1
|
Athanasiou A, Charalambous M, Anastasiou T, Soteriades ES. Pre- and post-operative administration of omega-3 polyunsaturated fatty acids in cardiac surgery patients. A narrative review. Ann Med Surg (Lond) 2025; 87:2068-2092. [PMID: 40212170 PMCID: PMC11981254 DOI: 10.1097/ms9.0000000000003061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/03/2025] [Indexed: 04/13/2025] Open
Abstract
Eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) are two biologically active omega-3 polyunsaturated fatty acids (n-3 PUFA), acquired by nutrition and incorporated in cell membranes' phospholipids, thus playing a crucial role in human health and homeostasis. Due to their potential cardioprotective, anti-inflammatory, and anti-arrhythmic actions, n-3 PUFA emerge as an interesting therapeutic option for cardiac surgery (CS) patients. The aim of this review was to assess the effects of perioperative administration of n-3 PUFA in CS patients. A comprehensive literature search was conducted in order to identify prospective cohort studies and randomized controlled trials (RCT) reporting on the perioperative effects of n-3 PUFA among adult patients undergoing CS. A total of 31 articles, published between 1995 and 2022, including 10 543 patients, met the inclusion criteria. There seems to be a beneficial effect of n-3 PUFA supplementation for arrhythmias such as in Postoperative Atrial Fibrillation (POAF), reduction of Intensive Care Unit Length of Stay (ICULOS) & Hospital Length of Stay (HLOS), reduction in postoperative ventilation time, in inotropic demand, in postoperative fatigue, as well as in overall morbidity and mortality. Moreover, n-3 PUFA increase antioxidant potential, attenuate oxidative stress and inflammation with subsequent significant reduction in myocardial ischemia/reperfusion (I/R) injury, thus promoting early metabolic recovery of the heart after elective CS leading to improved myocardial protection. They represent a readily available and cost-effective strategy that could improve the outcome of patients undergoing CS, by reducing the risks of serious cardiovascular adverse events (AE), both peri- and post-operatively.
Collapse
Affiliation(s)
| | - Marinos Charalambous
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | - Elpidoforos S. Soteriades
- Department of Environmental Health, Environmental and Occupational Medicine and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Healthcare Management Program, School of Economics and Management, Open University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
2
|
Zisis M, Chondrogianni ME, Androutsakos T, Rantos I, Oikonomou E, Chatzigeorgiou A, Kassi E. Linking Cardiovascular Disease and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): The Role of Cardiometabolic Drugs in MASLD Treatment. Biomolecules 2025; 15:324. [PMID: 40149860 PMCID: PMC11940321 DOI: 10.3390/biom15030324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
The link between cardiovascular disease (CVD) and metabolic dysfunction-associated steatotic liver disease (MASLD) is well-established at both the epidemiological and pathophysiological levels. Among the common pathophysiological mechanisms involved in the development and progression of both diseases, oxidative stress and inflammation, insulin resistance, lipid metabolism deterioration, hepatokines, and gut dysbiosis along with genetic factors have been recognized to play a pivotal role. Pharmacologic interventions with drugs targeting common modifiable cardiometabolic risk factors, such as T2DM, dyslipidemia, and hypertension, are a reasonable strategy to prevent CVD development and progression of MASLD. Recently, a novel drug for metabolic dysfunction-associated steatohepatitis (MASH), resmetirom, has shown positive effects regarding CVD risk, opening new opportunities for the therapeutic approach of MASLD and CVD. This review provides current knowledge on the epidemiologic association of MASLD to CVD morbidity and mortality and enlightens the possible underlying pathophysiologic mechanisms linking MASLD with CVD. The role of cardiometabolic drugs such as anti-hypertensive drugs, hypolipidemic agents, glucose-lowering medications, acetylsalicylic acid, and the thyroid hormone receptor-beta agonist in the progression of MASLD is also discussed. Metformin failed to prove beneficial effects in MASLD progression. Studies on the administration of thiazolinediones in MASLD suggest effectiveness in improving steatosis, steatohepatitis, and fibrosis, while newer categories of glucose-lowering agents such as GLP-1Ra and SGLT-2i are currently being tested for their efficacy across the whole spectrum of MASLD. Statins alone or in combination with ezetimibe have yielded promising results. The conduction of long-duration, large, high-quality, randomized-controlled trials aiming to assess by biopsy the efficacy of cardiometabolic drugs to reverse MASLD progression is of great importance.
Collapse
Affiliation(s)
- Marios Zisis
- Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (M.Z.); (I.R.)
| | - Maria Eleni Chondrogianni
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Theodoros Androutsakos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Ilias Rantos
- Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (M.Z.); (I.R.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, “Sotiria” Thoracic Diseases Hospital of Athens, University of Athens Medical School, 11527 Athens, Greece;
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
3
|
Ciobârcă D, Cătoi AF, Gavrilaș L, Banc R, Miere D, Filip L. Natural Bioactive Compounds in the Management of Type 2 Diabetes and Metabolic (Dysfunction)-Associated Steatotic Liver Disease. Pharmaceuticals (Basel) 2025; 18:279. [PMID: 40006091 PMCID: PMC11859434 DOI: 10.3390/ph18020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Type 2 diabetes (T2D) and metabolic (dysfunction)-associated steatotic liver disease (MASLD) affect a growing number of individuals worldwide. T2D and MASLD often coexist and substantially elevate the risk of adverse hepatic and cardiovascular clinical outcomes. Several common pathogenetic mechanisms are responsible for T2D and MASLD onset and progression, including insulin resistance, oxidative stress, and low-grade inflammation, among others. The latter can also be induced by gut microbiota and its derived metabolites. Natural bioactive compounds (NBCs) have been reported for their therapeutic potential in both T2D and MASLD. A large amount of evidence obtained from clinical trials suggests that compounds like berberine, curcumin, soluble fibers, and omega-3 fatty acids exhibit significant hypoglycemic, hypolipidemic, and hepatoprotective activity in humans and may be employed as adjunct therapy in T2D and MASLD management. In this review, the role of the most studied NBCs in the management of T2D and MASLD is discussed, emphasizing recent clinical evidence supporting these compounds' efficacy and safety. Also, prebiotics that act against metabolic dysfunction by modulating gut microbiota are evaluated.
Collapse
Affiliation(s)
- Daniela Ciobârcă
- Department 2, Faculty of Nursing and Health Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania; (D.C.); (L.G.)
| | - Adriana Florinela Cătoi
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 2-4 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Laura Gavrilaș
- Department 2, Faculty of Nursing and Health Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania; (D.C.); (L.G.)
| | - Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (D.M.); (L.F.)
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (D.M.); (L.F.)
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (D.M.); (L.F.)
- Academy of Romanian Scientists (AOSR), 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
4
|
Pletsch-Borba L, Wernicke C, Machann J, Meyer NM, Huong Nguyen T, Pohrt A, Hornemann S, Gerbracht C, Pfeiffer AF, Spranger J, Mai K. Increase in PUFA and protein, and decrease in carbohydrate intake improves liver fat in 12 months and the role of weight loss as a mediator: A randomized controlled trial. Clin Nutr 2024; 43:361-369. [PMID: 39577067 DOI: 10.1016/j.clnu.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND & AIMS Recently, a beneficial effect of high intake of unsaturated fatty acids (UFA) and protein on intrahepatic lipids (IHL) was demonstrated over 12 months within a randomized controlled trial (the NutriAct trial). We now aimed to explore the specific macronutrient components driving this IHL improvement within this trial in middle-aged and elderly subjects (50-80 y) at risk for age-related diseases. METHODS The NutriAct trial (n = 502) analyzed the effect of a high-protein and high-UFA diet on age related diseases including fatty liver disease. Individuals who completed 3-day food records with available IHL data both at baseline and at month 12 were included in this analysis. The impact of each macronutrient (E%) on IHL (measured by magnetic resonance spectroscopy) was analyzed by linear regression analyses and mediation analysis. Adherence in the intervention group was defined as intake at month 12 of ≥1 g protein/kg bodyweight or ≥25%E UFA intake; in the control group it was defined as intake of ≥15%E protein or ≥17%E UFA. RESULTS 248 participants were included in the analyses (34 % male, median age 66 y). Although BMI changed similarly in both groups within 12 months (mean change -0.41 kg/m2 in the control and -0.70 kg/m2 in the intervention group, p within groups <0.001, p between groups = 0.09), IHL improved more strongly in the compliant intervention participants than in compliant controls (estimate of relative change 0.21 % (95 % CI 0.01, 0.40), p = 0.03). Participants with stronger increase in protein and PUFA intake and a greater decrease in carbohydrate intake showed a stronger improvement in IHL (estimate for linear relative change -0.04 % (95%CI -0.06, -0.02), estimate 4th quartile vs. 1st quartile -0.40 % (95%CI -0.65, -0.16), and 0.32 % (95%CI 0.05, 0.59), respectively). These associations were partially mediated by BMI changes. Increase in PUFA intake was also directly associated with IHL improvement independently of BMI changes (estimate for linear relative change -0.03 % (95%CI -0.05, -0.01)). CONCLUSIONS Beneficial effects of increased protein and decreased carbohydrate intake on IHL are mediated by BMI changes in middle-aged and elderly subjects. The effect of high PUFA intake on IHL improvement was partly independent of weight loss. These results give insight into the understanding of a macronutrient specific effect on IHL changes in a long-term dietary intervention. CLINICAL TRIAL REGISTRATION The trial was registered at German Clinical Trials Register (drks.de) as DRKS00010049.
Collapse
Affiliation(s)
- Laura Pletsch-Borba
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117, Berlin, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Berlin, Germany
| | - Charlotte Wernicke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117, Berlin, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Germany
| | - Jürgen Machann
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Germany; Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Germany
| | - Nina Mt Meyer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117, Berlin, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Germany
| | - Thu Huong Nguyen
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117, Berlin, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Germany
| | - Anne Pohrt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Germany
| | - Silke Hornemann
- Human Study Center, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité Center for Cardiovascular Research, 10117, Berlin, Germany
| | - Christiana Gerbracht
- Human Study Center, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Andreas Fh Pfeiffer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117, Berlin, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Human Study Center, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité Center for Cardiovascular Research, 10117, Berlin, Germany
| | - Joachim Spranger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117, Berlin, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité Center for Cardiovascular Research, 10117, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany; Max Rubner Center for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany
| | - Knut Mai
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117, Berlin, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité Center for Cardiovascular Research, 10117, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany; Max Rubner Center for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany.
| |
Collapse
|
5
|
Gaigé S, Abysique A, Barbouche R, Tonetto A, Di Maio A, Robin M, Lormier AT, Troadec JD. 3,5-Dimethyl-2,4,6-trimethoxychalcone Lessens Obesity and MAFLD in Leptin-Deficient ob/ob Mice. Int J Mol Sci 2024; 25:9838. [PMID: 39337328 PMCID: PMC11432508 DOI: 10.3390/ijms25189838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Chalcones constitute an important group of natural compounds abundant in fruits and comestible plants. They are a subject of increasing interest because of their biological activities, including anti-diabetic and anti-obesity effects. The simple chalcone structural scaffold can be modified at multiple sites with different chemical moieties. Here, we generated an artificial chalcone, i.e., 3,5-dimethyl-2,4,6-trimethoxychalcone (TriMetChalc), derived from 2',4'-Dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC). DMC is a major compound of Cleistocalyx operculatus, a plant widely used in Asia for its anti-hyperglycemic activity. Using ob/ob mice as an obesity model, we report that, after 3 weeks of per os administration, TriMetChalc modified food intake through the specific activation of brain structures dedicated to the regulation of energy balance. TriMetChalc also decreased weight gain, glucose intolerance, and hepatic steatosis. Moreover, through extensive liver lipidomic analysis, we identified TriMetChalc-induced modifications that could contribute to improving the liver status of the animals. Hence, TriMetChalc is a chalcone derivative capable of reducing food intake and the addition of glucose intolerance and hepatic steatosis in a mouse model of obesity. In light of these results, we believe that TriMetChalc action deserves to be more deeply evaluated over longer treatment periods and/or in combination with other chalcones with protective effects on the liver.
Collapse
Affiliation(s)
- Stéphanie Gaigé
- Centre de Recherche en Psychologie et Neurosciences (CRPN), UMR CNRS UMR 7077, Aix-Marseille University, 13331 Marseille, France; (S.G.); (A.A.); (R.B.)
| | - Anne Abysique
- Centre de Recherche en Psychologie et Neurosciences (CRPN), UMR CNRS UMR 7077, Aix-Marseille University, 13331 Marseille, France; (S.G.); (A.A.); (R.B.)
| | - Rym Barbouche
- Centre de Recherche en Psychologie et Neurosciences (CRPN), UMR CNRS UMR 7077, Aix-Marseille University, 13331 Marseille, France; (S.G.); (A.A.); (R.B.)
| | - Alain Tonetto
- PRATIM, FSCM (FR1739), Centrale Marseille, CNRS, Aix-Marseille University, 13397 Marseille, France;
| | - Attilio Di Maio
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology, IRD, CNRS UMR7263, Aix-Marseille University, 13013 Marseille, France; (A.D.M.); (M.R.)
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology, IRD, NRS UMR7263, Avignon University, 84029 Avignon, France
| | - Maxime Robin
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology, IRD, CNRS UMR7263, Aix-Marseille University, 13013 Marseille, France; (A.D.M.); (M.R.)
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology, IRD, NRS UMR7263, Avignon University, 84029 Avignon, France
- CAYLAB, Contract Research Organization, 13180 Istres, France
| | | | - Jean-Denis Troadec
- Centre de Recherche en Psychologie et Neurosciences (CRPN), UMR CNRS UMR 7077, Aix-Marseille University, 13331 Marseille, France; (S.G.); (A.A.); (R.B.)
| |
Collapse
|
6
|
Sabinari I, Horakova O, Cajka T, Kleinova V, Wieckowski MR, Rossmeisl M. Influence of Lipid Class Used for Omega-3 Fatty Acid Supplementation on Liver Fat Accumulation in MASLD. Physiol Res 2024; 73:S295-S320. [PMID: 39016154 PMCID: PMC11412347 DOI: 10.33549/physiolres.935396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) occurs in subjects with obesity and metabolic syndrome. MASLD may progress from simple steatosis (i.e., hepatic steatosis) to steatohepatitis, characterized by inflammatory changes and liver cell damage, substantially increasing mortality. Lifestyle measures associated with weight loss and/or appropriate diet help reduce liver fat accumulation, thereby potentially limiting progression to steatohepatitis. As for diet, both total energy and macronutrient composition significantly influence the liver's fat content. For example, the type of dietary fatty acids can affect the metabolism of lipids and hence their tissue accumulation, with saturated fatty acids having a greater ability to promote fat storage in the liver than polyunsaturated ones. In particular, polyunsaturated fatty acids of n-3 series (omega-3), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have been intensively studied for their antisteatotic effects, both in preclinical animal models of obesity and hepatic steatosis and in overweight/obese patients. Their effects may depend not only on the dose and duration of administration of omega-3, or DHA/EPA ratio, but also on the lipid class used for their supplementation. This review summarizes the available evidence from recent comparative studies using omega-3 supplementation via different lipid classes. Albeit the evidence is mainly limited to preclinical studies, it suggests that phospholipids and possibly wax esters could provide greater efficacy against MASLD compared to traditional chemical forms of omega-3 supplementation (i.e., triacylglycerols, ethyl esters). This cannot be attributed solely to improved EPA and/or DHA bioavailability, but other mechanisms may be involved. Keywords: MASLD • Metabolic dysfunction-associated steatotic liver disease • NAFLD • Non-alcoholic fatty liver disease • n-3 polyunsaturated fatty acids.
Collapse
Affiliation(s)
- I Sabinari
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
7
|
Aziz T, Niraj MK, Kumar S, Kumar R, Parveen H. Effectiveness of Omega-3 Polyunsaturated Fatty Acids in Non-alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Cureus 2024; 16:e68002. [PMID: 39347373 PMCID: PMC11428178 DOI: 10.7759/cureus.68002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver disorder characterized by excessive hepatic fat accumulation without alcohol intake. It can progress to non-alcoholic steatohepatitis, increasing the risk of cirrhosis and liver failure. This study aims to evaluate the efficacy of omega-3 polyunsaturated fatty acids (n-3 PUFAs) in treating NAFLD. A systematic review and meta-analysis was conducted including studies published from January 2018 to June 2023. Databases searched included PubMed, Embase, Cochrane Library, and ClinicalTrials.gov. Inclusion criteria comprised randomized controlled trials and cohort studies involving human subjects or animal models with NAFLD. Data were extracted and analyzed to assess the impact of omega-3 PUFAs on liver fat, hepatic enzymes, and serum lipid profiles using RevMan 5.4. A total of 15 studies met the inclusion criteria. Omega-3 supplementation significantly decreased alanine aminotransferase (ALT) (mean difference = -2.12, 95% confidence interval (CI) = -3.36, -0.87) and aspartate aminotransferase (AST) (mean difference = -1.50, 95% CI = -2.59, -0.42). Gamma-glutamyl transferase levels showed a trend toward reduction (mean difference = -0.82, 95% CI = -1.66, 0.02). Serum lipid profiles improved significantly with reductions in triglycerides, low-density lipoprotein, and total cholesterol along with significant reductions in AST, ALT, and alkaline phosphatase in animal models. Omega-3 PUFAs appear to offer beneficial effects on liver enzymes, serum lipid profiles, and anthropometric indices in NAFLD patients. While their impact on liver fat content remains uncertain, omega-3 supplementation could serve as a valuable adjunct treatment for enhancing metabolic profiles and liver function in NAFLD patients.
Collapse
Affiliation(s)
- Tarique Aziz
- Biochemistry, Rajendra Institute of Medical Sciences, Ranchi, IND
| | - Mukesh K Niraj
- Biochemistry, Rajendra Institute of Medical Sciences, Ranchi, IND
| | - Shishir Kumar
- Biochemistry, Rajendra Institute of Medical Sciences, Ranchi, IND
| | - Rajendra Kumar
- Physiology, Rajendra Institute of Medical Sciences, Ranchi, IND
| | - Hina Parveen
- Biochemistry, King George's Medical University, Lucknow, IND
| |
Collapse
|
8
|
Kruchinina MV, Osipenko MF, Shestov AA, Parulikova MV. Fatty acid composition of blood serum and erythrocyte membranes in men with steatosis and steatohepatitis with normal transaminase activity. SECHENOV MEDICAL JOURNAL 2024; 15:48-60. [DOI: 10.47093/2218-7332.2024.15.2.48-60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Aim. To study the characteristics of the fatty acid (FA) profi le of blood serum and erythrocyte membranes in patients with two forms of fatty liver disease (metabolic + alcoholic): steatosis and steatohepatitis with normal transaminase activity.Materials and methods. We examined 33 men (50.7 ± 9.6 years) with fatty liver disease (metabolic and alcoholic) with fi brosis F ≤ 1 (FibroTest). According to the ActiTest results, patients were divided into groups of steatosis – with minimal (A0–1) activity (n = 17) and steatohepatitis – with moderate/severe (A2–3) necroinfl ammatory activity (n = 16). The FA composition of blood serum and erythrocyte membranes was studied using gas chromatography/mass spectrometry Agilent 7000B (Agilent Technologies, Inc., USA). Methods of unpaired statistics using volcano plot and discriminant analysis based on orthogonal least squares (Orthogonal Partial Least Squares Discriminant Analysis, OPLS-DA), ROC analysis were applied.Results. Volcano plot analysis showed that in patients with fatty liver disease (metabolic and alcoholic) with normal transaminase activity, serum levels of stearic C18:0 (p = 0.016), arachidic C20:0 (p = 0.023), ratio saturated / polyunsaturated fatty acids (PUFA) (p = 0.001) were statistically signifi cantly higher in the steatohepatitis group compared with the steatosis group. The total content in the blood serum of all PUFA (p = 0.003), margaric C17:0 (p = 0.011), the sum of two omega-3 PUFA – eicosapentaenoic acid (C20:5n-3) and docosahexaenoic acid (C22:6n-3) (p = 0.04), the total content of all omega-3 PUFA (p = 0.042) were statistically signifi cantly lower in patients with steatohepatitis. OPLS-DA demonstrated fairly accurate separation of steatohepatitis and steatosis using individual FA and their ratios. When individual FA and their ratios were included in the analysis, a model was obtained with AUC = 0.827 (95% confi dence interval 0.499–1.0), sensitivity 82.2% and specifi city 80.7%.Conclusion. FA in blood serum and erythrocyte membranes appear to be promising biomarkers of steatohepatitis with normal levels of transaminases.
Collapse
Affiliation(s)
- M. V. Kruchinina
- Research Institute of Therapy and Preventive Medicine – branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State Medical University
| | | | - A. A. Shestov
- Perelman School of Medicine, University of Pennsylvania
| | - M. V. Parulikova
- Research Institute of Therapy and Preventive Medicine – branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
| |
Collapse
|
9
|
Padiadpu J, Garcia‐Jaramillo M, Newman NK, Pederson JW, Rodrigues R, Li Z, Singh S, Monnier P, Trinchieri G, Brown K, Dzutsev AK, Shulzhenko N, Jump DB, Morgun A. Multi-omic network analysis identified betacellulin as a novel target of omega-3 fatty acid attenuation of western diet-induced nonalcoholic steatohepatitis. EMBO Mol Med 2023; 15:e18367. [PMID: 37859621 PMCID: PMC10630881 DOI: 10.15252/emmm.202318367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Clinical and preclinical studies established that supplementing diets with ω3 polyunsaturated fatty acids (PUFA) can reduce hepatic dysfunction in nonalcoholic steatohepatitis (NASH) but molecular underpinnings of this action were elusive. Herein, we used multi-omic network analysis that unveiled critical molecular pathways involved in ω3 PUFA effects in a preclinical mouse model of western diet induced NASH. Since NASH is a precursor of liver cancer, we also performed meta-analysis of human liver cancer transcriptomes that uncovered betacellulin as a key EGFR-binding protein upregulated in liver cancer and downregulated by ω3 PUFAs in animals and humans with NASH. We then confirmed that betacellulin acts by promoting proliferation of quiescent hepatic stellate cells, inducing transforming growth factor-β2 and increasing collagen production. When used in combination with TLR2/4 agonists, betacellulin upregulated integrins in macrophages thereby potentiating inflammation and fibrosis. Taken together, our results suggest that suppression of betacellulin is one of the key mechanisms associated with anti-inflammatory and anti-fibrotic effects of ω3 PUFA on NASH.
Collapse
Affiliation(s)
| | | | - Nolan K Newman
- College of PharmacyOregon State UniversityCorvallisORUSA
| | - Jacob W Pederson
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - Richard Rodrigues
- College of PharmacyOregon State UniversityCorvallisORUSA
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Zhipeng Li
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - Sehajvir Singh
- College of PharmacyOregon State UniversityCorvallisORUSA
| | - Philip Monnier
- College of PharmacyOregon State UniversityCorvallisORUSA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Kevin Brown
- College of PharmacyOregon State UniversityCorvallisORUSA
- School of Chemical, Biological, and Environmental EngineeringOregon State UniversityCorvallisORUSA
| | - Amiran K Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Natalia Shulzhenko
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - Donald B Jump
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling InstituteOregon State UniversityCorvallisORUSA
| | - Andrey Morgun
- College of PharmacyOregon State UniversityCorvallisORUSA
| |
Collapse
|
10
|
Beheshti Namdar A, Ahadi M, Hoseini SM, Vosoghinia H, Rajablou H, Farsi S, Zangouei A, Rahimi HR. Effect of nano-micelle curcumin on hepatic enzymes: A new treatment approach for non-alcoholic fatty liver disease (NAFLD). AVICENNA JOURNAL OF PHYTOMEDICINE 2023; 13:615-625. [PMID: 38106627 PMCID: PMC10719728 DOI: 10.22038/ajp.2023.21919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/22/2022] [Accepted: 11/12/2022] [Indexed: 12/19/2023]
Abstract
Objective Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in hepatocytes with no consumption of alcohol. Recently, curcumin is a natural polyphenol found in turmeric has been examined for the treatment of NAFLD. This study aimed to assess the efficacy of 160 mg/day nano-micelle curcumin on the amelioration of NAFLD by measuring liver enzymes. Materials and Methods Patients with NAFLD were randomly divided into curcumin (intervention group n=33) and placebo (n=33) groups and at the end of the study, the data of 56 participants who completed the 2-month intervention were analyzed. Laboratory tests and questionnaires were used to gather information. Both groups received recommendations for lifestyle modification, and were advised to other necessary advices. Patients in the curcumin group received 160 mg/day of nano-micelle curcumin in two divided doses for 60 days. The 2 groups were followed up for two months and clinical and laboratory indices were compared. Results Our data showed a significant decrease in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the curcumin group (p<0.01) as well as a significant difference between the groups before and after the intervention in curcumin group (p<0.05). Interestingly, a meaningful decrease in AST serum level was observed in the intervention group (p<0.01). Conclusion Our study demonstrated that short-term supplementation with nano-micelle curcumin results in the reduction of AST and ALT and is beneficial for the treatment of NAFLD.
Collapse
Affiliation(s)
- Ali Beheshti Namdar
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mitra Ahadi
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mousalreza Hoseini
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Vosoghinia
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Rajablou
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Salman Farsi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirsadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics & Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Spooner MH, Garcia-Jaramillo M, Apperson KD, Löhr CV, Jump DB. Time course of western diet (WD) induced nonalcoholic steatohepatitis (NASH) in female and male Ldlr-/- mice. PLoS One 2023; 18:e0292432. [PMID: 37819925 PMCID: PMC10566735 DOI: 10.1371/journal.pone.0292432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a global health problem. Identification of factors contributing to the onset and progression of NAFLD have the potential to direct novel strategies to combat NAFLD. METHODS We examined the time course of western diet (WD)-induced NAFLD and its progression to nonalcoholic steatohepatitis (NASH) in age-matched female and male Ldlr-/- mice, with time-points at 1, 4, 8, 20 and 40 weeks on the WD. Controls included Ldlr-/- mice maintained on a purified low-fat diet (LFD) for 1 and 40 weeks. The approach included quantitation of anthropometric, plasma and liver markers of disease, plus hepatic histology, lipids, oxylipins, gene expression and selected metabolites. RESULTS One week of feeding the WD caused a significant reduction in hepatic essential fatty acids (EFAs: 18:2, ω6, 18:3, ω3) which preceded the decline in many C20-22 ω3 and ω6 polyunsaturated fatty acids (PUFA) and PUFA-derived oxylipins after 4 weeks on the WD. In addition, expression of hepatic inflammation markers (CD40, CD44, Mcp1, Nlrp3, TLR2, TLR4, Trem2) increased significantly in both female & male mice after one week on the WD. These markers continued to increase over the 40-week WD feeding study. WD effects on hepatic EFA and inflammation preceded all significant WD-induced changes in body weight, insulin resistance (HOMA-IR), oxidative stress status (GSH/GSSG ratio) and histological and gene expression markers of macrosteatosis, extracellular matrix remodeling and fibrosis. CONCLUSIONS Our findings establish that feeding Ldlr-/- mice the WD rapidly lowered hepatic EFAs and induced key inflammatory markers linked to NASH. Since EFAs have an established role in inflammation and hepatic inflammation plays a major role in NASH, we suggest that early clinical assessment of EFA status and correcting EFA deficiencies may be useful in reducing NASH severity.
Collapse
Affiliation(s)
- Melinda H. Spooner
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR, United States of America
| | - Manuel Garcia-Jaramillo
- Environmental and Molecular Toxicology, Oregon State University, Corvallis OR, United States of America
| | - K. Denise Apperson
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States of America
| | - Christiane V. Löhr
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States of America
| | - Donald B. Jump
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|
12
|
Taghdir M, Salehi A, Parastouei K, Abbaszadeh S. Relationship between diet quality and nonalcoholic fatty liver disease predictor indices in Iranian patients with metabolic syndrome: A cross-sectional study. Food Sci Nutr 2023; 11:6133-6139. [PMID: 37823171 PMCID: PMC10563747 DOI: 10.1002/fsn3.3549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 10/13/2023] Open
Abstract
The present study aimed to assess the association between diet quality and nonalcoholic fatty liver disease (NAFLD) predictor indices in patients with metabolic syndrome (MetS). This cross-sectional study was carried out among 344 adult patients with MetS. The diet quality of patients was calculated by Healthy Eating Index-2015 (HEI-2015). NAFLD predictor indices (Hepatic Steatosis Index [HSI], Triglyceride-Glucose Index [TyG], and Fatty Liver Index [FLI]) were calculated and compared according to the HEI-2015 quartiles. The relationship between the HEI-2015 score and HSI, FLI, and TyG Index was estimated using multiple linear regression analysis. The findings of the present study revealed that patients with the highest HEI score had the lowest FLI score (p = .003) and HSI score (p = .05). There was an inverse relationship between the HEI-2015 score and FLI (β = -0.49; p < .001), HSI (β = -0.05; p = .25), and TyG Index (β = -0.002; p = .34). According to our result, after adjusting for possible confounding factors, there was a statistically significant inverse association between HEI-2015 and FLI.
Collapse
Affiliation(s)
- Maryam Taghdir
- Health Research Centre, Life Style InstituteBaqiyatallah University of Medical SciencesTehranIran
- Department of Nutrition and Food Hygiene, Faculty of HealthBaqiyatallah University of Medical SciencesTehranIran
| | - Akram Salehi
- Student Research CommitteeBaqiyatallah University of Medical SciencesTehranIran
| | - Karim Parastouei
- Health Research Centre, Life Style InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Sepideh Abbaszadeh
- Health Research Centre, Life Style InstituteBaqiyatallah University of Medical SciencesTehranIran
| |
Collapse
|
13
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic fatty liver disease worldwide, particularly in obese and type 2 diabetic individuals. Currently, there are no therapies for NAFLD that have been approved by the US Food and Drug Administration. Herein, we examine the rationale for using ω3 polyunsaturated fatty acids (PUFAs) in NAFLD therapy. This focus is based on the finding that NAFLD severity is associated with a reduction of hepatic C20-22 ω3 PUFAs. Because C20-22 ω3 PUFAs are pleiotropic regulators of cell function, loss of C20-22 ω3 PUFAs has the potential to significantly impact hepatic function. We describe NAFLD prevalence and pathophysiology as well as current NAFLD therapies. We also present evidence from clinical and preclinical studies that evaluated the capacity of C20-22 ω3 PUFAs to treat NAFLD. Given the clinical and preclinical evidence, dietary C20-22 ω3 PUFA supplementation has the potential to decrease human NAFLD severity by reducing hepatosteatosis and liver injury.
Collapse
Affiliation(s)
- Melinda H Spooner
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA;
| | - Donald B Jump
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA;
| |
Collapse
|
14
|
Padiadpu J, Spooner MH, Li Z, Newman N, Löhr CV, Apperson KD, Dzutsev A, Trinchieri G, Shulzhenko N, Morgun A, Jump DB. Early transcriptome changes associated with western diet induced NASH in Ldlr-/- mice points to activation of hepatic macrophages and an acute phase response. Front Nutr 2023; 10:1147602. [PMID: 37609485 PMCID: PMC10440380 DOI: 10.3389/fnut.2023.1147602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/21/2023] [Indexed: 08/24/2023] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a global health problem. Identifying early gene indicators contributing to the onset and progression of NAFLD has the potential to develop novel targets for early therapeutic intervention. We report on the early and late transcriptomic signatures of western diet (WD)-induced nonalcoholic steatohepatitis (NASH) in female and male Ldlr-/- mice, with time-points at 1 week and 40 weeks on the WD. Control Ldlr-/- mice were maintained on a low-fat diet (LFD) for 1 and 40 weeks. Methods The approach included quantitation of anthropometric and hepatic histology markers of disease as well as the hepatic transcriptome. Results Only mice fed the WD for 40 weeks revealed evidence of NASH, i.e., hepatic steatosis and fibrosis. RNASeq transcriptome analysis, however, revealed multiple cell-specific changes in gene expression after 1 week that persisted to 40 weeks on the WD. These early markers of disease include induction of acute phase response (Saa1-2, Orm2), fibrosis (Col1A1, Col1A2, TGFβ) and NASH associated macrophage (NAM, i.e., Trem2 high, Mmp12 low). We also noted the induction of transcripts associated with metabolic syndrome, including Mmp12, Trem2, Gpnmb, Lgals3 and Lpl. Finally, 1 week of WD feeding was sufficient to significantly induce TNFα, a cytokine involved in both hepatic and systemic inflammation. Conclusion This study revealed early onset changes in the hepatic transcriptome that develop well before any anthropometric or histological evidence of NALFD or NASH and pointed to cell-specific targeting for the prevention of disease progression.
Collapse
Affiliation(s)
- Jyothi Padiadpu
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Melinda H. Spooner
- Nutrition Program, Colleges of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
| | - Zhipeng Li
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Nolan Newman
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Christiane V. Löhr
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - K. Denise Apperson
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NCI-NIH), Bethesda, MD, United States
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NCI-NIH), Bethesda, MD, United States
| | - Natalia Shulzhenko
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Donald B. Jump
- Nutrition Program, Colleges of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
15
|
Šarac I, Debeljak-Martačić J, Takić M, Stevanović V, Milešević J, Zeković M, Popović T, Jovanović J, Vidović NK. Associations of fatty acids composition and estimated desaturase activities in erythrocyte phospholipids with biochemical and clinical indicators of cardiometabolic risk in non-diabetic Serbian women: the role of level of adiposity. Front Nutr 2023; 10:1065578. [PMID: 37545582 PMCID: PMC10397414 DOI: 10.3389/fnut.2023.1065578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Fatty acids (FAs) composition and desaturase activities can be altered in different metabolic conditions, but the adiposity-independent associations with clinical and biochemical indicators of cardiometabolic risk are still unclear. This study aimed to analyze the associations of FAs composition and estimated desaturase activities with anthropometric, clinical, and biochemical cardiometabolic risk indicators in non-diabetic Serbian women, and to investigate if these associations were independent of the level of adiposity and other confounders. Methods In 76 non-diabetic, otherwise healthy Serbian women, aged 24-68 years, with or without metabolic syndrome or obesity (BMI=23.6±5.6 kg/m2), FA composition in erythrocyte phospholipids was measured by gas-liquid chromatography. Desaturase activities were estimated from product/precursor FAs ratios (D9D:16:1n-7/16:0; D6D:20:3n-6/18:2n-6; D5D:20:4n-6/20:3n-6). Correlations were made with anthropometric, biochemical (serum glucose, triacylglycerols, LDL-C, HDL-C, ALT, AST, and their ratios) and clinical (blood pressure) indicators of cardiometabolic risk. Linear regression models were performed to test the independence of these associations. Results Estimated desaturase activities and certain FAs were associated with anthropometric, clinical and biochemical indicators of cardiometabolic risk: D9D, D6D, 16:1n-7 and 20:3n-6 were directly associated, while D5D and 18:0 were inversely associated. However, the associations with clinical and biochemical indicators were not independent of the associations with the level of adiposity, since they were lost after controlling for anthropometric indices. After controlling for multiple confounders (age, postmenopausal status, education, smoking, physical activity, dietary macronutrient intakes, use of supplements, alcohol consumption), the level of adiposity was the most significant predictor of desaturase activities and aforementioned FAs levels, and mediated their association with biochemical/clinical indicators. Vice versa, desaturase activities predicted the level of adiposity, but not other components of cardiometabolic risk (if the level of adiposity was accounted). While the associations of anthropometric indices with 16:1n-7, 20:3n-6, 18:0 and D9D and D6D activities were linear, the associations with D5D activity were the inverse U-shaped. The only adiposity-independent association of FAs profiles with the indicators of cardiometabolic risk was a positive association of 20:5n-3 with ALT/AST ratio, which requires further exploration. Discussion Additional studies are needed to explore the mechanisms of the observed associations.
Collapse
Affiliation(s)
- Ivana Šarac
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasmina Debeljak-Martačić
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Takić
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vuk Stevanović
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Milešević
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Zeković
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Popović
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jovica Jovanović
- Department of Occupational Health, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Nevena Kardum Vidović
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
16
|
Del Bo' C, Perna S, Allehdan S, Rafique A, Saad S, AlGhareeb F, Rondanelli M, Tayyem RF, Marino M, Martini D, Riso P. Does the Mediterranean Diet Have Any Effect on Lipid Profile, Central Obesity and Liver Enzymes in Non-Alcoholic Fatty Liver Disease (NAFLD) Subjects? A Systematic Review and Meta-Analysis of Randomized Control Trials. Nutrients 2023; 15:nu15102250. [PMID: 37242133 DOI: 10.3390/nu15102250] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The effectiveness of the Mediterranean diet (MD) in non-alcoholic fatty liver disease (NAFLD) subjects has been evaluated in several randomized controlled trials (RCTs). This systematic review and meta-analysis aimed to evaluate the overall effects of MD intervention in a cohort of NAFLD patients targeting specific markers such as central obesity, lipid profile, liver enzymes and fibrosis, and intrahepatic fat (IHF). Google Scholar, PubMed, and Scopus were explored to collect relevant studies from the last 10 years. RCTs with NAFLD subjects were included in this systematic review with a mean intervention duration from 6 weeks to 1 year, and different intervention strategies, mainly including energy restriction MD (normal or low glycaemic index), low-fat MD with increased monounsaturated and polyunsaturated fatty acids, and increased exercise expenditure. The outcomes measured in this meta-analysis were gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), total cholesterol (TC), waist circumference (WC), and liver fibrosis. Ten randomized controlled trials, which involved a total of 737 adults with NAFLD, were included. According to the results, the MD seems to decrease the liver stiffness (kPa) by -0.42 (CI95% -0.92, 0.09) (p = 0.10) and significantly reduce the TC by -0.46 mg/dl (CI95% -0.55, -0.38) (p = 0.001), while no significant findings were documented for liver enzymes and WC among patients with NAFLD. In conclusion, the MD might reduce indirect and direct outcomes linked with NAFLD severity, such as TC, liver fibrosis, and WC, although it is important to consider the variations across trials. Further RCTs are necessary to corroborate the findings obtained and provide further evidence on the role of the MD in the modulation of other disorders related to NAFLD.
Collapse
Affiliation(s)
- Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, 20133 Milano, Italy
| | - Simone Perna
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, 20133 Milano, Italy
| | - Sabika Allehdan
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq P.O. Box 32038, Bahrain
| | - Ayesha Rafique
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq P.O. Box 32038, Bahrain
| | - Sara Saad
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq P.O. Box 32038, Bahrain
| | - Fahad AlGhareeb
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq P.O. Box 32038, Bahrain
| | - Mariangela Rondanelli
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Unit of Human and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Reema F Tayyem
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, 20133 Milano, Italy
| | - Daniela Martini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, 20133 Milano, Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
17
|
Torres-Peña JD, Arenas-de Larriva AP, Alcala-Diaz JF, Lopez-Miranda J, Delgado-Lista J. Different Dietary Approaches, Non-Alcoholic Fatty Liver Disease and Cardiovascular Disease: A Literature Review. Nutrients 2023; 15:nu15061483. [PMID: 36986213 PMCID: PMC10058124 DOI: 10.3390/nu15061483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the first cause of chronic liver disease and is also associated with other harmful entities such as obesity, metabolic syndrome, dyslipidemia, and diabetes. NAFLD is a significant public health concern worldwide, impacting individuals of all ages, and its prevalence is projected to increase in the near future due to its connection with obesity. Intrinsic (genetics) and external (lifestyle) factors may also modulate NAFLD, and, in turn, may partly explain the observed relationship between NAFLD and cardiovascular disease (CVD). Although many drugs are been tested to treat NAFLD, to date, no drug has indication to specifically treat this disorder. Thus, the current management of NAFLD relies on lifestyle modifications and specifically on weight loss, physical activity, and the intake of a healthy diet. In the present narrative review, we will discuss the effects of certain dietary patterns on NAFLD incidence and progression.
Collapse
Affiliation(s)
- Jose D Torres-Peña
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Av. Menéndez Pidal s/n, 14004 Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio P Arenas-de Larriva
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Av. Menéndez Pidal s/n, 14004 Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan F Alcala-Diaz
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Av. Menéndez Pidal s/n, 14004 Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Av. Menéndez Pidal s/n, 14004 Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Av. Menéndez Pidal s/n, 14004 Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
18
|
Iannone V, Lok J, Babu AF, Gómez-Gallego C, Willman RM, Koistinen VM, Klåvus A, Kettunen MI, Kårlund A, Schwab U, Hanhineva K, Kolehmainen M, El-Nezami H. Associations of altered hepatic gene expression in American lifestyle-induced obesity syndrome diet-fed mice with metabolic changes during NAFLD development and progression. J Nutr Biochem 2023; 115:109307. [PMID: 36868506 DOI: 10.1016/j.jnutbio.2023.109307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) pathogenesis remains poorly understood due to the complex metabolic and inflammatory changes in the liver. This study aimed to elucidate hepatic events related to inflammation and lipid metabolism and their linkage with metabolic alterations during NAFLD in American lifestyle-induced obesity syndrome (ALIOS) diet-fed mice. Forty-eight C57BL/6J male mice were fed with ALIOS diet (n=24) or control chow diet (n=24) for 8, 12, and 16 weeks. At the end of each timepoint, eight mice were sacrificed where plasma and liver were collected. Hepatic fat accumulation was followed using magnetic resonance imaging and confirmed with histology. Further, targeted gene expression and non-targeted metabolomics analysis were conducted. Our results showed higher hepatic steatosis, body weight, energy consumption, and liver mass in ALIOS diet-fed mice compared to control mice. ALIOS diet altered expression of genes related to inflammation (Tnfa and IL-6) and lipid metabolism (Cd36, Fasn, Scd1, Cpt1a, and Ppara). Metabolomics analysis indicated decrease of lipids containing polyunsaturated fatty acids such as LPE(20:5) and LPC(20:5) with increase of other lipid species such as LPI(16:0) and LPC(16:2) and peptides such as alanyl-phenylalanine and glutamyl-arginine. We further observed novel correlations between different metabolites including sphingolipid, lysophospholipids, peptides, and bile acid with inflammation, lipid uptake and synthesis. Together with the reduction of antioxidant metabolites and gut microbiota-derived metabolites contribute to NAFLD development and progression. The combination of non-targeted metabolomics with gene expression in future studies can further identify key metabolic routes during NAFLD which could be the targets of potential novel therapeutics.
Collapse
Affiliation(s)
- Valeria Iannone
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Johnson Lok
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Ambrin Farizah Babu
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Afekta Technologies Ltd., Kuopio, Finland
| | - Carlos Gómez-Gallego
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Roosa Maria Willman
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Mikael Koistinen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Afekta Technologies Ltd., Kuopio, Finland; Department of Life technologies, Food Sciences Unit, University of Turku, Turku, Finland
| | | | - Mikko I Kettunen
- Kuopio Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anna Kårlund
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Ursula Schwab
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Kati Hanhineva
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Afekta Technologies Ltd., Kuopio, Finland; Department of Life technologies, Food Sciences Unit, University of Turku, Turku, Finland.
| | - Marjukka Kolehmainen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| | - Hani El-Nezami
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Molecular and Cell Biology Division, School of Biological Sciences, University of Hong Kong, Hong Kong China
| |
Collapse
|
19
|
Jiang X, Yang Q, Qu H, Chen Y, Zhu S. Endogenous n-3 PUFAs Improve Non-Alcoholic Fatty Liver Disease through FFAR4-Mediated Gut-Liver Crosstalk. Nutrients 2023; 15:nu15030586. [PMID: 36771292 PMCID: PMC9919706 DOI: 10.3390/nu15030586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The gut-liver axis plays a key role in the development and progression of non-alcoholic fatty liver disease (NAFLD). Due to the complexity and incomplete understanding of the cross-talk between the gut and liver, effective therapeutic targets are largely unknown. Free fatty acid receptors (FFARs) may bridge the cross-talk between the gut and liver. FFAR4 has received considerable attention due to its important role in lipid metabolism. However, the role of FFAR4 in this cross talk in NAFLD remains unclear. In this study, mice with high endogenous n-3 PUFAs but FFAR4 deficiency were generated by crossbreeding Fat-1 and FFAR4 knockout mice. FFAR4 deficiency blocked the protective effects of high endogenous n-3 PUFAs on intestinal barrier dysfunction and hepatic steatosis. In addition, FFAR4 deficiency decreased gut microbiota diversity and enriched Rikenella, Anaerotruncus, and Enterococcus, and reduced Dubosiella, Ruminococcaceae UCG-010, Ruminococcaceae UCG-014, Coriobacteriaceae UCG-002, Faecalibaculum, Ruminococcaceae UCG-009, and Akkermansia. Notably, FFAR4 deficiency co-regulated pantothenic acid and CoA biosynthesis, β-alanine metabolism, and sphingolipid metabolism pathways in the gut and liver, potentially associated with the aggravation of NAFLD. Together, the beneficial effects of n-3 PUFAs on the gut and liver were mediated by FFAR4, providing insights on the role of FFAR4 in the treatment of NAFLD through the gut-liver axis.
Collapse
Affiliation(s)
- Xuan Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qin Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Hongyan Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi 214122, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
20
|
Wan F, Pan F, Ayonrinde O, Adams LA, Mori TA, Beilin LJ, O'Sullivan TA, Olynyk JK, Oddy WH. Prospective dietary polyunsaturated fatty acid intake is associated with trajectories of fatty liver disease: an 8 year follow-up study from adolescence to young adulthood. Eur J Nutr 2022; 61:3987-4000. [PMID: 35780424 PMCID: PMC9596520 DOI: 10.1007/s00394-022-02934-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 06/07/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIM Dietary fat intake has long been associated with fatty liver. Our study aimed to determine the effect of dietary fats on longitudinal fatty liver index (FLI) trajectories from adolescence to young adulthood. METHODS Nine hundred eighty-five participants in the Raine Study, Perth, Western Australia, Australia, had cross-sectional assessments at ages 14, 17, 20 and 22 years, during which anthropometric measurements and blood tests were obtained. FLI trajectories were derived from the longitudinal FLI results. Dietary fat intake was measured with a semi-quantitative food frequency questionnaire at 14 years and log multinominal regression analyses were used to estimate relative risks. RESULTS Three FLI trajectories were identified and labelled as stable-low (79.1%, N = 782), low-to-high (13.9%, N = 132), and stable-high (7%, N = 71). The low-to-high group associated with an increased intake of the long-chain polyunsaturated fatty acids EPA, DPA and DHA (RR 1.27, 95% CI 1.10-1.48) relative to the stable-low group. Compared to the stable-low group, omega-6 and the ratio of omega-6 to omega-3 in the stable-high group were associated with an increased relative risk of 1.34 (95% CI 1.02-1.76) and 1.10 (95% CI 1.03-1.16), respectively. CONCLUSION For those at high risk of fatty liver in early adolescence, high omega-6 fatty acid intake and a high ratio of omega-6 to omega-3 fatty acids are associated with increased risk of fatty liver. There should be caution in assuming these associations are causal due to possible undetected and underestimated confounding factors.
Collapse
Affiliation(s)
- Fuzhen Wan
- Nutritional Epidemiology, Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, TAS, 7000, Australia
| | - Feng Pan
- Nutritional Epidemiology, Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, TAS, 7000, Australia
| | - Oyekoya Ayonrinde
- Medical School, The University of Western Australia, Perth, WA, Australia
- Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch University, Perth, WA, Australia
- Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Leon A Adams
- Medical School, The University of Western Australia, Perth, WA, Australia
- Department of Hepatology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Trevor A Mori
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Lawrence J Beilin
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Therese A O'Sullivan
- School of Medical and Health Science, Edith Cowan University, Perth, WA, Australia
| | - John K Olynyk
- Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch University, Perth, WA, Australia
- School of Medical and Health Science, Edith Cowan University, Perth, WA, Australia
| | - Wendy H Oddy
- Nutritional Epidemiology, Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, TAS, 7000, Australia.
| |
Collapse
|
21
|
Kołakowski A, Dziemitko S, Chmielecka A, Żywno H, Bzdęga W, Charytoniuk T, Chabowski A, Konstantynowicz-Nowicka K. Molecular Advances in MAFLD—A Link between Sphingolipids and Extracellular Matrix in Development and Progression to Fibrosis. Int J Mol Sci 2022; 23:ijms231911380. [PMID: 36232681 PMCID: PMC9569877 DOI: 10.3390/ijms231911380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Metabolic-Associated Fatty Liver Disease (MAFLD) is a major cause of liver diseases globally and its prevalence is expected to grow in the coming decades. The main cause of MAFLD development is changed in the composition of the extracellular matrix (ECM). Increased production of matrix molecules and inflammatory processes lead to progressive fibrosis, cirrhosis, and ultimately liver failure. In addition, increased accumulation of sphingolipids accompanied by increased expression of pro-inflammatory cytokines in the ECM is closely related to lipogenesis, MAFLD development, and its progression to fibrosis. In our work, we will summarize all information regarding the role of sphingolipids e.g., ceramide and S1P in MAFLD development. These sphingolipids seem to have the most significant effect on macrophages and, consequently, HSCs which trigger the entire cascade of overproduction matrix molecules, especially type I and III collagen, proteoglycans, elastin, and also tissue inhibitors of metalloproteinases, which as a result cause the development of liver fibrosis.
Collapse
Affiliation(s)
- Adrian Kołakowski
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Sylwia Dziemitko
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | | | - Hubert Żywno
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Wiktor Bzdęga
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Tomasz Charytoniuk
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
- Department of Ophthalmology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | | |
Collapse
|
22
|
Lu XT, Wang YD, Zhu TT, Zhu HL, Liu ZY. Dietary fatty acids and risk of non-alcoholic steatohepatitis: A national study in the United States. Front Nutr 2022; 9:952451. [PMID: 35958253 PMCID: PMC9360798 DOI: 10.3389/fnut.2022.952451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background Non-alcoholic steatohepatitis (NASH), the early invertible stage of non-alcoholic fatty liver disease, has become a public health challenge due to the great burden and lack of effective treatment. Dietary nutrients are one of the modifiable factors to prevent and slow down disease progression. However, evidence linking dietary fatty acids intake and risk of NASH is lacking. Objectives This study aimed to examine the association between dietary total saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), their subtypes, the ratio of unsaturated (UFAs) to SFAs, and the risk of NASH among a nationwide population in the United States. Methods This cross-sectional study was conducted among 4,161 adults in the national health and nutrition examination survey in 2017-2018 cycle. Moreover, NASH was defined by transient elastography. Dietary fatty acids were assessed using a validated 24-h food recall method. Logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs). Results A total of 2,089 (50.2%) participants with NASH were identified. Compared with participants in the bottom tercile of dietary intakes of total PUFAs, those in the highest tercile had lower risk of NASH, with an adjusted OR of 0.67 (95% CI: 0.46-0.97). Similar associations were found between the subtype of PUFA 18:3 and NASH, while the fully adjusted OR in the highest tercile was 0.67 (95% CI: 0.47-0.96). Interactions of dietary PUFAs and body mass index (BMI) could be found influencing NASH risk. Stronger associations of dietary total PUFAs intakes with NASH risk were found in obese participants (OR, 95% CI: 0.41, 0.22-0.75) than in the non-obese participants (OR, 95% CI: 1.00, 0.70-1.43; p-interaction = 0.006). Similar effects on risk of NASH were also observed between BMI and dietary intakes of PUFA 18:3. However, no significant associations were observed between NASH risk and dietary total SFAs, MUFAs, their subtypes as well as the ratio of UFAs to SFAs. Conclusion Dietary intakes of total PUFAs, as well as its subtype of PUFA 18:3, were inversely associated with risk of NASH. The further large prospective studies need to be conducted to confirm the findings of this study.
Collapse
Affiliation(s)
- Xiao-Ting Lu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yong-Dong Wang
- Department of Internal Medicine, Shaoguan First People's Hospital, Shaoguan, China
| | - Ting-Ting Zhu
- Department of Food Science and Engineering, School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya, China
| | - Hui-Lian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhao-Yan Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Šmíd V, Dvořák K, Šedivý P, Kosek V, Leníček M, Dezortová M, Hajšlová J, Hájek M, Vítek L, Bechyňská K, Brůha R. Effect of Omega-3 Polyunsaturated Fatty Acids on Lipid Metabolism in Patients With Metabolic Syndrome and NAFLD. Hepatol Commun 2022; 6:1336-1349. [PMID: 35147302 PMCID: PMC9134818 DOI: 10.1002/hep4.1906] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/06/2022] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. n-3 polyunsaturated fatty acids (n-3-PUFAs) have been reported to ameliorate the progression of NAFLD in experimental studies; however, clinical trials have yielded contradictory results. The aim of our study was to assess the effects of n-3-PUFA administration on lipid metabolism and the progression of NAFLD in patients with metabolic syndrome. Sixty patients with metabolic syndrome and NAFLD were randomized in a double-blind placebo-controlled trial (3.6 g/day n-3-PUFA vs. placebo). During the 1-year follow-up, the patients underwent periodic clinical and laboratory examinations, liver stiffness measurements, magnetic resonance spectroscopy of the liver, and plasma lipidomic analyses. After 12 months of n-3-PUFA administration, a significant decrease in serum GGT activity was recorded compared with the placebo group (2.03 ± 2.8 vs. 1.43 ± 1.6; P < 0.05). Although no significant changes in anthropometric parameters were recorded, a significant correlation between the reduction of liver fat after 12 months of treatment-and weight reduction-was observed; furthermore, this effect was clearly potentiated by n-3-PUFA treatment (P < 0.005). In addition, n-3-PUFA treatment resulted in substantial changes in the plasma lipidome, with n-3-PUFA-enriched triacylglycerols and phospholipids being the most expressed lipid signatures. Conclusion: Twelve months of n-3-PUFA treatment of patients with NAFLD patients was associated with a significant decrease in GGT activity, the liver fat reduction in those who reduced their weight, and beneficial changes in the plasma lipid profile.
Collapse
Affiliation(s)
- Václav Šmíd
- Fourth Department of Internal MedicineFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
| | - Karel Dvořák
- Fourth Department of Internal MedicineFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
| | - Petr Šedivý
- Department of Diagnostic and Interventional RadiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Vít Kosek
- Department of Food Analysis and NutritionUniversity of Chemistry and TechnologyPragueCzech Republic
| | - Martin Leníček
- Institute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
| | - Monika Dezortová
- Department of Diagnostic and Interventional RadiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Jana Hajšlová
- Department of Food Analysis and NutritionUniversity of Chemistry and TechnologyPragueCzech Republic
| | - Milan Hájek
- Department of Diagnostic and Interventional RadiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Libor Vítek
- Fourth Department of Internal MedicineFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
- Institute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
| | - Kamila Bechyňská
- Department of Food Analysis and NutritionUniversity of Chemistry and TechnologyPragueCzech Republic
| | - Radan Brůha
- Fourth Department of Internal MedicineFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
| |
Collapse
|
24
|
Ogresta D, Mrzljak A, Cigrovski Berkovic M, Bilic-Curcic I, Stojsavljevic-Shapeski S, Virovic-Jukic L. Coagulation and Endothelial Dysfunction Associated with NAFLD: Current Status and Therapeutic Implications. J Clin Transl Hepatol 2022; 10:339-355. [PMID: 35528987 PMCID: PMC9039716 DOI: 10.14218/jcth.2021.00268] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely related to insulin resistance, type 2 diabetes mellitus and obesity. It is considered a multisystem disease and there is a strong association with cardiovascular disease and arterial hypertension, which interfere with changes in the coagulation system. Coagulation disorders are common in patients with hepatic impairment and are dependent on the degree of liver damage. Through a review of the literature, we consider and discuss possible disorders in the coagulation cascade and fibrinolysis, endothelial dysfunction and platelet abnormalities in patients with NAFLD.
Collapse
Affiliation(s)
- Doris Ogresta
- Department of Gastroenterology and Hepatology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Anna Mrzljak
- Department of Gastroenterology and Hepatology, University Hospital Center Zagreb, Zagreb, Croatia
- Department of Medicine, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Maja Cigrovski Berkovic
- Department for Endocrinology, Diabetes and Pharmacology, University Hospital Dubrava, Zagreb, Croatia
- Department of Kinesiological Anthropology and Methodology, Faculty of Kinesiology, University of Zagreb
- Department of Pharmacology, Faculty of Medicine, University of JJ Strossmayer, Osijek, Croatia
| | - Ines Bilic-Curcic
- Department of Pharmacology, Faculty of Medicine, University of JJ Strossmayer, Osijek, Croatia
- Department of Diabetes, Endocrinology and Metabolism Disorders, University Hospital Osijek, Osijek, Croatia
| | | | - Lucija Virovic-Jukic
- Department of Gastroenterology and Hepatology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
- Department of Medicine, University of Zagreb, School of Medicine, Zagreb, Croatia
- Correspondence to: Lucija Virović-Jukić, University of Zagreb School of Medicine, Department of Medicine; Department of Gastroenterology and Hepatology, Sestre Milosrdnice University Hospital Center, Vinogradska cesta 29, Zagreb 10000, Croatia. ORCID: https://orcid.org/0000-0002-6350-317X. Tel: +385-1-3787178, Fax: +385-1-3787448, E-mail:
| |
Collapse
|
25
|
Chapman MJ, Zamorano JL, Parhofer KG. Reducing residual cardiovascular risk in Europe: Therapeutic implications of European medicines agency approval of icosapent ethyl/eicosapentaenoic acid. Pharmacol Ther 2022; 237:108172. [PMID: 35304222 DOI: 10.1016/j.pharmthera.2022.108172] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/19/2022] [Accepted: 03/10/2022] [Indexed: 12/18/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) and its atherothrombotic complications impose a substantial disease burden in Europe, representing a cost of €210 billion per year for the European Union. Hypertriglyceridemia, a major risk factor for premature ASCVD, is present in more than 20% of the European population, and is a key feature of atherogenic dyslipidemia. Recent findings from the Progression of Early Subclinical Atherosclerosis (PESA) cohort in Spain showed that even in apparently healthy, middle-aged individuals without a history of cardiovascular (CV) risk, elevated triglyceride levels are associated with subclinical atherosclerosis and arterial inflammation. Emerging evidence from epidemiologic and genetic studies supports an independent causative role of triglycerides, triglyceride-rich lipoproteins, and their remnants in this pathology. Icosapent ethyl (IPE) is a highly purified, stable ethyl ester of eicosapentaenoic acid (EPA) that was initially approved by the United States Food and Drug Administration to treat severe hypertriglyceridemia, and subsequently received an expanded indication to reduce the risk of CV events in adult statin-treated patients. Approval was based on the pivotal, randomized, placebo-controlled, double-blind Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial (REDUCE-IT), which showed that high-dose IPE (4 g/day) significantly reduced the risk of primary and secondary composite endpoints comprising major CV events and CV death relative to placebo. In 2021, the European Medicines Agency (EMA) approved IPE to reduce the risk of CV events in adult statin-treated patients at high CV risk with elevated triglyceride levels (≥1.7 mmol/L [≥150 mg/dL]) and established CV disease, or diabetes and at least one other CV risk factor. Clinical studies in Europe, which included patients with acute myocardial infarction, coronary artery disease, and those undergoing cardiac rehabilitation, established that 12.5% to 23.3% of these high-risk populations may benefit from treatment with IPE. Such clinical benefit may in part result from the moderate triglyceride-lowering properties of IPE/EPA; equally however, concentrations of atherogenic remnant particle-cholesterol are markedly reduced. Furthermore, IPE/EPA exerts pleiotropic actions beyond its lipid-lowering properties, which include modulation of endothelial function, attenuation of intra-plaque inflammation and oxidative stress, and reduction in macrophage accumulation. Plasma phospholipids, into which EPA is primarily incorporated and transported, appear to serve as precursors for a series of anti-inflammatory metabolites involving the resolvins RvE1 to RvE3, a pathway which may confer cardioprotective benefits. In addition, plaque imaging data from the Effect of Icosapent Ethyl on Progression of Coronary Atherosclerosis in Patients With Elevated Triglycerides on Statin Therapy (EVAPORATE) and the Combination Therapy of Eicosapentaenoic Acid and Pitavastatin for Coronary Plaque Regression Evaluated by Integrated Backscatter Intravascular Ultrasonography (CHERRY) trials show that plaque stabilization may be favorably affected. These factors may act synergistically to stabilize atherosclerotic plaques and reduce CV risk. In addition to robust efficacy data, multiple cost-utility studies across several countries indicate that IPE/EPA is a cost-effective treatment option that is favorably situated relative to some common willingness-to-pay thresholds. This review will evaluate the relevance of hypertriglyceridemia to residual ASCVD burden in statin-treated dyslipidemic patients, the potential of IPE/EPA to reduce the risk of ASCVD and cardiovascular mortality in high-risk patient populations, and the mechanisms which may underlie these effects. Finally, the clinical implications of the EMA label for IPE will be critically appraised in light of the updated 2019 European Society of Cardiology/European Atherosclerosis Society guidelines on the management of dyslipidemia and the recent European Atherosclerosis Society consensus statement on triglyceride-rich lipoproteins and their remnants, together with considerations of its cost-effectiveness across several countries.
Collapse
Affiliation(s)
- M John Chapman
- Sorbonne University, Endocrinology and Cardiovascular Disease Prevention, Pitié-Salpétrière University Hospital, and National Institute for Health and Medical Research (INSERM), Paris, France.
| | | | - Klaus G Parhofer
- Medical Clinic IV - Grosshadern Hospital of the University of Munich, Munich, Germany
| |
Collapse
|
26
|
Anti-Inflammatory Dietary Approach to Prevent the Development and Progression of Non-Alcoholic Fatty Liver Diseases. LIVERS 2022. [DOI: 10.3390/livers2010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an increasing health problem worldwide and is associated with insulin resistance, increased visceral fat mass, and cardiovascular problems. Lifestyle factors such as sedentary lifestyle, chronic stress, obesogenic environment as well as a Western pattern diet are main contributors to the development and progression of this disease. In particular, the diet plays a pivotal role. An unhealthy diet including high consumption of red and processed meats, refined carbohydrates, simple sugars, highly processed foods with food additives and conservatives are lighting the fire for a low-grade inflammation. If other risk factors come into play, metabolic and hormonal derangement may occur, leading to the increase in visceral fat, gut dysbiosis and leaky gut, which stoke the inflammatory fire. Thus, lifestyle interventions are the most effective approach to quell the inflammatory processes. An anti-inflammatory and low-glycemic diet named the GLykLich diet, which includes whole and unprocessed foods, may reduce the risk of increased morbidity and mortality. The GLykLich diet suggests a meal consisting of complex carbohydrates (fiber), good quality of protein and healthy fats (DHA/EPA), and is rich in secondary plant products. There is no single nutrient to prevent the progression of NAFLD, rather, it is the complexity of substances in whole unprocessed foods that reduce the inflammatory process, improve metabolic state, and thus reverse NAFLD.
Collapse
|
27
|
Mitrovic M, Sistilli G, Horakova O, Rossmeisl M. Omega-3 phospholipids and obesity-associated NAFLD: Potential mechanisms and therapeutic perspectives. Eur J Clin Invest 2022; 52:e13650. [PMID: 34291454 DOI: 10.1111/eci.13650] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
Prevalence of non-alcoholic fatty liver disease (NAFLD) increases in line with obesity and type 2 diabetes, and there is no approved drug therapy. Polyunsaturated fatty acids of n-3 series (omega-3) are known for their hypolipidaemic and anti-inflammatory effects. Existing clinical trials suggest varying effectiveness of triacylglycerol- or ethyl ester-bound omega-3 in the treatment of NAFLD, without affecting advanced stages such as non-alcoholic steatohepatitis. Preclinical studies suggest that the lipid class used to supplement omega-3 may determine the extent and nature of their effects on metabolism. Phospholipids of marine origin represent an alternative source of omega-3. The aim of this review is to summarise the available evidence on the use of omega-3 phospholipids, primarily in obesity-related NAFLD, and to outline perspectives of their use in the prevention/treatment of NAFLD. A PubMed literature search was conducted in May 2021. In total, 1088 articles were identified, but based on selection criteria, 38 original papers were included in the review. Selected articles describing the potential mechanisms of action of omega-3 phospholipids have also been included. Preclinical evidence clearly indicates that omega-3 phospholipids have strong antisteatotic effects in the liver, which are stronger compared to omega-3 administered as triacylglycerols. Multiple mechanisms are likely involved in the overall antisteatotic effects, involving not only the liver but also adipose tissue and the gut. Robust preclinical evidence for strong antisteatotic effects of omega-3 phospholipids in the liver should be confirmed in clinical trials. Further research is needed on the possible effects of omega-3 phospholipids on advanced NAFLD.
Collapse
Affiliation(s)
- Marko Mitrovic
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Gabriella Sistilli
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
28
|
Maternal polyunsaturated fatty acid concentrations during pregnancy and childhood liver fat accumulation. Clin Nutr 2022; 41:847-854. [DOI: 10.1016/j.clnu.2022.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022]
|
29
|
Torres-Peña JD, Martín-Piedra L, Fuentes-Jiménez F. Statins in Non-alcoholic Steatohepatitis. Front Cardiovasc Med 2021; 8:777131. [PMID: 34901236 PMCID: PMC8652077 DOI: 10.3389/fcvm.2021.777131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the primary cause of chronic liver disease. The range is extensive, including hepatocellular carcinoma, cirrhosis, fibrosis, fatty liver, and non-alcoholic steatohepatitis (NASH). NASH is a condition related to obesity, overweight, metabolic syndrome, diabetes, and dyslipidemia. It is a dynamic condition that can regress to isolated steatosis or progress to fibrosis and cirrhosis. Statins exert anti-inflammatory, proapoptotic, and antifibrotic effects. It has been proposed that these drugs could have a relevant role in NASH. In this review, we provide an overview of current evidence, from mechanisms of statins involved in the modulation of NASH to human trials about the use of statins to treat or attenuate NASH.
Collapse
Affiliation(s)
- Jose D Torres-Peña
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Laura Martín-Piedra
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Francisco Fuentes-Jiménez
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| |
Collapse
|
30
|
Newly marketed seed oils. What we can learn from the current status of authentication of edible oils. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Ishida N, Yamada H, Hirose M. Euphausia pacifica (North Pacific Krill): Review of Chemical Features and Potential Benefits of 8-HEPE against Metabolic Syndrome, Dyslipidemia, NAFLD, and Atherosclerosis. Nutrients 2021; 13:nu13113765. [PMID: 34836021 PMCID: PMC8618228 DOI: 10.3390/nu13113765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Marine n-3 fatty acids are well known to have health benefits. Recently, krill oil, which contains phospholipids, has been in the spotlight as an n-3 PUFA-containing oil. Euphausia pacifica (E. pacifica), also called North Pacific krill, is a small, red crustacean similar to shrimp that flourishes in the North Pacific Ocean. E. pacifica oil contains 8-hydroxyeicosapentaenoic acid (8-HEPE) at a level more than 10 times higher than Euphausia superba oil. 8-HEPE can activate the transcription of peroxisome proliferator-activated receptor alpha (PPARα), PPARγ, and PPARδ to levels 10, 5, and 3 times greater than eicosapentaenoic acid, respectively. 8-HEPE has beneficial effects against metabolic syndrome (reduction in body weight gain, visceral fat area, amount of gonadal white adipose tissue, and gonadal adipocyte cell size), dyslipidemia (reduction in serum triacylglycerol and low-density lipoprotein cholesterol and induction of serum high-density lipoprotein cholesterol), atherosclerosis, and nonalcoholic fatty liver disease (reduction in triglyceride accumulation and hepatic steatosis in the liver) in mice. Further studies should focus on the beneficial effects of North Pacific krill oil products and 8-HEPE on human health.
Collapse
Affiliation(s)
- Nanae Ishida
- Department of Pathophysiology and Pharmacology, School of Pharmaceutical Sciences, Iwate Medical University, Iwate 028-3694, Japan;
| | - Hidetoshi Yamada
- Faculty of Life & Environmental Science, Teikyo University of Science, Tokyo 120-0045, Japan;
| | - Masamichi Hirose
- Department of Pathophysiology and Pharmacology, School of Pharmaceutical Sciences, Iwate Medical University, Iwate 028-3694, Japan;
- Correspondence: ; Tel.: +81-19-651-5110
| |
Collapse
|
32
|
Zhou N, Du S, Dai Y, Yang F, Li X. ω3PUFAs improve hepatic steatosis in postnatal overfed rats and HepG2 cells by inhibiting acetyl-CoA carboxylase. Food Sci Nutr 2021; 9:5153-5165. [PMID: 34532024 PMCID: PMC8441356 DOI: 10.1002/fsn3.2482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/14/2021] [Accepted: 07/07/2021] [Indexed: 11/18/2022] Open
Abstract
Postnatal overfeeding can lead to persistent increases in hepatic lipid synthesis and the risk of nonalcoholic fatty liver disease (NAFLD) in adulthood. The ω3 polyunsaturated fatty acids (ω3PUFAs) exhibit beneficial effects on NAFLD. Here, we employed a rat model and an in vitro HepG2 cell model to investigate whether fish oil (FO) affects hepatic lipid synthesis due to postnatal overfeeding. Male Sprague-Dawley were divided into litter sizes of three (small litters, SLs) or 10 (normal litters, NLs) on postnatal day 3 and were fed standard chow or FO diet beginning on postnatal week 3 to generate NL, SL, NL-FO, and SL-FO groups. The results indicated that the FO diet reduced the postnatal overfeeding-induced body weight gain and NAFLD characteristics (such as serum and liver triglyceride (TG) and hepatic steatosis). In addition, FO restored the expression of hepatic lipid metabolism-related genes (including SCD1, FASN, CPT1, LPL, ACC, and SREBP-1c) in SL-FO rats. Specifically, the activity and expression pattern of ACC were consistent with SREBP-1c. Furthermore, HepG2 cells were treated with oleic acid (OA), followed by eicosapentenoic acid (EPA), with or without SREBP-1c siRNA. The cellular lipid droplets, TG content, and the expression of ACC (by 75%) and SREBP-1c (by 45%) were increased by OA stimulation (p < .05), which was inhibited by EPA treatment. However, the effect of EPA treatment was abolished when SREBP-1c was silenced. In conclusion, ω3PUFAs-rich diet may be an effective way to reverse the developmental programming of hepatic lipid synthesis, at least partially, by inhibiting ACC through modulating SREBP-1c.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Child Health CareChildren’s Hospital of Nanjing Medical UniversityNanjingChina
| | - Susu Du
- Department of Child Health CareChildren’s Hospital of Nanjing Medical UniversityNanjingChina
| | - Yanyan Dai
- Department of Child Health CareChildren’s Hospital of Nanjing Medical UniversityNanjingChina
| | - Fan Yang
- Department of Child Health CareChildren’s Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiaonan Li
- Department of Child Health CareChildren’s Hospital of Nanjing Medical UniversityNanjingChina
- Institute of Pediatric ResearchNanjing Medical UniversityNanjingChina
| |
Collapse
|
33
|
Maternal DHA Supplementation during Pregnancy and Lactation in the Rat Protects the Offspring against High-Calorie Diet-Induced Hepatic Steatosis. Nutrients 2021; 13:nu13093075. [PMID: 34578953 PMCID: PMC8468499 DOI: 10.3390/nu13093075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022] Open
Abstract
Maternal supplementation during pregnancy with docosahexaenoic acid (DHA) is internationally recommended to avoid postpartum maternal depression in the mother and improve cognitive and neurological outcomes in the offspring. This study was aimed at determining whether this nutritional intervention, in the rat, protects the offspring against the development of obesity and its associated metabolic disorders. Pregnant Wistar rats received an extract of fish oil enriched in DHA or saline (SAL) as placebo by mouth from the beginning of gestation to the end of lactation. At weaning, pups were fed standard chow or a free-choice, high-fat, high-sugar (fc-HFHS) diet. Compared to animals fed standard chow, rats exposed to the fc-HFHS diet exhibited increased body weight, liver weight, body fat and leptin in serum independently of saline or DHA maternal supplementation. Nevertheless, maternal DHA supplementation prevented both the glucose intolerance and the rise in serum insulin resulting from consumption of the fc-HFHS diet. In addition, animals from the DHA-fc-HFHS diet group showed decreased hepatic triglyceride accumulation compared to SAL-fc-HFHS rats. The beneficial effects on glucose homeostasis declined with age in male rats. Yet, the preventive action against hepatic steatosis was still present in 6-month-old animals of both sexes and was associated with decreased hepatic expression of lipogenic genes. The results of the present work show that maternal DHA supplementation during pregnancy programs a healthy phenotype into the offspring that was protective against the deleterious effects of an obesogenic diet.
Collapse
|
34
|
Sohouli MH, Razmpoosh E, Zarrati M, Jaberzadeh S. The effect of omega-3 fatty acid supplementation on seizure frequency in individuals with epilepsy: a systematic review and meta-analysis. Nutr Neurosci 2021; 25:2421-2430. [PMID: 34328397 DOI: 10.1080/1028415x.2021.1959100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Although there is ample evidence for the effect of omega-3 supplementation on seizure frequency in individuals with epilepsy, the results are inconsistent. Therefore, we conducted this systematic review and meta-analysis to elucidate the potential effect of omega-3 supplementation in the adult and pediatric population. METHODS Clinical trials articles were searched in electronic databases (Web of Science, Scopus, PubMed/Medline, Embase, and Google Scholar database up to October 2020). No language limitation was imposed in the literature search. Moreover, gray literature search was done via searching the references of identified review papers to find more potentially relevant articles. RESULTS In order, the duration of the intervention and dosage of omega-3 fatty acid supplement of the included studies ranged from 12 to 42 weeks and 1000-2880 mg/day. Pooled results from the random-effects model indicated that seizure frequency following supplementation of omega-3 fatty acid decreased significantly (WMD: -6.15, 95% CI: -7.78, -4.53, P < 0.001). Furthermore, the results of the subgroup analysis revealed that seizure frequency was more alleviated in studies that used a daily dose of 1500 mg or less of omega-3 fatty acids as well as studies that had an intervention duration of more than 16 weeks. More importantly, our findings also showed that the effect of omega-3 intervention was greater in adults than in children with epilepsy. CONCLUSION The current meta-analysis on available trials suggested that omega-3 supplementation resulted in beneficial effects on seizure frequency in adult and children with epilepsy.
Collapse
Affiliation(s)
- Mohammad Hassan Sohouli
- Department of Clinical Nutrition and Dietetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Razmpoosh
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Zarrati
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Shapour Jaberzadeh
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
35
|
Maciejewska-Markiewicz D, Stachowska E, Hawryłkowicz V, Stachowska L, Prowans P. The Role of Resolvins, Protectins and Marensins in Non-Alcoholic Fatty Liver Disease (NAFLD). Biomolecules 2021; 11:937. [PMID: 34202667 PMCID: PMC8301825 DOI: 10.3390/biom11070937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022] Open
Abstract
Increased triacylglycerols' (TAG) synthesis, insulin resistance, and prolonged liver lipid storage might lead to the development of non-alcoholic fatty liver disease (NAFLD). Global prevalence of NAFLD has been estimated to be around 25%, with gradual elevation of this ratio along with the increased content of adipose tissue in a body. The initial stages of NAFLD may be reversible, but the exposition to pathological factors should be limited. As dietary factors greatly influence various disease development, scientists try to find dietary components, helping to alleviate the steatosis. These components include n-3 polyunsaturated (PUFA) fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acids (DHA). This review focused on the role of resolvins, protectins and merensins in NAFLD.
Collapse
Affiliation(s)
- Dominika Maciejewska-Markiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 70-204 Szczecin, Poland; (E.S.); (V.H.); (L.S.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 70-204 Szczecin, Poland; (E.S.); (V.H.); (L.S.)
| | - Viktoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 70-204 Szczecin, Poland; (E.S.); (V.H.); (L.S.)
| | - Laura Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 70-204 Szczecin, Poland; (E.S.); (V.H.); (L.S.)
| | - Piotr Prowans
- Clinic of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, 72-009 Police, Poland;
| |
Collapse
|
36
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common liver pathology worldwide due to the rising prevalence of obesity. This term includes changes from simple steatosis to steatohepatitis and fibrosis. It was previously thought to be a hepatic manifestation of metabolic syndrome, but recent literature describes this relation as much more complex and bi-directional. Development of NAFLD is associated with other metabolic syndrome components but it can also exacerbate insulin resistance and increase cardiovascular risk. Recently a lot of attention is brought to the role of lipids and lipotoxicity in pathogenesis and progression of non-alcoholic fatty disease. It seems that some lipid classes can be protective against liver injury while others are harmful in excessive amounts. This study presents an overview of the main lipids involved in the pathogenesis of non-alcoholic fatty liver disease and summarizes their association with lipotoxicity, insulin resistance, oxidative stress and other processes responsible for its progression.
Collapse
|
37
|
Effects of Long-Term DHA Supplementation and Physical Exercise on Non-Alcoholic Fatty Liver Development in Obese Aged Female Mice. Nutrients 2021; 13:nu13020501. [PMID: 33546405 PMCID: PMC7913512 DOI: 10.3390/nu13020501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity and aging are associated to non-alcoholic fatty liver disease (NAFLD) development. Here, we investigate whether long-term feeding with a docosahexaenoic acid (DHA)-enriched diet and aerobic exercise, alone or in combination, are effective in ameliorating NAFLD in aged obese mice. Two-month-old female C57BL/6J mice received control or high fat diet (HFD) for 4 months. Then, the diet-induced obese (DIO) mice were distributed into four groups: DIO, DIO + DHA (15% dietary lipids replaced by a DHA-rich concentrate), DIO + EX (treadmill running), and DIO + DHA + EX up to 18 months. The DHA-rich diet reduced liver steatosis in DIO mice, decreasing lipogenic genes (Dgat2, Scd1, Srebp1c), and upregulated lipid catabolism genes (Hsl/Acox) expression. A similar pattern was observed in the DIO + EX group. The combination of DHA + exercise potentiated an increase in Cpt1a and Ppara genes, and AMPK activation, key regulators of fatty acid oxidation. Exercise, alone or in combination with DHA, significantly reversed the induction of proinflammatory genes (Mcp1, Il6, Tnfα, Tlr4) in DIO mice. DHA supplementation was effective in preventing the alterations induced by the HFD in endoplasmic reticulum stress-related genes (Ern1/Xbp1) and autophagy markers (LC3II/I ratio, p62, Atg7). In summary, long-term DHA supplementation and/or exercise could be helpful to delay NAFLD progression during aging in obesity.
Collapse
|
38
|
Jiménez DG, García CB, Martín JJD. Uses and Applications of Docosahexaenoic Acid (DHA) in Pediatric Gastroenterology: Current Evidence and New Perspective. Curr Pediatr Rev 2021; 17:329-335. [PMID: 33655869 DOI: 10.2174/1573396317666210303151947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/05/2020] [Accepted: 02/01/2021] [Indexed: 11/22/2022]
Abstract
In this paper, we will review the dietary allowances of these fatty acids in the paediatric population, and also the indications in different pathologies within the field of pediatric gastroenterology. Finally, we will try to explain the reasons that may justify the difficulty in translating good results in experimental studies to the usual clinical practice. This "good results" may be too little to be detected or there may be other causes but misinterpreted as effects of DHA.
Collapse
Affiliation(s)
| | - Carlos Bousoño García
- Pediatric Gastroenterology and Nutrition, Hospital Universitario Central de Asturias, University of Oviedo, Oviedo,Spain
| | - Juan Jose Diaz Martín
- Pediatric Gastroenterology and Nutrition, Hospital Universitario Central de Asturias, University of Oviedo, Oviedo,Spain
| |
Collapse
|
39
|
Kalveram L, Schunck WH, Rothe M, Rudolph B, Loddenkemper C, Holzhütter HG, Henning S, Bufler P, Schulz M, Meierhofer D, Zhang IW, Weylandt KH, Wiegand S, Hudert CA. Regulation of the cytochrome P450 epoxyeicosanoid pathway is associated with distinct histologic features in pediatric non-alcoholic fatty liver disease. Prostaglandins Leukot Essent Fatty Acids 2021; 164:102229. [PMID: 33388475 DOI: 10.1016/j.plefa.2020.102229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a significant health burden in obese children for which there is currently no specific therapy. Preclinical studies indicate that epoxyeicosanoids, a class of bioactive lipid mediators that are generated by cytochrome P450 (CYP) epoxygenases and inactivated by the soluble epoxide hydrolase (sEH), play a protective role in NAFLD. We performed a comprehensive lipidomics analysis using liver tissue and blood samples of 40 children with NAFLD. Proteomics was performed to determine CYP epoxygenase and sEH expressions. Hepatic epoxyeicosanoids significantly increased with higher grades of steatosis, while their precursor PUFAs were unaltered. Concomitantly, total CYP epoxygenase activity increased while protein level and activity of sEH decreased. In contrast, hepatic epoxyeicosanoids showed a strong decreasing trend with higher stages of fibrosis, accompanied by a decrease of CYP epoxygenase activity and protein expression. These findings suggest that the CYP epoxygenase/sEH pathway represents a potential pharmacologic target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Laura Kalveram
- Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | | | | | - Birgit Rudolph
- Institute of Pathology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | | | - Stephan Henning
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité -Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Philip Bufler
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité -Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Marten Schulz
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, 14195 Berlin, Germany
| | - Ingrid W Zhang
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Karsten H Weylandt
- Department of Gastroenterology, Diabetes, Oncology and Rheumatology, Ruppiner Kliniken, Brandenburg Medical School, 16816 Neuruppin, Germany
| | - Susanna Wiegand
- Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Christian A Hudert
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité -Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
40
|
Snow SJ, Henriquez AR, Fenton JI, Goeden T, Fisher A, Vallanat B, Angrish M, Richards JE, Schladweiler MC, Cheng WY, Wood CE, Tong H, Kodavanti UP. Diets enriched with coconut, fish, or olive oil modify peripheral metabolic effects of ozone in rats. Toxicol Appl Pharmacol 2020; 410:115337. [PMID: 33217375 DOI: 10.1016/j.taap.2020.115337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
Dietary factors may modulate metabolic effects of air pollutant exposures. We hypothesized that diets enriched with coconut oil (CO), fish oil (FO), or olive oil (OO) would alter ozone-induced metabolic responses. Male Wistar-Kyoto rats (1-month-old) were fed normal diet (ND), or CO-, FO-, or OO-enriched diets. After eight weeks, animals were exposed to air or 0.8 ppm ozone, 4 h/day for 2 days. Relative to ND, CO- and OO-enriched diet increased body fat, serum triglycerides, cholesterols, and leptin, while all supplements increased liver lipid staining (OO > FO > CO). FO increased n-3, OO increased n-6/n-9, and all supplements increased saturated fatty-acids. Ozone increased total cholesterol, low-density lipoprotein, branched-chain amino acids (BCAA), induced hyperglycemia, glucose intolerance, and changed gene expression involved in energy metabolism in adipose and muscle tissue in rats fed ND. Ozone-induced glucose intolerance was exacerbated by OO-enriched diet. Ozone increased leptin in CO- and FO-enriched groups; however, BCAA increases were blunted by FO and OO. Ozone-induced inhibition of liver cholesterol biosynthesis genes in ND-fed rats was not evident in enriched dietary groups; however, genes involved in energy metabolism and glucose transport were increased in rats fed FO and OO-enriched diet. FO- and OO-enriched diets blunted ozone-induced inhibition of genes involved in adipose tissue glucose uptake and cholesterol synthesis, but exacerbated genes involved in adipose lipolysis. Ozone-induced decreases in muscle energy metabolism genes were similar in all dietary groups. In conclusion, CO-, FO-, and OO-enriched diets modified ozone-induced metabolic changes in a diet-specific manner, which could contribute to altered peripheral energy homeostasis.
Collapse
Affiliation(s)
- Samantha J Snow
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, United States
| | - Travis Goeden
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, United States
| | - Anna Fisher
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Beena Vallanat
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Michelle Angrish
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Judy E Richards
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Mette C Schladweiler
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Wan-Yun Cheng
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Charles E Wood
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Haiyan Tong
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Urmila P Kodavanti
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| |
Collapse
|
41
|
Alberti G, Gana JC, Santos JL. Fructose, Omega 3 Fatty Acids, and Vitamin E: Involvement in Pediatric Non-Alcoholic Fatty Liver Disease. Nutrients 2020; 12:nu12113531. [PMID: 33212947 PMCID: PMC7698421 DOI: 10.3390/nu12113531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most common form of liver disease in both adults and children, becoming the leading cause for liver transplant in many countries. Its prevalence has increased considerably in recent years, mainly due to the explosive increase in pediatric obesity rates. NAFLD is strongly associated with central obesity, diabetes, dyslipidemia and insulin resistance, and it has been considered as the hepatic manifestation of the metabolic syndrome. Its complex pathophysiology involves a series of metabolic, inflammatory and oxidative stress processes, among others. Given the sharp increase in the prevalence of NAFLD and the lack of an appropriate pharmacological approach, it is crucial to consider the prevention/management of the disease based on lifestyle modifications such as the adoption of a healthy nutrition pattern. Herein, we review the literature and discuss the role of three key nutrients involved in pediatric NAFLD: fructose and its participation in metabolism, Omega-3 fatty acids and its anti-inflammatory effects and vitamin E and its action on oxidative stress.
Collapse
Affiliation(s)
- Gigliola Alberti
- Gastroenterology and Nutrition Department, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile; (G.A.); (J.C.G.)
| | - Juan Cristóbal Gana
- Gastroenterology and Nutrition Department, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile; (G.A.); (J.C.G.)
| | - José L. Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
- Correspondence: ; Tel.: +56-2-2354-3868
| |
Collapse
|
42
|
Mashek DG. Hepatic lipid droplets: A balancing act between energy storage and metabolic dysfunction in NAFLD. Mol Metab 2020; 50:101115. [PMID: 33186758 PMCID: PMC8324678 DOI: 10.1016/j.molmet.2020.101115] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is defined by the abundance of lipid droplets (LDs) in hepatocytes. While historically considered simply depots for energy storage, LDs are increasingly recognized to impact a wide range of biological processes that influence cellular metabolism, signaling, and function. While progress has been made toward understanding the factors leading to LD accumulation (i.e. steatosis) and its progression to advanced stages of NAFLD and/or systemic metabolic dysfunction, much remains to be resolved. SCOPE OF REVIEW This review covers many facets of LD biology. We provide a brief overview of the major pathways of lipid accretion and degradation that contribute to steatosis and how they are altered in NAFLD. The major focus is on the relationship between LDs and cell function and the detailed mechanisms that couple or uncouple steatosis from the severity and progression of NAFLD and systemic comorbidities. The importance of specific lipids and proteins within or on LDs as key components that determine whether LD accumulation is linked to cellular and metabolic dysfunction is presented. We discuss emerging areas of LD biology and future research directions that are needed to advance our understanding of the role of LDs in NAFLD etiology. MAJOR CONCLUSIONS Impairments in LD breakdown appear to contribute to disease progression, but inefficient incorporation of fatty acids (FAs) into LD-containing triacylglycerol (TAG) and the consequential changes in FA partitioning also affect NAFLD etiology. Increased LD abundance in hepatocytes does not necessarily equate to cellular dysfunction. While LD accumulation is the prerequisite step for most NAFLD cases, the protein and lipid composition of LDs are critical factors in determining the progression from simple steatosis. Further defining the detailed molecular mechanisms linking LDs to metabolic dysfunction is important for designing effective therapeutic approaches targeting NAFLD and its comorbidities.
Collapse
Affiliation(s)
- Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Minnesota, Suite 6-155, 321 Church St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
43
|
Modulatory role of dietary polyunsaturated fatty acids in Nrf2-mediated redox homeostasis. Prog Lipid Res 2020; 80:101066. [DOI: 10.1016/j.plipres.2020.101066] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
|
44
|
Ayee MAA, Bunker BC, De Groot JL. Membrane modulatory effects of omega-3 fatty acids: Analysis of molecular level interactions. CURRENT TOPICS IN MEMBRANES 2020; 86:57-81. [PMID: 33837698 DOI: 10.1016/bs.ctm.2020.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioactive omega-3 polyunsaturated fatty acids have been shown to reduce the risk of death in patients with cardiovascular disease and alleviate the symptoms of other inflammatory diseases. However, the mechanisms of action of these effects remain unclear. It has been postulated that omega-3 polyunsaturated fatty acids modify cell membranes by incorporation into the membrane and altering the signaling properties of cellular receptors. In this chapter, we explore the effects of omega-3 polyunsaturated fatty acids on cell membrane structure and function. We present a review of the current evidence for the health benefits of these compounds and explore the molecular mechanisms through which omega-3 polyunsaturated fatty acids interact with membrane lipids and modulate bilayer structure. Using computational models of multicomponent phospholipid bilayers, we assess the consequences of incorporation of these fatty acids on membrane lipid packing, water permeation, and membrane structure.
Collapse
Affiliation(s)
- Manuela A A Ayee
- Department of Engineering, Dordt University, Sioux Center, IA, United States.
| | - Brendan C Bunker
- Department of Engineering, Dordt University, Sioux Center, IA, United States
| | - Jordan L De Groot
- Department of Engineering, Dordt University, Sioux Center, IA, United States
| |
Collapse
|
45
|
Attia SL, Softic S, Mouzaki M. Evolving Role for Pharmacotherapy in NAFLD/NASH. Clin Transl Sci 2020; 14:11-19. [PMID: 32583961 PMCID: PMC7877845 DOI: 10.1111/cts.12839] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a highly prevalent, dynamic disease that occurs across the age spectrum and can lead to cirrhosis and hepatocellular carcinoma. There are currently no US Food and Drug Administration (FDA) approved treatments for NAFLD; however, this is a field of active research. This review summarizes emerging pharmacotherapies for the treatment of adult and pediatric NAFLD. Investigated pharmacotherapies predominantly target bile acid signaling, insulin resistance, and lipid handling within the liver. Three drugs have gone on to phase III trials for which results are available. Of those, obeticholic acid is the single agent that demonstrates promise according to the interim analyses of the REGENERATE trial. Obeticholic acid showed reduction of fibrosis in adults with nonalcoholic steatohepatitis (NASH) taking 25 mg daily for 18 months (n = 931, reduction in fibrosis in 25% vs. 12% placebo, P < 0.01). Ongoing phase III trials include REGENERATE and MAESTRO‐NASH, which investigates thyroid hormone receptor‐β agonist MGL‐3196. Outcomes of promising phase II trials in adults with NASH are also available and those have investigated agents, including the fibroblast growth factor (FGF)19 analogue NGM282, the GLP1 agonist liraglutide, the FGF21 analogue Pegbelfermin, the sodium glucose co‐transporter 2 inhibitor Empagliflozin, the ketohexokinase inhibitor PF‐06835919, the acetyl‐coenzyme A carboxylase inhibitor GS‐0976, and the chemokine receptor antagonist Cenicriviroc. Completed and ongoing clinical trials emphasize the need for a more nuanced understanding of the phenotypes of subgroups within NAFLD that may respond to an individualized approach to pharmacotherapy.
Collapse
Affiliation(s)
- Suzanna L Attia
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Samir Softic
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Marialena Mouzaki
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
46
|
Climax J, Newsome PN, Hamza M, Weissbach M, Coughlan D, Sattar N, McGuire DK, Bhatt DL. Effects of Epeleuton, a Novel Synthetic Second-Generation n-3 Fatty Acid, on Non-Alcoholic Fatty Liver Disease, Triglycerides, Glycemic Control, and Cardiometabolic and Inflammatory Markers. J Am Heart Assoc 2020; 9:e016334. [PMID: 32779505 PMCID: PMC7660824 DOI: 10.1161/jaha.119.016334] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Epeleuton is 15‐hydroxy eicosapentaenoic acid ethyl ester, a second‐generation synthetic n‐3 fatty acid derivative of eicosapentaenoic acid. The primary objective was to assess the effect of epeleuton on markers of nonalcoholic fatty liver disease (NAFLD) with post hoc analyses of cardiometabolic markers. Methods and Results In a multicenter, randomized, double‐blind, placebo‐controlled trial, 96 adults with nonalcoholic fatty liver disease and body mass index 25 to 40 were randomized in a 1:1:1 ratio to receive epeleuton 2 g/day, epeleuton 1 g/day, or placebo for 16 weeks. A total of 27% of patients had diabetes mellitus. Primary end points of changes in alanine aminotransferase and liver stiffness did not improve at week 16. Secondary and post hoc analyses investigated changes in cardiometabolic markers. Epeleuton 2 g/day significantly decreased triglycerides, very‐low‐density lipoprotein cholesterol, and total cholesterol without increasing low‐density lipoprotein cholesterol. Despite a low mean baseline hemoglobin A1C (HbA1C; 6.3±1.3%), epeleuton 2 g/day significantly decreased HbA1c (−0.4%; P=0.026). Among patients with baseline HbA1c >6.5%, epeleuton 2 g/day decreased HbA1c by 1.1% (P=0.047; n=26). Consistent dose‐dependent reductions were observed for fasting plasma glucose, insulin, and insulin resistance indices. Epeleuton 2 g/day decreased circulating markers of cardiovascular risk and endothelial dysfunction. Epeleuton was well tolerated, with a safety profile not different from placebo. Conclusions While epeleuton did not meet its primary end points on alanine aminotransferase or liver stiffness, it significantly decreased triglycerides, HbA1C, plasma glucose, and inflammatory markers. These data suggest epeleuton may have potential for cardiovascular risk reduction and nonalcoholic fatty liver disease by simultaneously targeting hypertriglyceridemia, hyperglycemia, and systemic inflammation. Further trials are planned. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT02941549.
Collapse
Affiliation(s)
| | - Philip N Newsome
- National Institute for Health Research Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham United Kingdom.,Centre for Liver and Gastrointestinal Research Institute of Immunology and Immunotherapy University of Birmingham United Kingdom.,Liver Unit University Hospitals Birmingham NHS Foundation Trust Birmingham United Kingdom
| | | | | | | | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences University of Glasgow United Kingdom
| | | | - Deepak L Bhatt
- Brigham and Women's Hospital Heart & Vascular Center Harvard Medical School Boston MA
| |
Collapse
|
47
|
Stacchiotti V, Rezzi S, Eggersdorfer M, Galli F. Metabolic and functional interplay between gut microbiota and fat-soluble vitamins. Crit Rev Food Sci Nutr 2020; 61:3211-3232. [PMID: 32715724 DOI: 10.1080/10408398.2020.1793728] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gut microbiota is a complex ecosystem seen as an extension of human genome. It represents a major metabolic interface of interaction with food components and xenobiotics in the gastrointestinal (GI) environment. In this context, the advent of modern bacterial genome sequencing technology has enabled the identification of dietary nutrients as key determinants of gut microbial ecosystem able to modulate the host-microbiome symbiotic relationship and its effects on human health. This article provides a literature review on functional and molecular interactions between a specific group of lipids and essential nutrients, e.g., fat-soluble vitamins (FSVs), and the gut microbiota. A two-way relationship appears to emerge from the available literature with important effects on human metabolism, nutrition, GI physiology and immune function. First, FSV directly or indirectly modify the microbial composition involving for example immune system-mediated and/or metabolic mechanisms of bacterial growth or inhibition. Second, the gut microbiota influences at different levels the synthesis, metabolism and transport of FSV including their bioactive metabolites that are either introduced with the diet or released in the gut via entero-hepatic circulation. A better understanding of these interactions, and of their impact on intestinal and metabolic homeostasis, will be pivotal to design new and more efficient strategies of disease prevention and therapy, and personalized nutrition.
Collapse
Affiliation(s)
- Valentina Stacchiotti
- Micronutrient Vitamins and Lipidomics Lab, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Serge Rezzi
- Swiss Vitamin Institute, Epalinges, Switzerland
| | - Manfred Eggersdorfer
- Department of Internal Medicine, University Medical Center Groningen, Groningen, the Netherlands
| | - Francesco Galli
- Micronutrient Vitamins and Lipidomics Lab, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
48
|
Li P, Huang J, Xiao N, Cai X, Yang Y, Deng J, Zhang LH, Du B. Sacha inchi oil alleviates gut microbiota dysbiosis and improves hepatic lipid dysmetabolism in high-fat diet-fed rats. Food Funct 2020; 11:5827-5841. [PMID: 32648886 DOI: 10.1039/d0fo01178a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dietary ω-3 polyunsaturated fatty acids (PUFAs) are beneficial for humans against the development of hyperlipidaemia, but the underlying mechanisms are still poorly understood. Here, we demonstrated that oral consumption of sacha inchi oil, which is rich in α-linolenic acid, alleviated dyslipidemia, hepatic steatosis and inflammatory infiltration in high-fat diet (HFD)-fed rats. Sacha inchi oil administration reversed gut microbiota dysbiosis and altered the gut microbiota metabolome and in particular prevented bile acid dysmetabolism caused by a HFD. Sacha inchi oil intake ameliorated hepatic lipid dysmetabolism in HFD-fed rats, via potentiating the biosynthesis and reuptake of bile acids, reducing the de novo lipogenesis, promoting fatty acid beta-oxidation, and alleviating the dysregulation of glycerolipid, glycerophospholipid, and sphingolipid metabolisms. The results showed that dietary sacha inchi oil can alleviate gut microbiota dysbiosis and reduce lipid dysmetabolism in HFD rats, and provide novel insights into the molecular mechanisms by which plant-derived ω-3 PUFAs prevent the development of hyperlipidaemia.
Collapse
Affiliation(s)
- Pan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Effect of Carotenoids from Phaeodactylum tricornutum on Palmitate-Treated HepG2 Cells. Molecules 2020; 25:molecules25122845. [PMID: 32575640 PMCID: PMC7356161 DOI: 10.3390/molecules25122845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease represents the most common liver disease and is characterized by an excess of lipid accumulation in hepatocytes, mainly stored as triglycerides. Phaeodactylum tricornutum is a marine microalga, which is rich in bioactive molecules known to be hepatoprotective, such as n-3 long-chain polyunsaturated fatty acids and fucoxanthin. The aim of this study was to investigate the effects of a carotenoid extract from P. tricornutum in a cellular model of non-alcoholic fatty liver disease induced by palmitate treatment. The combined effects of carotenoids and lipids, especially n-3 long-chain polyunsaturated fatty acids, were also investigated by using a total lipophilic extract. HepG2 cells were exposed for 24 h to 250 µM palmitate with or without the addition of carotenoid extract (6 μg/mL) or total lipophilic extract (100 μg/mL). The addition of carotenoid extract or total lipophilic extract prevented the accumulation of triglycerides, total cholesterol and cholesterol esters. The carotenoid extract and total lipophilic extract also decreased the mRNA expression levels of genes involved in lipogenesis (ACACA, FASN, SCD and DGAT1) and cholesterol esterification (ACAT1/SOAT1). In addition, the total lipophilic extract also downregulated the LXR/NR1H3 and SREBF1 genes, which are involved in lipogenesis regulation. By contrast, the carotenoid extract increased the mRNA level of CPT1A, a β-oxidation related gene, and reduced the lipid droplet accumulation. In conclusion, this study highlights the preventive effects against non-alcoholic fatty liver disease of the two microalga extracts.
Collapse
|
50
|
Moreira RJ, Castro É, Oliveira TE, Belchior T, Peixoto AS, Chaves-Filho AB, Moreno MF, Lima JD, Yoshinaga M, Miyamoto S, Morais MRPT, Zorn TMT, Cogliati B, Iwai LK, Palmisano G, Cabral FJ, Festuccia W. Lipoatrophy-Associated Insulin Resistance and Hepatic Steatosis are Attenuated by Intake of Diet Rich in Omega 3 Fatty Acids. Mol Nutr Food Res 2020; 64:e1900833. [PMID: 31978277 DOI: 10.1002/mnfr.201900833] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/13/2020] [Indexed: 02/06/2023]
Abstract
SCOPE Glucose homeostasis and progression of nonalcoholic fatty liver disease (NAFLD) and hepatomegaly in severe lipoatrophic mice and their modulation by intake of a diet rich in omega 3 (n-3) fatty acids (HFO) are evaluated. METHODS AND RESULTS Severe lipoatrophic mice induced by PPAR-γ deletion exclusively in adipocytes (A-PPARγ KO) and littermate controls (A-PPARγ WT) are evaluated for glucose homeostasis and liver mass, proteomics, lipidomics, inflammation, and fibrosis. Lipoatrophic mice are heavier than controls, severely glucose intolerant, and hyperinsulinemic, and develop NAFLD characterized by increased liver glycogen, triacylglycerol, and diacylglycerol contents, mitotic index, apoptosis, inflammation, steatosis score, fibrosis, and fatty acid synthase (FAS) content and activity. Lipoatrophic mice also display liver enrichment with monounsaturated in detriment of polyunsaturated fatty acids including n-3 fatty acids, and increased content of cardiolipin, a tetracyl phospholipid exclusively found at the mitochondria inner membrane. Administration of a high-fat diet rich in n-3 fatty acids (HFO) to lipoatrophic mice enriches liver with n-3 fatty acids, reduces hepatic steatosis, FAS content and activity, apoptosis, inflammation, and improves glucose homeostasis. CONCLUSION Diet enrichment with n-3 fatty acids improves glucose homeostasis and reduces liver steatosis and inflammation without affecting hepatomegaly in severe lipoatrophic mice.
Collapse
Affiliation(s)
- Rafael J Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Érique Castro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Tiago E Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Thiago Belchior
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Albert S Peixoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Adriano B Chaves-Filho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Mayara F Moreno
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Janayna D Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Marcos Yoshinaga
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508000, Brazil
| | - Sayuri Miyamoto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508000, Brazil
| | - Mychel R P T Morais
- Department of Cell Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Telma M T Zorn
- Department of Cell Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508010, Brazil
| | - Leo K Iwai
- Special Laboratory of Applied Toxicology, Center of Toxins, Immune-response and Cell Signaling (LETA/ CeTICS), Butantan Institute, São Paulo, 05503400, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| | | | - William Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508000, Brazil
| |
Collapse
|