pain, fatigue, depression, anxiety, and sleep disturbance are common psychoneurological symptoms that cluster together. Inflammation-induced activation of the tryptophan-kynurenine metabolomic pathway may play an important role in these symptoms. AIMS This study investigated the relationship between the metabolites involved in the tryptophan-kynurenine pathway and psychoneurological symptoms among breast cancer survivors. DESIGN Cross-sectional study. SETTING Participants were recruited at the oncology clinic at the University of Illinois Hospital & Health Sciences System. PARTICIPANTS/SUBJECTS 79 breast cancer survivors after major cancer treatment. METHODS We assessed psychoneurological symptoms with the PROMIS-29 and collected metabolites from fasting blood among breast cancer survivors after major cancer treatment, then analyzed four major metabolites involved in the tryptophankynurenine pathway (tryptophan, kynurenine, kynurenic acid, and quinolinic acid). Latent profile analysis identified subgroups based on the five psychoneurological symptoms. Mann-Whitney U tests and multivariable logistic regression compared targeted metabolites between subgroups. RESULTS We identified two distinct symptom subgroups (low, 81%; high, 19%). Compared with participants in the low symptom subgroup, patients in the high symptom subgroup had higher BMI (p = .024) and were currently using antidepressants (p = .008). Using multivariable analysis, lower tryptophan levels (p = .019) and higher kynurenine/tryptophan ratio (p = .028) were associated with increased risk of being in the high symptom subgroup after adjusting for BMI and antidepressant status. CONCLUSION The tryptophan-kynurenine pathway and impaired tryptophan availability may contribute to the development of psychoneurological symptoms.
Collapse
Affiliation(s)
- Hongjin Li
- Department of Human Development Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, Illinois.
| | - Mark B Lockwood
- Department of Biobehavioral Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, Illinois
| | - Judith M Schlaeger
- Department of Human Development Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, Illinois
| | - Tingting Liu
- College of Nursing, Florida State University, Tallahassee, Florida
| | - Oana C Danciu
- College of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Ardith Z Doorenbos
- Department of Biobehavioral Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, Illinois
| |
Collapse
|
25
|
Theiler-Schwetz V, Trummer C, Grübler MR, Keppel MH, Zittermann A, Tomaschitz A, März W, Meinitzer A, Pilz S. Associations of Parameters of the Tryptophan-Kynurenine Pathway with Cardiovascular Risk Factors in Hypertensive Patients. Nutrients 2023; 15:nu15020256. [PMID: 36678127 PMCID: PMC9862689 DOI: 10.3390/nu15020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
Accumulating evidence suggests an association of the tryptophan−kynurenine (TRP-KYN) pathway with atherosclerosis and cardiovascular risk factors. In this cross-sectional analysis we investigated whether TRP-KYN pathway parameters are associated with 24 h blood pressure (BP) and other risk factors in patients with arterial hypertension from a tertiary care centre. In 490 participants, we found no significant and independent association of 24 h systolic and diastolic BP with parameters of the TRP-KYN pathway. However, linear regression analyses of HDL as dependent and TRP, KYN and quinolinic acid (QUIN) as explanatory variables adjusted for BMI and sex showed significant associations. These were found for KYN, BMI and sex (unstandardised beta coefficient −0.182, standard error 0.052, p < 0.001; −0.313 (0.078), p < 0.001; −0.180 (0.024), p < 0.001, respectively) as well as for QUIN, BMI and sex (−0.157 (0.038), p < 0.001; −0.321 (0.079), p < 0.001; −0.193 (0.024), p < 0.001, respectively). Smokers had significantly lower levels of KYN (2.36 µmol/L, IQR 2.01−2.98, versus 2.71 µmol/L, IQR 2.31−3.27, p < 0.001), QUIN (384 nmol/L, IQR 303−448, versus 451 nmol/L, IQR 369−575, p < 0.001) and KYN/TRP ratio (38.2, IQR 33.7−43.2, versus 43.1, IQR 37.5−50.9, p < 0.001) compared to non-smokers. We demonstrated that TRP/KYN pathway metabolites are associated with some cardiovascular risk factors, warranting further studies to elucidate the diagnostic and therapeutic potential of the TRP-KYN pathway for cardiovascular diseases.
Collapse
Affiliation(s)
- Verena Theiler-Schwetz
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
- Correspondence:
| | - Christian Trummer
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Martin R. Grübler
- Regional Hospital Wiener Neustadt, 2700 Wiener Neustadt, Austria
- Department of Aging Medicine and Aging Research, University of Zurich, 8006 Zurich, Switzerland
| | - Martin H. Keppel
- Department of Laboratory Medicine, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Armin Zittermann
- Clinic for Thoracic and Cardiovascular Surgery, Herz-und Diabeteszentrum Nordrhein-Westfalen (NRW), Ruhr University Bochum, 32545 Bad Oeynhausen, Germany
| | | | - Winfried März
- SYNLAB Academy, Synlab Holding Deutschland GmbH, 68159 Mannheim, Germany
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology, Lipidology), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria
| | - Stefan Pilz
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
26
|
Jiang H, Deng S, Zhang J, Chen J, Li B, Zhu W, Zhang M, Zhang C, Meng Z. Acupuncture treatment for post-stroke depression: Intestinal microbiota and its role. Front Neurosci 2023; 17:1146946. [PMID: 37025378 PMCID: PMC10070763 DOI: 10.3389/fnins.2023.1146946] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Stroke-induced depression is a common complication and an important risk factor for disability. Besides psychiatric symptoms, depressed patients may also exhibit a variety of gastrointestinal symptoms, and even take gastrointestinal symptoms as the primary reason for medical treatment. It is well documented that stress may disrupt the balance of the gut microbiome in patients suffering from post-stroke depression (PSD), and that disruption of the gut microbiome is closely related to the severity of the condition in depressed patients. Therefore, maintaining the balance of intestinal microbiota can be the focus of research on the mechanism of acupuncture in the treatment of PSD. Furthermore, stroke can be effectively treated with acupuncture at all stages and it may act as a special microecological regulator by regulating intestinal microbiota as well. In this article, we reviewed the studies on changing intestinal microbiota after acupuncture treatment and examined the existing problems and development prospects of acupuncture, microbiome, and poststroke depression, in order to provide new ideas for future acupuncture research.
Collapse
Affiliation(s)
- Hailun Jiang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shizhe Deng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jieying Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junjie Chen
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Boxuan Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weiming Zhu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Menglong Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chao Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Chao Zhang,
| | - Zhihong Meng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Zhihong Meng,
| |
Collapse
|
27
|
Smith KS, Morris MM, Morrow CD, Novak JR, Roberts MD, Frugé AD. Associations between Changes in Fat-Free Mass, Fecal Microbe Diversity, and Mood Disturbance in Young Adults after 10-Weeks of Resistance Training. Microorganisms 2022; 10:microorganisms10122344. [PMID: 36557597 PMCID: PMC9785032 DOI: 10.3390/microorganisms10122344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The gut microbiome contributes to numerous physiological processes in humans, and diet and exercise are known to alter both microbial composition and mood. We sought to explore the effect of a 10-week resistance training (RT) regimen with or without peanut protein supplementation (PPS) in untrained young adults on fecal microbiota and mood disturbance (MD). METHODS Participants were randomized into PPS (n = 25) and control (CTL [no supplement]; n = 24) groups and engaged in supervised, full-body RT twice a week. Measures included body composition, fecal microbe relative abundance, alpha- and beta-diversity from 16 s rRNA gene sequencing with QIIME2 processing, dietary intake at baseline and following the 10-week intervention, and post-intervention MD via the profile of mood states (POMS) questionnaire. Independent samples t-tests were used to determine differences between PPS and CTL groups. Paired samples t-tests investigated differences within groups. RESULTS Our sample was mostly female (69.4%), white (87.8%), normal weight (body mass index 24.6 ± 4.2 kg/m2), and 21 ± 2.0 years old. Shannon index significantly increased from baseline in all participants (p = 0.040), with no between-group differences or pre-post beta-diversity dissimilarities. Changes in Blautia abundance were associated with the positive POMS subscales, Vigor and self-esteem-related-affect (SERA) (rho = -0.451, p = 0.04; rho = -0.487, p = 0.025, respectively). Whole tree phylogeny changes were negatively correlated with SERA and Vigor (rho = -0.475, p = 0.046; rho = -0.582, p = 0.011, respectively) as well as change in bodyfat percentage (rho = -0.608, p = 0.007). Mediation analysis results indicate changes in PD Whole Tree Phylogeny was not a significant mediator of the relationship between change in fat-free mass and total MD. CONCLUSIONS Mood state subscales are associated with changes in microbial taxa and body composition. PD Whole Tree Phylogeny increased following the 10-week RT regimen; further research is warranted to explore how RT-induced changes in microbial diversity are related to changes in body composition and mood disturbance.
Collapse
Affiliation(s)
- Kristen S. Smith
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
- Correspondence:
| | - Molly M. Morris
- College of Science and Mathematics, Auburn University, Auburn, AL 36849, USA
| | - Casey D. Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Josh R. Novak
- Department of Human Development and Family Sciences, Auburn University, Auburn, AL 36849, USA
| | | | - Andrew Dandridge Frugé
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
- College of Nursing, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
28
|
Zhang Y, Jelleschitz J, Grune T, Chen W, Zhao Y, Jia M, Wang Y, Liu Z, Höhn A. Methionine restriction - Association with redox homeostasis and implications on aging and diseases. Redox Biol 2022; 57:102464. [PMID: 36152485 PMCID: PMC9508608 DOI: 10.1016/j.redox.2022.102464] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022] Open
Abstract
Methionine is an essential amino acid, involved in the promotion of growth, immunity, and regulation of energy metabolism. Over the decades, research has long focused on the beneficial effects of methionine supplementation, while data on positive effects of methionine restriction (MR) were first published in 1993. MR is a low-methionine dietary intervention that has been reported to ameliorate aging and aging-related health concomitants and diseases, such as obesity, type 2 diabetes, and cognitive disorders. In addition, MR seems to be an approach to prolong lifespan which has been validated extensively in various animal models, such as Caenorhabditis elegans, Drosophila, yeast, and murine models. MR appears to be associated with a reduction in oxidative stress via so far mainly undiscovered mechanisms, and these changes in redox status appear to be one of the underlying mechanisms for lifespan extension and beneficial health effects. In the present review, the association of methionine metabolism pathways with redox homeostasis is described. In addition, the effects of MR on lifespan, age-related implications, comorbidities, and diseases are discussed.
Collapse
Affiliation(s)
- Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Julia Jelleschitz
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Tilman Grune
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), Berlin, Germany; Institute of Nutrition, University of Potsdam, Nuthetal, 14558, Germany
| | - Weixuan Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yihang Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengzhen Jia
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yajie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Annika Höhn
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| |
Collapse
|
29
|
Hilz EN, Gore AC. Sex-specific Effects of Endocrine-disrupting Chemicals on Brain Monoamines and Cognitive Behavior. Endocrinology 2022; 163:bqac128. [PMID: 35939362 PMCID: PMC9419695 DOI: 10.1210/endocr/bqac128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/19/2022]
Abstract
The period of brain sexual differentiation is characterized by the development of hormone-sensitive neural circuits that govern the subsequent presentation of sexually dimorphic behavior in adulthood. Perturbations of hormones by endocrine-disrupting chemicals (EDCs) during this developmental period interfere with an organism's endocrine function and can disrupt the normative organization of male- or female-typical neural circuitry. This is well characterized for reproductive and social behaviors and their underlying circuitry in the hypothalamus and other limbic regions of the brain; however, cognitive behaviors are also sexually dimorphic, with their underlying neural circuitry potentially vulnerable to EDC exposure during critical periods of brain development. This review provides recent evidence for sex-specific changes to the brain's monoaminergic systems (dopamine, serotonin, norepinephrine) after developmental EDC exposure and relates these outcomes to sex differences in cognition such as affective, attentional, and learning/memory behaviors.
Collapse
Affiliation(s)
- Emily N Hilz
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Andrea C Gore
- Correspondence: Andrea C. Gore, PhD, College of Pharmacy, The University of Texas at Austin, 107 W Dean Keeton St, Box C0875, Austin, TX, 78712, USA.
| |
Collapse
|
30
|
Association between egg consumption and cognitive function among Chinese adults: long-term effect and interaction effect of iron intake. Br J Nutr 2022; 128:1180-1189. [PMID: 34736543 DOI: 10.1017/s0007114521004402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The association between egg consumption and cognitive function is inclusive. We aimed to assess the association between egg consumption and cognitive function in Chinese adults and tested the interaction between egg consumption and Fe intake. The data used were from a nationwide sample (n 4852, age ≥ 55 years) from the China Health and Nutrition Survey between 1991 and 2006. Assessment of cognitive function was conducted in 1997, 2000, 2004 and 2006. Dietary egg intake was obtained by 24-h dietary recalls of 3 consecutive days during home visits between 1991 and 2006. Multivariable mixed linear regression and logistic regression were used. Egg intake was positively associated with global cognitive function. In fully adjusted models, across the quartiles of egg intake the regression coefficients were 0, 0·11 (95 % CI -0·28, 0·51), 0·79 (95 % CI 0·36, 1·22) and 0·92 (95 % CI 0·43, 1·41), respectively. There was a significant interaction between egg intake and Fe intake. The association between high egg intake and cognitive function was stronger among those with low Fe intake than those with high Fe intake. In addition, there was a significant interaction between egg consumption and sex, with the association mainly observed in women but not men. Furthermore, compared with non-consumers, those with higher egg consumption (Q4) had the OR of 0·93 (95 % CI 0·74, 1·19), 0·84 (95 % CI 0·69, 1·02) for self-reported poor memory and self-reported memory decline, respectively. Higher egg intake is associated with better cognition in Chinese adults among those with low Fe intake.
Collapse
|
31
|
Haleem DJ. Nutritional importance of tryptophan for improving treatment in depression and diabetes. Nutr Rev 2022. [DOI: 10.1093/nutrit/nuac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
The importance of nutrients in our diet is becoming increasingly recognized. From the viewpoint of protein synthesis and other physiologic and metabolic functions, all amino acids are important, but some of these amino acids are not synthesized endogenously. This subset, called essential amino acids, comprise dietarily indispensable nutrients. Tryptophan, an essential amino acid, is the sole precursor of neuronal as well as peripheral serotonin (5-hydroxytryptamine). Its systemic or oral administration increases serotonin synthesis because tryptophan hydroxylase, the rate-limiting enzyme of 5-hydroxytryptamine biosynthesis, is physiologically unsaturated with its substrate. Central serotonin is implicated in a number of psychiatric illnesses, including depression, and in responses to stress. Acting peripherally, serotonin affects vasoconstriction, intestinal motility, control of T cell–mediated immunity, and liver and pancreatic functions. Depression and diabetes are 2 highly prevalent diseases that often coexist. There is evidence that occurrence of depression is 2–3 times higher in people with diabetes mellitus. A comorbid condition of diabetes and depression worsens the treatment and increases risk for death. Stress, known for its causal role in depression, can also enhance risk for diabetes. Stress-induced decreases in the circulating levels of tryptophan can impair brain and pancreatic serotonin-dependent functions to precipitate these diseases. The importance of tryptophan supplementation for improving therapeutic intervention in depression and diabetes is the focus of this article. A deficiency of this essential amino acid may enhance risk for depression as well as diabetes, and can also weaken treatment efficacy of medicinal compounds for treating these diseases. Guidelines for optimal levels of circulating tryptophan can help if supplements of this amino acid can improve treatment efficacy.
Collapse
Affiliation(s)
- Darakhshan Jabeen Haleem
- University of Karachi Neuroscience Research Laboratory, Dr Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical and Biological Science, and the Department of Biochemistry, Neurochemistry and Neuropharmacology Research Laboratory, , Karachi, Pakistan
| |
Collapse
|
32
|
Contreras-Rodriguez O, Solanas M, Escorihuela RM. Dissecting ultra-processed foods and drinks: Do they have a potential to impact the brain? Rev Endocr Metab Disord 2022; 23:697-717. [PMID: 35107734 DOI: 10.1007/s11154-022-09711-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/12/2022]
Abstract
Ultra-processed foods and drinks (UPF) are formulation of ingredients, mostly of exclusive industrial use, that result from a series of industrial processes. They usually have a low nutrient but high energy density, with a high content of saturated and trans fats, and added sugars. In addition, they have characteristic organoleptic properties, and usually contain sophisticated additives, including artificial sweeteners, to intensify their sensory qualities and imitate the appearance of minimally processed foods. In addition, recent research has warned about the presence of chemicals (e.g., bisphenol) and neo-formed contaminants in these products. UPF production and consumption growth have been spectacular in the last decades, being specially consumed in children and adolescents. UPF features have been associated with a range of adverse health effects such as overeating, the promotion of inflammatory and oxidative stress processes, gut dysbiosis, and metabolic dysfunction including problems in glucose regulation. The evidence that these UPF-related adverse health effects may have on the neural network implicated in eating behavior are discussed, including the potential impact on serotonergic and dopaminergic neurotransmission, brain integrity and function. We end this review by placing UPF in the context of current food environments, by suggesting that an increased exposure to these products through different channels, such as marketing, may contribute to the automatic recruitment of the brain regions associated with food consumption and choice, with a detrimental effect on inhibitory-related prefrontal cortices. While further research is essential, preliminary evidence point to UPF consumption as a potential detrimental factor for brain health and eating behavior.
Collapse
Affiliation(s)
- Oren Contreras-Rodriguez
- Department of Medical Imaging, Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain.
- Department of Psychiatry and Legal Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Health Institute Carlos III (ISCIII) and CIBERSAM G17, Madrid, Spain.
| | - Montserrat Solanas
- Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Rosa M Escorihuela
- Department of Psychiatry and Legal Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
33
|
The Role of Tryptophan Dysmetabolism and Quinolinic Acid in Depressive and Neurodegenerative Diseases. Biomolecules 2022; 12:biom12070998. [PMID: 35883554 PMCID: PMC9313172 DOI: 10.3390/biom12070998] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Emerging evidence suggests that neuroinflammation is involved in both depression and neurodegenerative diseases. The kynurenine pathway, generating metabolites which may play a role in pathogenesis, is one of several competing pathways of tryptophan metabolism. The present article is a narrative review of tryptophan metabolism, neuroinflammation, depression, and neurodegeneration. A disturbed tryptophan metabolism with increased activity of the kynurenine pathway and production of quinolinic acid may result in deficiencies in tryptophan and derived neurotransmitters. Quinolinic acid is an N-methyl-D-aspartate receptor agonist, and raised levels in CSF, together with increased levels of inflammatory cytokines, have been reported in mood disorders. Increased quinolinic acid has also been observed in neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and HIV-related cognitive decline. Oxidative stress in connection with increased indole-dioxygenase (IDO) activity and kynurenine formation may contribute to inflammatory responses and the production of cytokines. Increased formation of quinolinic acid may occur at the expense of kynurenic acid and neuroprotective picolinic acid. While awaiting ongoing research on potential pharmacological interventions on tryptophan metabolism, adequate protein intake with appropriate amounts of tryptophan and antioxidants may offer protection against oxidative stress and provide a balanced set of physiological receptor ligands.
Collapse
|
34
|
Mańkowska K, Marchelek-Myśliwiec M, Kochan P, Kosik-Bogacka D, Konopka T, Grygorcewicz B, Roszkowska P, Cecerska-Heryć E, Siennicka A, Konopka J, Dołęgowska B. Microbiota in sports. Arch Microbiol 2022; 204:485. [PMID: 35834007 PMCID: PMC9283338 DOI: 10.1007/s00203-022-03111-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
Abstract
The influence of microbiota on the human body is currently the subject of many studies. The composition of bacteria colonizing the gastrointestinal tract varies depending on genetic make-up, lifestyle, use of antibiotics or the presence of diseases. The diet is also important in the species diversity of the microbiota. This study is an analysis of the relationships between physical activity, diet, and the microbiota of the gastrointestinal tract in athletes. This review shows the differences in the microbial composition in various sports disciplines, the influence of probiotics on the microbiome, the consequence of which may be achieved even better sports results. Physical activity increases the number of bacteria, mainly of the Clostridiales order and the genus: Lactobacillus, Prevotella, Bacteroides, and Veillonella, and their number varies depending on the sports discipline. These bacteria are present in athletes in sports that require a high VO2 max. The players’ diet also influences the composition of the microbiota. A diet rich in dietary fiber increases the amount of Lactobacillus or Bifidobacterium bacteria, probiotic microorganisms, which indicates the need to supplement the diet with probiotic preparations. It is impossible to suggest an unambiguous answer to how the microbiota of the gastrointestinal tract changes in athletes and requires further analyzes.
Collapse
Affiliation(s)
- Katarzyna Mańkowska
- Department of Laboratory Medicine, Chair of Microbiology, Immunological Diagnostics and Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wlkp 72, 70-110, Szczecin, Poland.
| | | | - Piotr Kochan
- Department of Bacteriology, Microbial Ecology and Parasitology, Chair of Microbiology, Jagiellonian University Medical College, Cracow, Poland
| | - Danuta Kosik-Bogacka
- Independent of Pharmaceutical Botany, Department of Medical Biology and Parasitology, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Konopka
- Department of Orthopedics, Traumatology and Oncology of the Musculoskeletal System, Pomeranian Medical University, Szczecin, Poland
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Chair of Microbiology, Immunological Diagnostics and Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wlkp 72, 70-110, Szczecin, Poland
| | - Paulina Roszkowska
- Department of Immunological Diagnostics, Chair of Microbiology, Immunological Diagnostics and Laboratory Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Chair of Microbiology, Immunological Diagnostics and Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wlkp 72, 70-110, Szczecin, Poland
| | - Aldona Siennicka
- Department of Laboratory Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Justyna Konopka
- Department of Orthodontics, Pomeranian Medical University, Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Chair of Microbiology, Immunological Diagnostics and Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wlkp 72, 70-110, Szczecin, Poland
| |
Collapse
|
35
|
Kondur HR, Lee TK, McIntosh R, Gouse H, Paul R, Grov C, Fuchs D, Gómez W, Dilworth SE, Neilands TB, Carrico AW. HIV-related drivers of sexual compulsivity and sexuality in sexual minority men who use methamphetamine. J Neurovirol 2022; 28:446-455. [PMID: 35821194 DOI: 10.1007/s13365-022-01085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/22/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
Although co-occurring methamphetamine (meth) use and HIV amplify the risk for neuropsychiatric comorbidities, the underlying neuroimmune mechanisms are not well characterized. We examined whether a detectable viral load and dysregulated metabolism of amino acid precursors for neurotransmitters predicted subsequent levels of sexual compulsivity and sexual sensation seeking. This 15-month longitudinal study enrolled 110 sexual minority men (SMM) living with HIV who had biologically confirmed meth use (i.e., reactive urine or hair toxicology results). Peripheral venous blood samples collected at baseline, 6 months, 12 months, and 15 months were used to measure a detectable viral load (> 40 copies/mL), the kynurenine/tryptophan (K/T) ratio, and the phenylalanine/tyrosine (P/T) ratio. The K/T and P/T ratios index dysregulated serotonin and catecholamine (e.g., dopamine) synthesis, respectively. In a cross-lagged panel model, a detectable viral load at 6 months predicted greater sexual compulsivity at 12 months after adjusting for prior levels of sexual compulsivity and recent stimulant use (β = 0.26, p = 0.046). A greater P/T ratio at baseline predicted decreased sexual sensation seeking at 6 months (β = - 0.25, p = 0.004) after adjusting for baseline sexual sensation seeking and recent stimulant use. Taken together, HIV replication and dysregulated catecholamine synthesis could potentiate sexual compulsivity while decreasing sexual pleasure in SMM who use meth.
Collapse
Affiliation(s)
- Hema R Kondur
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Tae K Lee
- Department of Child Psychology and Education, Sungkyunkwan University, Seoul, Korea
| | - Roger McIntosh
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Hetta Gouse
- Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Robert Paul
- Department of Psychological Sciences, University of Missouri St. Louis, St. Louis, MO, USA
| | - Christian Grov
- Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA
| | | | - Walter Gómez
- Jane Addams College of Social Work, University of Illinois, Chicago, IL, USA
| | - Samantha E Dilworth
- School of Medicine, Department of Medicine, Division of Prevention Science, San Francisco Center for AIDS Prevention Studies, University of California, San Francisco, USA
| | - Torsten B Neilands
- School of Medicine, Department of Medicine, Division of Prevention Science, San Francisco Center for AIDS Prevention Studies, University of California, San Francisco, USA
| | - Adam W Carrico
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
36
|
Yao Y, Wang K, Xiang H. Association between cognitive function and ambient particulate matters in middle-aged and elderly Chinese adults: Evidence from the China Health and Retirement Longitudinal Study (CHARLS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154297. [PMID: 35288137 PMCID: PMC9112163 DOI: 10.1016/j.scitotenv.2022.154297] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 05/03/2023]
Abstract
Increasing studies have discussed how ambient air pollution affects cognitive function, however, the results are inconsistent, and such studies are limited in developing countries. To fill the gap, in this study, we aimed to explore the effect of ambient particulate matters (PM1, PM2.5, PM10) on cognitive function of middle-aged and elderly Chinese adults. A total of 7928 participants older than 45 were included from CHARLS collected in 2011, 2013, and 2015. Cognitive function was evaluated with two dimensions, the first one was episodic memory and the second dimension was mental status. The total score of cognitive function was the sum of above two dimensions (0-31 points). Participants' exposure to ambient particulate matters was estimated by using a satellite-based spatiotemporal model. Linear mixed models were applied to analyze the impact of PM1, PM2.5, and PM10 on cognition function. Further interaction analyses were applied to examine the potential effect modifications on the association. After adjusting for confounding factors, we found an IQR increase in all three ambient particulate matters was significantly associated with a decrease in cognitive function score, with the greatest effect in the 90-day exposure window for PM1 (β = -0.227, 95%CI: -0.376, -0.078) and PM2.5 (β = -0.220, 95%CI: -0.341, -0.099). For ambient PM10, the most significant exposure window was 60-day (β = -0.158, 95%CI: -0.274, -0.042). Interaction analyses showed that the PM-cognitive function association could be modified by gender, region, alcohol consumption, smoking, education level, chronic diseases, and depressive symptoms. In conclusion, exposure to ambient particulate matter for a certain period would significantly decrease cognitive function among middle-aged and elderly Chinese. Furthermore, individuals who were female, or lived in the midland of China were more susceptible to the adverse effect of particulate matters.
Collapse
Affiliation(s)
- Yifan Yao
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Kai Wang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Hao Xiang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China.
| |
Collapse
|
37
|
Saeed R, Mahmood K, Ali SB, Haleem DJ. Behavioral, Hormonal, and Serotonergic Responses to Different Restricted Feeding Schedules in Rats. Int J Tryptophan Res 2022; 15:11786469221104729. [PMID: 35757086 PMCID: PMC9218908 DOI: 10.1177/11786469221104729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
To determine the effect of long-term restricted feeding schedules on behavior, serotonergic responses, and neuro-endocrine functions, metabolism of serotonin (5-HT) in the striatum, expression of serotonin-1A (5-HT1A) auto-receptor in the raphe nuclei and circulating levels of leptin and corticosterone were determined in female Wistar rats kept on excessive food restriction schedule. Due to a role of dietary deficiency of tryptophan (Trp) in influencing serotonergic neurotransmission, circulating levels of Trp were also determined. Estimations were done in 2 different restricted feeding models: time-restricted feeding (TRF) and diet restricted (DR). TRF animals were given access to food ad libitum only for 2 hours/day. The DR animals were given a small calculated amount of food each day. We found that chronic food restriction for 5 weeks cause a significant decrease in the body weight and produced hyperactivity in both, TRF and DR animals. Levels of Trp were declined in circulation and in the striatum. Similarly, the levels of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) were decreased in the striatum. Also, the expression of 5-HT1A auto-receptor was declined in the raphe nuclei. These changes in 5-HT metabolism and 5-HT1A auto-receptor expression were more profound in DR animals as compare to TRF animals. Similarly, hypoleptinemia and increased corticosterone found in both models was higher in DR animals. Effect of dietary deficiency of Trp in the modulation of striatal 5-HT metabolism and its consequences on circulating leptin and corticosterone are discussed.
Collapse
Affiliation(s)
- Raheel Saeed
- Neuroscience Research Laboratory, Dr. Panjwani Center for Molecular Medicine & Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Pakistan
| | - Khalid Mahmood
- Neuroscience Research Laboratory, Dr. Panjwani Center for Molecular Medicine & Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Pakistan
| | - Sadia Basharat Ali
- Neuroscience Research Laboratory, Dr. Panjwani Center for Molecular Medicine & Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Pakistan
| | - Darakhshan Jabeen Haleem
- Neuroscience Research Laboratory, Dr. Panjwani Center for Molecular Medicine & Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Pakistan
| |
Collapse
|
38
|
Thomson-Casey C, Adams J, McIntyre E. Complementary medicine in psychology practice: an analysis of Australian psychology guidelines and a comparison with other psychology associations from English speaking countries. BMC Complement Med Ther 2022; 22:171. [PMID: 35752820 PMCID: PMC9233840 DOI: 10.1186/s12906-022-03620-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Psychologists, and their clients, are engaging with complementary medicine (CM). Increasing evidence for CM approaches, such as improved nutrition and St John's wort, has led to their inclusion in the Royal Australian New Zealand College of Psychiatrists clinical practice guidelines for mood disorders. This research aims to determine in what ways, and to what extent, Australian psychology regulatory bodies and associations consider CM relevant to psychology practice. Specifically, how these regulatory bodies and professional association's ethical and practice guidelines engage with CM. METHODS Documents from Australian regulatory bodies and professional associations, that relate to the governance or guidance of psychologists' clinical practice, were systematically searched for key terms relating to CM. RESULTS There were no direct references to CM in the 58 ethical and practice guidelines reviewed. There was also no reference to the relevance of CM to ethnocultural groups, such as Aboriginal and Torres Strait Islander traditional healing practices. CONCLUSION While other mental health care disciplines are working toward integrating CM, the discipline of psychology in Australia is not currently engaged in such developments. Given the exponential rise of CM use amongst those with mental health problems, psychology associations should consider developing resources and guidelines to assist psychologists in navigating CM in relation to clinical practice to help minimise risks, such as patient safety associated with concurrent CM use.
Collapse
Affiliation(s)
- Carrie Thomson-Casey
- School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia.
| | - Jon Adams
- School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
| | - Erica McIntyre
- School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
- Institute for Sustainable Futures, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
39
|
Meliala A, Narwidina P, Supriyanto I, Sumarno YT, Pratama YY, Damayanti R. The Role of Banana (Musa balbisiana Colla) Peel Floss as Functional Food Matrix to Alleviate Chronic Stress. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND: Banana peel (Musa balbisiana Colla) already has a diverse variety of nutritional benefits, but its perishable nature necessitates additional food processing, one of which is banana peel floss.
AIM: The objective of this study was to examine the antidepressant effects of banana peel floss in experimental animals subjected to chronic mild stress (CMS) for 6 weeks.
METHODS: Animals were randomly assigned into five groups. The first group was fed a control diet without CMS as a negative control. The other four groups were exposed to CMS and fed a control diet as a positive control, with three of the five groups fed a control diet supplemented with 15%, 30%, and 60% banana peel floss. The tail suspension test (TST) and the Morris water maze were used as behavioral parameters in this study (MWM). Cortisol and serotonin levels were measured in two stages: after CMS exposure or before banana peel floss intervention, and after 4 weeks of banana peel floss intervention.
RESULTS: The results showed that the immobility time in TST and escape latency in the MWM test were significantly reduced in the groups supplemented with 15% and 30% banana peel floss, respectively. Furthermore, we observed a significant association between serotonin and cortisol levels and also between the duration of immobility time in TST and serotonin levels.
CONCLUSIONS: The administration of banana peel floss caused significant changes in plasma serotonin concentrations, implying that the presence of dietary fiber, tryptophan, and bioactive components in banana peel floss can reduce stress-induced depression by regulating cortisol levels and increasing serotonin levels.
Collapse
|
40
|
Singh I, Srivastava R, Shukla VK, Pathak SK, Burman T, Al-Mutairi AA, El-Emam AA, Prasad O, Sinha L. Spectroscopic, electronic structure, molecular docking, and molecular dynamics simulation study of 7-Trifluoromethyl-1H-indole-2-carboxylic acid as an aromatase inhibitor. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121530. [PMID: 35752037 DOI: 10.1016/j.saa.2022.121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 10/31/2022]
Abstract
The present work encompasses a combined experimental and theoretical investigation of the molecular structure, vibrational wavenumbers, electronic structure at the ground and electronic excited states, molecular electrostatic potential surface of 7-(Trifluoromethyl)-1H-indole-2-carboxylic acid (TICA) and possibility of the title molecule as an aromatase inhibitor using molecular docking and molecular dynamic simulations. A stable conformer has been obtained using potential energy scans by varying appropriate dihedral angles. The obtained minimum energy conformer was further optimized at the 6-311++G (d, p) basis set by applying the most accepted B3LYP functional. A good agreement between experimental and calculated normal modes of vibration has been observed. The hydrogen-bonded interaction between two monomeric units of TICA has been investigated using NBO,QTAIM, and NCI (noncovalent interactions) analysis. Molecular docking of TICA with human placental aromatase (PDB ID: 3S79) reveals the formation of polar hydrogen bonds as well as hydrophobic interactions between the ligand and the protein, right in the binding cavity. TICA satisfies all pharmacokinetic filters (Lipinski rule of five, the Veber rule, Ghose rule, Egan rule, as well as the Muegge rule) and has a high bioavailability score of 0.85. Dynamic stability of the ligand within the binding pocket of the target protein has been confirmed by 100 ns molecular dynamics simulation results. The present study provides an excellent starting point for additional in vivo research, and TICA may eventually serve as a significant therapeutic candidate for the treatment of breast cancer.
Collapse
Affiliation(s)
- Isha Singh
- Department of Physics, University of Lucknow, 226007 Lucknow, India
| | - Ruchi Srivastava
- Department of Physics, University of Lucknow, 226007 Lucknow, India
| | - Vikas K Shukla
- Department of Physics, Maharishi University of Information Technology Lucknow, Uttar Pradesh, India
| | - Shilendra K Pathak
- Department of Physics, M. M. M. P. G. College, Bhatpar Rani, Deoria, India
| | | | - Aamal A Al-Mutairi
- Department of Chemistry, College of Sciences, Imam Mohammad lbn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Ali A El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Onkar Prasad
- Department of Physics, University of Lucknow, 226007 Lucknow, India
| | - Leena Sinha
- Department of Physics, University of Lucknow, 226007 Lucknow, India.
| |
Collapse
|
41
|
Basílio LSP, Vanz Borges C, Minatel IO, Vargas PF, Tecchio MA, Vianello F, Lima GPP. New beverage based on grapes and purple-fleshed sweet potatoes: Use of non-standard tubers. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Borges CV, Nunes A, Costa VE, Orsi RDO, Basilio LSP, Monteiro GC, Maraschin M, Lima GPP. Tryptophan and Biogenic Amines in the Differentiation and Quality of Honey. Int J Tryptophan Res 2022; 15:11786469221102098. [PMID: 35656455 PMCID: PMC9152190 DOI: 10.1177/11786469221102098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Honey is a natural product with beneficial properties to health and has different characteristics depending on the region of production and collection, flowering, and climate. The presence of precursor amino acids of- and biogenic amines can be important in metabolomic studies of differentiation and quality of honey. We analyzed 65 honeys from 11 distinct regions of the State of Santa Catarina (Brazil) as to the profile of amino acids and biogenic amines by HPLC. The highest L-tryptophan (Trp), 5-hydroxytryptophan (5-OH-Trp), and tryptamine (Tryp) levels were detected in Cfb climate and harvested in 2019. Although we have found high content of serotonin, dopamine, and L-dopa in Cfb climate, the highest values occurred in honey produced during the summer 2018 and at altitudes above 900 m. Results indicate that the amino acids and biogenic amine levels in honeys are good indicators of origin. These data warrant further investigation on the honey as source of amino acids precursor of serotonin, melatonin, and dopamine, what can guide the choice of food as source of neurotransmitters.
Collapse
Affiliation(s)
- Cristine Vanz Borges
- Health Sciences, Universidade Alto Vale do Rio do Peixe (UNIARP), Caçador, Santa Catarina, Brazil
| | - Aline Nunes
- Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Vladimir Eliodoro Costa
- Stable Isotope Center, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Ricardo de Oliveira Orsi
- Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Leticia Silva Pereira Basilio
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Gean Charles Monteiro
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Marcelo Maraschin
- Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Giuseppina Pace Pereira Lima
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo, Brazil
| |
Collapse
|
43
|
Lyte JM, Koester LR, Daniels KM, Lyte M. Distinct Cecal and Fecal Microbiome Responses to Stress Are Accompanied by Sex- and Diet-Dependent Changes in Behavior and Gut Serotonin. Front Neurosci 2022; 16:827343. [PMID: 35495029 PMCID: PMC9039258 DOI: 10.3389/fnins.2022.827343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Although diet- and stress-induced perturbations in the microbiome (biotic and abiotic factors) associate with changes in host behavior via the microbiota-gut-brain axis, few mechanisms have been identified. The identification of causative pathways by which the microbiome influences host behavior therefore would benefit from the application of evidence-based conceptual frameworks. One such causal framework is microbial endocrinology which is the study of neuroendocrine axes as avenues of bi-directional neurochemical-based host-microbe crosstalk. As such, we investigated the relationship between diet- and stress-induced alterations in behavior, regional gut serotonergic response, and concomitant changes in the cecal and fecal bacterial populations of male and female mice. Our results demonstrate that sex is a dominant factor in determining compositional changes in the gut microbiome in response to stress and diet modifications. Intestinal serotonergic responses to stress were observed in both sexes but dietary modifications uniquely affected region-specific changes in males and females. Likewise, behavioral alterations diverged between male and female mice. Together, these results demonstrate distinct sex-dependent relationships between cecal and fecal bacterial taxa and behavioral- and serotonergic-responses to stress and diet. The present study demonstrates the importance of including both male and female sexes in the examination of the microbiota-gut-brain axis. As different microbial taxa were identified to associate with the behavioral and gut serotonergic responses of male and female mice, certain bacterial species may hold sex-dependent functional relevance for the host. Future investigations seeking to develop microbiome-based strategies to afford host stress resilience should include sex-based differences in the microbiome.
Collapse
Affiliation(s)
- Joshua M. Lyte
- Poultry Production and Product Safety Research, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR, United States
| | - Lucas R. Koester
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Karrie M. Daniels
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Mark Lyte
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
- *Correspondence: Mark Lyte, , orcid.org/0000-0001-8512-2581
| |
Collapse
|
44
|
Tasić ŽZ, Mihajlović MBP, Radovanović MB, Simonović AT, Medić DV, Antonijević MM. Electrochemical determination of L-tryptophan in food samples on graphite electrode prepared from waste batteries. Sci Rep 2022; 12:5469. [PMID: 35361843 PMCID: PMC8971531 DOI: 10.1038/s41598-022-09472-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/17/2022] [Indexed: 11/19/2022] Open
Abstract
One of the goals of this research was to develop an electrochemical sensor that had the ability to determine the target analyte and was both cheap and non-toxic. Another goal was to influence the reduction of electronic waste. In accordance with these, a graphite rod from zinc-carbon batteries was used to prepare an electrochemical sensor for the determination of L-tryptophan in Britton–Robinson buffer solution. Two electrochemical methods were used in the experimental research, differential pulse voltammetry and cyclic voltammetry. The effect of different parameters, including the pH value of supporting solution, scan rate, as well as the concentration of L-tryptophan on the current response, was studied. The pH value of Britton–Robinson buffer influenced the intensity of L-tryptophan oxidation peak, as well as the peak potential. The intensity of the current response was the highest at pH 4.0, while the peak potential value became lower as the pH increased, indicating that protons also participated in the redox reaction. Based on the obtained data, electrochemical oxidation of L-tryptophan at the graphite electrode was irreversible, two electron/two proton reaction. In addition, it was observed that the oxidation peak increased as the scan rate increased. According to the obtained electrochemical data, it was suggested that the oxidation of L-tryptophan was mixed controlled by adsorption and diffusion. The linear correlation between oxidation peak and L-tryptophan concentration was investigated in the range 5.0–150.0 µM and the obtained values of limit of detection and limit of quantification were 1.73 µM and 5.78 µM, respectively. Also, the prepared electrochemical sensor was successful in determination of target analyte in milk and apple juice samples.
Collapse
Affiliation(s)
- Žaklina Z Tasić
- Technical Faculty in Bor, University of Belgrade, VJ 12, P.O. Box 50, 19210, Bor, Serbia.
| | | | - Milan B Radovanović
- Technical Faculty in Bor, University of Belgrade, VJ 12, P.O. Box 50, 19210, Bor, Serbia
| | - Ana T Simonović
- Technical Faculty in Bor, University of Belgrade, VJ 12, P.O. Box 50, 19210, Bor, Serbia
| | - Dragana V Medić
- Technical Faculty in Bor, University of Belgrade, VJ 12, P.O. Box 50, 19210, Bor, Serbia
| | - Milan M Antonijević
- Technical Faculty in Bor, University of Belgrade, VJ 12, P.O. Box 50, 19210, Bor, Serbia
| |
Collapse
|
45
|
Neuropeptide Y interaction with dopaminergic and serotonergic pathways: interlinked neurocircuits modulating hedonic eating behaviours. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110449. [PMID: 34592387 DOI: 10.1016/j.pnpbp.2021.110449] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022]
Abstract
Independent from homeostatic needs, the consumption of foods originating from hyperpalatable diets is defined as hedonic eating. Hedonic eating can be observed in many forms of eating phenotypes, such as compulsive eating and stress-eating, heightening the risk of obesity development. For instance, stress can trigger the consumption of palatable foods as a type of coping strategy, which can become compulsive, particularly when developed as a habit. Although eating for pleasure is observed in multiple maladaptive eating behaviours, the current understanding of the neurobiology underlying hedonic eating remains deficient. Intriguingly, the combined orexigenic, anxiolytic and reward-seeking properties of Neuropeptide Y (NPY) ignited great interest and has positioned NPY as one of the core neuromodulators operating hedonic eating behaviours. While extensive literature exists exploring the homeostatic orexigenic and anxiolytic properties of NPY, the rewarding effects of NPY continue to be investigated. As deduced from a series of behavioural and molecular-based studies, NPY appears to motivate the consumption and enhancement of food-rewards. As a possible mechanism, NPY may modulate reward-associated monoaminergic pathways, such as the dopaminergic and serotoninergic neural networks, to modulate hedonic eating behaviours. Furthermore, potential direct and indirect NPYergic neurocircuitries connecting classical homeostatic and hedonic neuropathways may also exist involving the anti-reward centre the lateral habenula. Therefore, this review investigates the participation of NPY in orchestrating hedonic eating behaviours through the modulation of monoaminergic pathways.
Collapse
|
46
|
Ghare S, Singhal R, Bryant V, Gautam S, Tirumala CC, Srisailam PK, Reyes-Vega A, Ghooray D, McClain CJ, Hoffman K, Petrosino J, Bryant K, Govind V, Cohen R, Cook RL, Barve S. Age-Associated Gut Dysbiosis, Marked by Loss of Butyrogenic Potential, Correlates With Altered Plasma Tryptophan Metabolites in Older People Living With HIV. J Acquir Immune Defic Syndr 2022; 89:S56-S64. [PMID: 35015746 PMCID: PMC8751293 DOI: 10.1097/qai.0000000000002866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Imbalance in tryptophan (TRP) metabolism and its neuroactive metabolites, serotonin and kynurenine (KYN), is a known pathogenic mechanism underlying neurocognitive impairment. Gut microbiota plays an important role in TRP metabolism, and the production of these neuroactive molecules affects neurocognitive function. Although both HIV infection and normal aging independently induce gut dysbiosis and influence TRP metabolism, their interactive effects on compositional/functional changes in gut microbiota and consequent alterations in TRP metabolites remain largely undetermined. METHODS Older people living with HIV infection (PLWH, aged 50-70 years, n = 22) were enrolled in this cross-sectional pilot study. Metagenomic analysis of fecal microbiome using 16S Ribosomal ribonucleic acid gene sequencing and metabolomics analysis of plasma using mass spectrometry with a reverse-phase iquid chromatography tandem mass spectrometry were performed. Statistical analyses included the univariate linear regression and Spearman correlation analyses. RESULTS Age-associated changes in plasma levels of key neuroactive TRP metabolites, serotonin and KYN, were seen in PLWH. Specifically, we observed age-dependent decreases in serotonin and increases in KYN and KYN-to-TRP ratio, indicative of dysfunctional TRP metabolism. Furthermore, the gut dysbiosis seen in older PLWH is characterized by a reduction of Firmicutes/Bacteroidetes ratio and butyrate-producing microbial families Lachnospiraceae and Lactobacillaceae. Of importance, correspondent with gut dysbiosis, increasing age was significantly associated with decreased plasma butyrate levels, which in turn correlated positively with serotonin and negatively with KYN/TRP ratio. CONCLUSIONS Age-dependent gut microbial dysbiosis distinguished by a decrease in butyrogenic potential is a key pathogenic feature associated with the shift in TRP metabolism from serotonin to KYN in older PLWH.
Collapse
Affiliation(s)
- Smita Ghare
- Department of Medicine, University of Louisville, KY
- Alcohol Research Center, University of Louisville, KY
| | - Richa Singhal
- Department of Medicine, University of Louisville, KY
- Alcohol Research Center, University of Louisville, KY
| | - Vaughn Bryant
- Department of Epidemiology, Center for Cognitive Aging and Memory, Gainesville, University of Florida, FL
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, Gainesville, University of Florida, FL
| | - Sabina Gautam
- Department of Medicine, University of Louisville, KY
- Alcohol Research Center, University of Louisville, KY
| | - Chanakya Charan Tirumala
- Department of Medicine, University of Louisville, KY
- Alcohol Research Center, University of Louisville, KY
| | - Praneet Kumar Srisailam
- Department of Medicine, University of Louisville, KY
- Alcohol Research Center, University of Louisville, KY
| | - Andrea Reyes-Vega
- Department of Medicine, University of Louisville, KY
- Alcohol Research Center, University of Louisville, KY
| | - Dushan Ghooray
- Department of Medicine, University of Louisville, KY
- Alcohol Research Center, University of Louisville, KY
| | - Craig J. McClain
- Department of Medicine, University of Louisville, KY
- Alcohol Research Center, University of Louisville, KY
- Robley Rex VAMC, Louisville, KY
| | - Kristi Hoffman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine
- Baylor College of Medicine Center for Metagenomics and Microbiome Research
| | - Joseph Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine
- Baylor College of Medicine Center for Metagenomics and Microbiome Research
| | - Kendall Bryant
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD; and
| | - Varan Govind
- Department of Radiology, University of Miami, FL
| | - Ronald Cohen
- Department of Epidemiology, Center for Cognitive Aging and Memory, Gainesville, University of Florida, FL
| | - Robert L. Cook
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, Gainesville, University of Florida, FL
| | - Shirish Barve
- Department of Medicine, University of Louisville, KY
- Alcohol Research Center, University of Louisville, KY
| |
Collapse
|
47
|
Wang Z, Yuan K, Ji YB, Li SX, Shi L, Wang Z, Zhou XY, Bao YP, Xie W, Han Y, Shi J, Lu L, Yan W, Chen WH. Alterations of the Gut Microbiota in Response to Total Sleep Deprivation and Recovery Sleep in Rats. Nat Sci Sleep 2022; 14:121-133. [PMID: 35115853 PMCID: PMC8800865 DOI: 10.2147/nss.s334985] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Accumulating evidence suggests that both sleep loss and gut dysbiosis can lead to metabolic disorders. However, less is known about the impact of total sleep deprivation (SD) and sleep recovery on the composition, function, and metabolic dynamics of the gut microbiota. METHODS Specific-pathogen free Sprague-Dawley rats were subjected to 48 h of SD with gentle handling and then allowed to recover for 1 week. Taxonomic profiles of fecal microbiota were obtained at baseline, 24 h of SD, 48 h of SD, and 1 week of recovery. We used 16S rRNA gene sequencing to analyze the gut microbial composition and function and further characterize microbiota-derived metabolites in rats. RESULTS The microbiota composition analysis revealed that gut microbial composition and metabolites did not change in the rats after 24 h of SD but were significantly altered after 48 h of SD. These changes were reversible after 1 week of sleep recovery. A functional analysis was performed based on Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, indicating that 19 KEGG pathways were significantly altered in the gut microbiota in SD rats. These functional changes occurred within 24 h of SD, were more apparent after 48 h of SD, and did not fully recover after 1 week of sleep recovery. CONCLUSION These results indicate that acute total SD leads to significant compositional and functional changes in the gut microbiota, and these changes are reversible.
Collapse
Affiliation(s)
- Zhong Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| | - Yan-Bin Ji
- Department of Neurology, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, People's Republic of China
| | - Su-Xia Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People's Republic of China
| | - Le Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| | - Zhe Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| | - Xin-Yu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yan-Ping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People's Republic of China
| | - Wen Xie
- Mental Health Center of Anhui Province, Hefei, 230032, People's Republic of China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People's Republic of China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People's Republic of China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People's Republic of China.,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, People's Republic of China
| | - Wei Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| | - Wen-Hao Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| |
Collapse
|
48
|
Huang Y, Zhao M, Chen X, Zhang R, Le A, Hong M, Zhang Y, Jia L, Zang W, Jiang C, Wang J, Fan X, Wang J. Tryptophan Metabolism in Central Nervous System Diseases: Pathophysiology and Potential Therapeutic Strategies. Aging Dis 2022; 14:858-878. [PMID: 37191427 DOI: 10.14336/ad.2022.0916] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
The metabolism of L-tryptophan (TRP) regulates homeostasis, immunity, and neuronal function. Altered TRP metabolism has been implicated in the pathophysiology of various diseases of the central nervous system. TRP is metabolized through two main pathways, the kynurenine pathway and the methoxyindole pathway. First, TRP is metabolized to kynurenine, then kynurenic acid, quinolinic acid, anthranilic acid, 3-hydroxykynurenine, and finally 3-hydroxyanthranilic acid along the kynurenine pathway. Second, TRP is metabolized to serotonin and melatonin along the methoxyindole pathway. In this review, we summarize the biological properties of key metabolites and their pathogenic functions in 12 disorders of the central nervous system: schizophrenia, bipolar disorder, major depressive disorder, spinal cord injury, traumatic brain injury, ischemic stroke, intracerebral hemorrhage, multiple sclerosis, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Furthermore, we summarize preclinical and clinical studies, mainly since 2015, that investigated the metabolic pathway of TRP, focusing on changes in biomarkers of these neurologic disorders, their pathogenic implications, and potential therapeutic strategies targeting this metabolic pathway. This critical, comprehensive, and up-to-date review helps identify promising directions for future preclinical, clinical, and translational research on neuropsychiatric disorders.
Collapse
|
49
|
Smardz J, Martynowicz H, Wojakowska A, Wezgowiec J, Danel D, Mazur G, Wieckiewicz M. Lower serotonin levels in severe sleep bruxism and its association with sleep, heart rate, and body mass index. J Oral Rehabil 2021; 49:422-429. [PMID: 34907576 DOI: 10.1111/joor.13295] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/25/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sleep bruxism (SB) is a complex behaviour that seems to be associated with the serotoninergic pathway. OBJECTIVES This exploratory research aimed to evaluate the levels of serotonin in individuals with sleep bruxism diagnosed by video polysomnography. The study also evaluated whether the levels of serotonin were associated with body mass index, heart rate, and sleep parameters. METHODS The study participants were adults hospitalised in the Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology at the Wroclaw Medical University. They underwent a single-night video polysomnography during which sleep and SB parameters and heart rate were evaluated. Additionally, body mass index and blood serotonin levels were evaluated for each patient. RESULTS A total of 105 patients were included in this study (80 women and 25 men). All the patients were Caucasians aged 18-63 years, with a mean age ± (standard deviation) of 33.43± 10.8 years. Seventy-five patients (71.43%) presented sleep bruxism (bruxism episodes index ≥2) and 30 (28.57%) did not. Fifty patients (47.62%) presented severe sleep bruxism (bruxism episodes index >4). The results showed that lower blood serotonin levels were associated with severe sleep bruxism; increased bruxism episodes index, rapid eye movement sleep, and body mass index; and decreased maximal pulse. CONCLUSION Severe sleep bruxism and the associated phenomena seem to co-occur with lower blood serotonin levels. The study supports the hypothesis on the relationship between the serotoninergic pathway and sleep bruxism.
Collapse
Affiliation(s)
- Joanna Smardz
- Department of Experimental Dentistry, Wroclaw Medical University, Wroclaw, Poland
| | - Helena Martynowicz
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Wojakowska
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Joanna Wezgowiec
- Department of Experimental Dentistry, Wroclaw Medical University, Wroclaw, Poland
| | - Dariusz Danel
- Department of Anthropology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Grzegorz Mazur
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Mieszko Wieckiewicz
- Department of Experimental Dentistry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
50
|
Smardz J, Martynowicz H, Wojakowska A, Wezgowiec J, Olchowy C, Danel D, Mazur G, Wieckiewicz M. Is sleep bruxism related to the levels of enzymes involved in the serotonin synthesis pathway? Clin Oral Investig 2021; 26:3605-3612. [PMID: 34882257 PMCID: PMC8979889 DOI: 10.1007/s00784-021-04329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES This exploratory research aimed to evaluate the levels of tryptophan hydroxylase 1 (TPH1) and aromatic l-amino acid decarboxylase (DDC), which play an important role in the serotonin synthesis pathway, in individuals with sleep bruxism (SB) diagnosed using audio-video polysomnography (vPSG) and compare them with that of individuals not presenting with SB. MATERIALS AND METHODS The study included adult patients hospitalized in the Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology at the Wroclaw Medical University. The participants underwent a single-night vPSG for the evaluation of the SB parameters. Peripheral blood samples were also collected from them for estimating the serum levels of TPH1 and DDC. RESULTS A total of 105 patients (80 women and 25 men) were included in the study. All the patients were Caucasians and aged 18-63 years (mean age: 33.43 ± 10.8 years). Seventy-five patients (71.43%) presented with SB, of which 50 (47.62%) had severe SB, while the remaining 30 patients (28.57%) did not. No statistically significant differences in TPH1 and DDC levels were observed between the individuals with SB and without SB. A significant negative correlation was found between tonic SB episodes and DDC levels (p = 0.0012). Other correlations between the SB parameters and the levels of the studied enzymes were statistically insignificant (p > 0.05 for all comparisons). CONCLUSIONS The levels of the enzymes that are crucial for serotonin synthesis (TPH1 and DDC) did not seem to influence SB. CLINICAL RELEVANCE This study provides important insights for further research on the relationship between the serotonin pathway and SB, which should take into account not only the process of serotonin synthesis but also the effect of serotonin-dependent neurotransmission on SB.
Collapse
Affiliation(s)
- Joanna Smardz
- Department of Experimental Dentistry, Wroclaw Medical University, Wroclaw, Poland
| | - Helena Martynowicz
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Wojakowska
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Joanna Wezgowiec
- Department of Experimental Dentistry, Wroclaw Medical University, Wroclaw, Poland
| | - Cyprian Olchowy
- Department of Dental Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - Dariusz Danel
- Department of Anthropology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Grzegorz Mazur
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Mieszko Wieckiewicz
- Department of Experimental Dentistry, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|