1
|
Grosso C, Santos M, Barroso MF. From Plants to Psycho-Neurology: Unravelling the Therapeutic Benefits of Bioactive Compounds in Brain Disorders. Antioxidants (Basel) 2023; 12:1603. [PMID: 37627598 PMCID: PMC10451187 DOI: 10.3390/antiox12081603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
The brain's sensitivity to oxidative stress and neuronal cell death requires effective pharmacotherapy approaches. Current pharmacological therapies are frequently ineffective and display negative side effects. Bioactive chemicals found in plants may provide a potential alternative due to their antioxidant and neuroprotective properties and can be used in therapy and the management of a variety of neuropsychiatric, neurodevelopmental, and neurodegenerative illnesses. Several natural products, including vitamin C, Cammelia sinensis polyphenols, Hypericum perforatum, and Crocus sativus have shown promise in lowering oxidative stress and treating symptoms of major depressive disorder (MDD). Similarly, bioactive compounds such as curcumin, luteolin, resveratrol, quercetin, and plants like Acorus gramineus, Rhodiola rosea, and Ginkgo biloba are associated with neuroprotective effects and symptom improvement in neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). Furthermore, in neurodegenerative diseases, natural compounds from Rhodiola rosea, Morinda lucida, and Glutinous rehmannia provide neurological improvement. Further study in clinical samples is required to thoroughly investigate the therapeutic advantages of these bioactive substances for persons suffering from these illnesses.
Collapse
Affiliation(s)
- Clara Grosso
- REQUIMTE–LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| | - Marlene Santos
- CISA|ESS, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal;
| | - M. Fátima Barroso
- REQUIMTE–LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| |
Collapse
|
2
|
Correia EEM, Figueirinha A, Rodrigues L, Pinela J, Calhelha RC, Barros L, Fernandes C, Salgueiro L, Gonçalves T. The Chemical Profile, and Antidermatophytic, Anti-Inflammatory, Antioxidant and Antitumor Activities of Withania chevalieri A.E. Gonç. Ethanolic Extract. PLANTS (BASEL, SWITZERLAND) 2023; 12:2502. [PMID: 37447064 DOI: 10.3390/plants12132502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Withania chevalieri, endogenous from Cape Verde, is a medicinal plant used in ethnomedicine with a large spectrum of applications, such as treating skin fungal infections caused by dermatophytes. The aim of this work was to chemically characterize the W. chevalieri crude ethanolic extract (WcCEE), and evaluate its bioactivities as antidermatophytic, antioxidant, anti-inflammatory and anticancer, as well as its cytotoxicity. WcCEE was chemically characterized via HPLC-MS. The minimal inhibitory concentration, minimal fungicidal concentration, time-kill and checkerboard assays were used to study the antidermatophytic activity of WcCEE. As an approach to the mechanism of action, the cell wall components, β-1,3-glucan and chitin, and cell membrane ergosterol were quantified. Transmission electron microscopy (TEM) allowed for the study of the fungal ultrastructure. WcCEE contained phenolic acids, flavonoids and terpenes. It had a concentration-dependent fungicidal activity, not inducing relevant resistance, and was endowed with synergistic effects, especially terbinafine. TEM showed severely damaged fungi; the cell membrane and cell wall components levels had slight modifications. The extract had antioxidant, anti-inflammatory and anti-cancer activities, with low toxicity to non-tumoral cell lines. The results demonstrated the potential of WcCEE as an antidermatophytic agent, with antioxidant, anti-inflammatory and anticancer activity, to be safely used in pharmaceutical and dermocosmetic applications.
Collapse
Affiliation(s)
| | - Artur Figueirinha
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| | - Lisa Rodrigues
- CNC-UC-Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Chantal Fernandes
- CNC-UC-Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Teresa Gonçalves
- CNC-UC-Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| |
Collapse
|
3
|
Bravo-Díaz C. Advances in the control of lipid peroxidation in oil-in-water emulsions: kinetic approaches †. Crit Rev Food Sci Nutr 2022; 63:6252-6284. [PMID: 35104177 DOI: 10.1080/10408398.2022.2029827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Large efforts have been, and still are, devoted to minimize the harmful effects of lipid peroxidation. Much of the early work focused in understanding both the lipid oxidation mechanisms and the action of antioxidants in bulk solution. However, food-grade oils are mostly present in the form of oil-in-water emulsions, bringing up an increasing complexity because of the three-dimensional interfacial region. This review presents an overview of the kinetic approaches employed in controlling the oxidative stability of edible oil-in-water emulsions and of the main outcomes, with particular emphasis on the role of antioxidants and on the kinetics of the inhibition reaction. Application of physical-organic chemistry methods, such as the pseudophase models to investigate antioxidant partitioning, constitute a remarkable example on how kinetic methodologies contribute to model chemical reactivity in multiphasic systems and to rationalize the role of interfaces, opening new opportunities for designing novel antioxidants with tailored properties and new prospects for modulating environmental conditions in attempting to optimize their efficiency. Here we will summarize the main kinetic features of the inhibition reaction and will discuss on the main factors affecting its rate, including the determination of antioxidant efficiencies from kinetic profiles, structure-reactivity relationships, partitioning of antioxidants and concentration effects.
Collapse
Affiliation(s)
- Carlos Bravo-Díaz
- Facultad de Ciencias, Departamento de Química Física, Universidad de Vigo, Vigo, Spain
| |
Collapse
|
4
|
Tahini consumption improves metabolic and antioxidant status biomarkers in the postprandial state in healthy males. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03828-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Comparison between In Vitro Chemical and Ex Vivo Biological Assays to Evaluate Antioxidant Capacity of Botanical Extracts. Antioxidants (Basel) 2021; 10:antiox10071136. [PMID: 34356369 PMCID: PMC8301118 DOI: 10.3390/antiox10071136] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/11/2023] Open
Abstract
The anti-oxidative activity of plant-derived extracts is well-known and confers health-promoting effects on functional foods and food supplements. Aim of this work is to evaluate the capability of two different assays to predict the real biological antioxidant efficiency. At this purpose, extracts from five different plant-derived matrices and commercial purified phytochemicals were analyzed for their anti-oxidative properties by using well-standardized in vitro chemical method (TEAC) and an ex vivo biological assay. The biological assay, a cellular membrane system obtained from erythrocytes of healthy volunteers, is based on the capability of phytochemicals treatment to prevent membrane lipid peroxidation under oxidative stress by UV-B radiation. Plant extracts naturally rich in phenols with different structure and purified phytochemicals showed different in vitro and ex vivo antioxidant capacities. A high correlation between phenolic contents of the plant-derived extracts and their ability to prevent oxidative injuries in a biological system was found, thus underlying the relevance of this class of metabolites in preventing oxidative stress. On the other hand, a low correlation between the antioxidant capacities was shown between in vitro and ex vivo antioxidant assay. Moreover, data presented in this work show how food complex matrices are more effective in preventing oxidative damages at biological level than pure phytochemicals, even if for these latter, the antioxidant activity was generally higher than that observed for food complex matrices.
Collapse
|
6
|
Costa M, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C. Polyphenolic Antioxidants in Lipid Emulsions: Partitioning Effects and Interfacial Phenomena. Foods 2021; 10:539. [PMID: 33807705 PMCID: PMC8001919 DOI: 10.3390/foods10030539] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/26/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
The autoxidation of lipids in complex systems such as emulsions or biological membranes, although known to occur readily and to be associated with important pathological events, is lacking in quantitative data in spite of the huge efforts that have been made in attempting to unravel the complex mechanisms of lipid oxidation and its inhibition by antioxidants. Lipids are present as oil-in-water emulsions in many foods and pharmaceutical formulations, and the prevalent role of the interfacial region is critical to understand the antioxidant behavior and to correctly interpret antioxidant efficiencies. The aim of this review is to summarize the current knowledge on the chemical fate of antioxidants before they react with peroxyl radicals. Many researchers highlighted the predominant role of interfaces, and although some attempts have been made to understand their role, in most instances, they were essentially qualitative and based on putative hypotheses. It is only recently that quantitative reports have been published. Indeed, knowledge on the effects of relevant experimental variables on the effective concentrations of antioxidants is necessary for a successful design of alternate, effective antioxidative solutions.
Collapse
Affiliation(s)
- Marlene Costa
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (M.C.); (S.L.-B.); (F.P.-M.)
| | - Sonia Losada-Barreiro
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (M.C.); (S.L.-B.); (F.P.-M.)
- Department of Physical Chemistry, Faculty of Chemistry, Universidad de Vigo, 36200 Vigo, Spain
| | - Fátima Paiva-Martins
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (M.C.); (S.L.-B.); (F.P.-M.)
| | - Carlos Bravo-Díaz
- Department of Physical Chemistry, Faculty of Chemistry, Universidad de Vigo, 36200 Vigo, Spain
| |
Collapse
|
7
|
Deyrieux C, Durand E, Guillou S, Barouh N, Baréa B, Michel Salaun F, Villeneuve P. Selection of Natural Extracts for their Antioxidant Capacity by Using a Combination of
In Vitro
Assays. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Charlotte Deyrieux
- CIRAD UMR IATE Montpellier F‐34398 France
- IATE, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro Montpellier F‐34398 France
- Diana Pet Food ZA du Gohélis Elven 56250 France
| | - Erwann Durand
- CIRAD UMR IATE Montpellier F‐34398 France
- IATE, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro Montpellier F‐34398 France
| | | | - Nathalie Barouh
- CIRAD UMR IATE Montpellier F‐34398 France
- IATE, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro Montpellier F‐34398 France
| | - Bruno Baréa
- CIRAD UMR IATE Montpellier F‐34398 France
- IATE, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro Montpellier F‐34398 France
| | | | - Pierre Villeneuve
- CIRAD UMR IATE Montpellier F‐34398 France
- IATE, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro Montpellier F‐34398 France
| |
Collapse
|
8
|
Stockert JC. Lipid Peroxidation Assay Using BODIPY-Phenylbutadiene Probes: A Methodological Overview. Methods Mol Biol 2020; 2202:199-214. [PMID: 32857357 DOI: 10.1007/978-1-0716-0896-8_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The assessment of reactive oxygen species has increasing importance in biomedical sciences, due to their biological role in signaling pathways and induction of cell damage at low and high concentrations, respectively. Detection of lipid peroxidation with sensing probes such as some BODIPY dyes has now wide application in studies using fluorescent microplate readers, flow cytometry, and fluorescence microscopy. Two phenylbutadiene derivatives of BODIPY are commonly used as peroxidation probes, non-oxidized probes and oxidized products giving red and green fluorescence, respectively. Peculiar features of lipoperoxidation and BODIPY dye properties make this assessment a rather complex process, not exempt of doubts and troubles. Color changes and fluorescence fading that are not due to lipid peroxidation must be taken into account to avoid misleading results. As a characteristic feature of lipoperoxidation is the propagation of peroxyl radicals, pitfalls and advantages of a delayed detection by BODIPY probes should be considered.
Collapse
Affiliation(s)
- Juan C Stockert
- Instituto de Oncología "Angel H. Roffo", Universidad de Buenos Aires, Buenos Aires, Argentina. .,Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Zhang J, Chen X, Yang R, Ma Q, Qi W, Sanidad KZ, Park Y, Kim D, Decker EA, Zhang G. Thermally Processed Oil Exaggerates Colonic Inflammation and Colitis-Associated Colon Tumorigenesis in Mice. Cancer Prev Res (Phila) 2019; 12:741-750. [PMID: 31444155 DOI: 10.1158/1940-6207.capr-19-0226] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/16/2019] [Accepted: 08/19/2019] [Indexed: 11/16/2022]
Abstract
Frying in vegetable oil is a popular cooking and food processing method worldwide; as a result, the oils used for frying are widely consumed by the general public and it is of practical importance to better understand their health impacts. To date, the effects of frying oil consumption on human health are inconclusive, making it difficult to establish dietary recommendations or guidelines. Here we show that dietary administration of frying oil, which was prepared under the conditions of good commercial practice, exaggerated dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)/DSS-induced colon tumorigenesis in mice. In addition, dietary administration of frying oil impaired intestinal barrier function, enhanced translocation of lipopolysaccharide (LPS) and bacteria from the gut into the systemic circulation, and increased tissue inflammation. Finally, to explore the potential compounds involved in the actions of the frying oil, we isolated polar compounds from the frying oil and found that administration of the polar compounds exacerbated DSS-induced colitis in mice. Together, our results showed that dietary administration of frying oil exaggerated development of inflammatory bowel disease (IBD) and IBD-associated colon tumorigenesis in mice, and these effects could be mediated by the polar compounds in the frying oil.
Collapse
Affiliation(s)
- Jianan Zhang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
| | - Xijing Chen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
| | - Ran Yang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
| | - Qin Ma
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | - Weipeng Qi
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
| | - Katherine Z Sanidad
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
| | - Daeyoung Kim
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts
| | - Eric A Decker
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts.
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts.
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
10
|
Study of lipid peroxidation and ascorbic acid protective role in large unilamellar vesicles from a new electrochemical performance. Bioelectrochemistry 2017; 120:120-126. [PMID: 29247891 DOI: 10.1016/j.bioelechem.2017.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 11/22/2022]
Abstract
In this contribution an electrochemical study is described for the first time of lipid peroxidation and the role of antioxidant on lipid protection using large unilamellar vesicles (LUVs). In order to simulate the cell membrane, LUVs composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) were used. A vesicle-modified electrode was constructed by immobilizing DOPC LUVs onto carbon paste electrodes (CPEs). Lipid peroxidation was studied electrochemically by incubating the vesicle-modified electrodes with hydroxyl (HO) radicals generated via the Fenton reaction. Oxidative damage induced by HO was verified by using square wave voltammetry (SWV) and was indirectly measured by the increase of electrochemical peak current to [Fe(CN)6]4- which was used as the electrochemical label. Ascorbic acid (AA) was used as the antioxidant model in order to study its efficacy on free radical scavenging. The decrease of the electrochemical signal confirms the protective key role promoted by AA in the prevention of lipid peroxidation in vesicles. Through microscopy, it was possible to observe morphologic modification on vesicle structures after lipid peroxidation in the presence or absence of AA.
Collapse
|
11
|
Kochlik B, Grune T, Weber D. New findings of oxidative stress biomarkers in nutritional research. Curr Opin Clin Nutr Metab Care 2017; 20:349-359. [PMID: 28562491 DOI: 10.1097/mco.0000000000000388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW The aim of this article is to present a brief overview of recently published articles assessing oxidative stress markers in nutritional studies. RECENT FINDINGS Intervention and observational studies were carried out in both, healthy subjects and patients and describe the association of foodstuffs as well as isolated nutrients with biomarkers of oxidative stress. The results from human intervention studies on healthy participants and patients are controversial. Long-term interventions (>8 weeks) seem to be more effective than short-term or single-dose interventions. Results are difficult to compare because not only the methods used, also the assessed biomarkers and outcomes were very diverse. In addition, studies vary in the compounds and doses used, duration, participants and so on. Different biomarkers (damaged molecules together with antioxidants from different compartments) should be assessed to evaluate the true 'redox-status' of an individual and the impact of a nutritional intervention. SUMMARY Both observational and interventional studies performed in healthy participants and patients show possible beneficial effects of nutrients and foodstuffs by improving oxidative stress markers and antioxidant enzyme activities. Biomarkers should be standardized to allow better comparison of results of antioxidant intervention studies.
Collapse
Affiliation(s)
- Bastian Kochlik
- aDepartment of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke (DIfE) bNutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal cGerman Center for Diabetes Research (DZD), Munich dGerman Center for Cardiovascular Research (DZHK), Berlin, Germany *Bastian Kochlik and Daniela Weber contributed equally to the article
| | | | | |
Collapse
|
12
|
Wolf VG, Bonacorsi C, Raddi MSG, da Fonseca LM, Ximenes VF. Octyl gallate, a food additive with potential beneficial properties to treat Helicobacter pylori infection. Food Funct 2017. [PMID: 28640317 DOI: 10.1039/c7fo00707h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Helicobacter pylori infection is marked by intense production of reactive oxygen species (ROS) through the activation of neutrophils that are constantly attracted to the infected gastric mucosa. Here, gallic acid and its alkyl esters were evaluated as compounds able to act as antimicrobial agents and inhibitors of ROS released by H. pylori-activated neutrophils simultaneously. We found that the higher hydrophobicity caused by esterification of gallic acid led to a significant increase in its ability as a cytotoxic agent against H. pylori, a scavenger of ROS and an inhibitor of NADPH oxidase in neutrophils. Octyl gallate, a widely used food additive, showed the highest antimicrobial activity against H. pylori, with a minimum inhibitory concentration (MIC) value of 125 μg mL-1, whereas gallic acid had a MIC value higher than 1000 μg mL-1. The production of superoxide anion radicals was almost 100% abolished by the addition of 10 μM (2.82 μg mL-1) octyl gallate, whereas gallic acid inhibited around 20%. A similar tendency was also found when measuring the production of hypochlorous acid. The protective effect of the esters was cytochemically confirmed. In conclusion, this study showed that hydrophobicity is a crucial factor to obtain a significant anti-ROS and anti-H. pylori activity. Finally, it highlights octyl gallate, a food additive widely used in the food industry, as a promising molecule in the treatment of H. pylori infection.
Collapse
Affiliation(s)
- Vanessa Gonçalves Wolf
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, UNESP - São Paulo State University, 14800-903, Araraquara, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
13
|
Losada-Barreiro S, Bravo-Díaz C. Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. Eur J Med Chem 2017; 133:379-402. [PMID: 28415050 DOI: 10.1016/j.ejmech.2017.03.061] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 02/06/2023]
Abstract
The oxidation of bioorganic materials by air and, particularly, the oxidative stress involved in the cell loss and other pathologies associated with neurodegenerative diseases (NDs) are of enormous social and economic importance. NDs generally involve free radical reactions, beginning with the formation of an initiating radical by some redox, thermal or photochemical process, causing nucleic acid, protein and lipid oxidations and the production of harmful oxidative products. Physically, persons afflicted by NDs suffer progressive loss of memory and thinking ability, mood swings, personality changes, and loss of independence. Therefore, the development of antioxidant strategies to retard or minimize the oxidative degradation of bioorganic materials has been, and still is, of paramount importance. While we are aware of the importance of investigating the biological and medical aspects of the diseases, elucidation of the associated chemistry is crucial to understanding their progression, heading to intelligent chemical intervention to find more efficient therapies to prevent or delay the onset of the diseases. Accordingly, this review aims to provide the reader with a chemical base to understand the behavior and properties of the reactive oxygen species involved and of typical radical scavengers such as polyphenolic antioxidants. Some discussion on the structures of the various species, their formation, chemical reactivities and lifetimes is included. The ultimate goal is to understand how, when and where they form, how far they travel prior to react, which molecules are their targets, and how we can, eventually, control their activity to minimize their impact by means of chemical methods. Recent strategies explore chemical modifications of the hydrophobicity of potent, natural antioxidants to improve their efficiency by fine-tuning their concentrations at the reaction site.
Collapse
Affiliation(s)
- Sonia Losada-Barreiro
- Universidad de Vigo, Fac. Química, Dpto Química Física, 36200, Vigo, Spain; Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007, Portugal
| | - Carlos Bravo-Díaz
- Universidad de Vigo, Fac. Química, Dpto Química Física, 36200, Vigo, Spain.
| |
Collapse
|
14
|
Niki E. Antioxidant capacity of foods for scavenging reactive oxidants and inhibition of plasma lipid oxidation induced by multiple oxidants. Food Funct 2016; 7:2156-68. [PMID: 27090496 DOI: 10.1039/c6fo00275g] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Unregulated oxidation of biological molecules induced by multiple oxidants has been implicated in the pathogenesis of various diseases. Consequently, the effects of antioxidants contained in foods, beverages and supplements on the maintenance of health and prevention of diseases have attracted much attention of the public as well as scientists. However, recent human studies have shown inconsistent results and failed to demonstrate the beneficial effects of antioxidants. The mechanisms and dynamics of antioxidant action and assessment of antioxidant capacity have been the subject of extensive studies and arguments. In the present article, the antioxidant capacity has been reviewed focusing on two main issues: the capacity of antioxidants to scavenge multiple reactive oxidants and to inhibit plasma lipid oxidation induced by different biological oxidants. It is emphasized that the capacity of antioxidants to scavenge reactive oxidants does not always correlate linearly with the capacity to inhibit lipid oxidation and that it is necessary to specify the oxidant to assess the efficacy of antioxidants, since multiple oxidants contribute to oxidative damage in vivo and the effects of antioxidants depend on the nature of oxidants. A convenient and rapid method using a microplate reader is discussed for assessing the antioxidant capacity against plasma lipid oxidation induced by multiple oxidants including peroxyl radicals, peroxynitrite, hypochlorite, 15-lipoxygenase, and singlet oxygen.
Collapse
Affiliation(s)
- Etsuo Niki
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
15
|
The Chilean wild raspberry (Rubus geoides Sm.) increases intracellular GSH content and protects against H2O2 and methylglyoxal-induced damage in AGS cells. Food Chem 2016; 194:908-19. [DOI: 10.1016/j.foodchem.2015.08.117] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 01/17/2023]
|
16
|
Laguerre M, Bayrasy C, Panya A, Weiss J, McClements DJ, Lecomte J, Decker EA, Villeneuve P. What makes good antioxidants in lipid-based systems? The next theories beyond the polar paradox. Crit Rev Food Sci Nutr 2015; 55:183-201. [PMID: 24915410 DOI: 10.1080/10408398.2011.650335] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The polar paradox states that polar antioxidants are more active in bulk lipids than their nonpolar counterparts, whereas nonpolar antioxidants are more effective in oil-in-water emulsion than their polar homologs. However, recent results, showing that not all antioxidants behave in a manner proposed by this hypothesis in oil and emulsion, lead us to revisit the polar paradox and to put forward new concepts, hypotheses, and theories. In bulk oil, new evidences have been brought to demonstrate that the crucial site of oxidation is not the air-oil interface, as postulated by the polar paradox, but association colloids formed with traces of water and surface active molecules such as phospholipids. The role of these association colloids on lipid oxidation and its inhibition by antioxidant is also addressed as well as the complex influence of the hydrophobicity on the ability of antioxidants to protect lipids from oxidation. In oil-in water emulsion, we have covered the recently discovered non linear (or cut-off) influence of the hydrophobicity on antioxidant capacity. For the first time, different mechanisms of action are formulated in details to try to account for this nonlinear effect. As suggested by the great amount of biological studies showing a cut-off effect, this phenomenon could be widespread in dispersed lipid systems including emulsions and liposomes as well as in living systems such as cultured cells. Works on the cut-off effect paves the way for the determination of the critical chain length which corresponds to the threshold beyond which antioxidant capacity suddenly collapses. The systematic search for this new physico-chemical parameter will allow designing novel phenolipids and other amphiphilic antioxidants in a rational fashion. Finally, in both bulk oils and emulsions, we feel that it is now time for a paradigm shift from the polar paradox to the next theories.
Collapse
|
17
|
Abstract
Polyphenols and n-3 polyunsaturated fatty acids (PUFAs) are two classes of natural compounds, which have been highlighted in epidemiological studies for their health benefits. The biological activities of those two families of metabolites on oxidation, inflammation, cancer, cardiovascular and degenerative diseases have been reported in vitro and in vivo. On the other hand, chemical bonding between the two structures leading to n-3 lipophenol derivatives (or phenolipids) has been studied in numerous works over the last decade, and some examples could also be found from natural sources. Interest in lipophilization of phenolic structures is various and depends on the domain of interest: in food industry, the development of lipidic antioxidants could be performed to protect lipidic food matrix from oxidation. Whereas, on pharmaceutical purpose, increasing the lipophilicity of polar phenolic drugs could be performed to improve their pharmacological profile. Moreover, combining both therapeutic aspects of n-3 PUFAs and of polyphenols in a single lipophenolic molecule could also be envisaged. An overview of the synthesis and of the natural sources of n-3 lipophenols is presented here, in addition to their biological activities which point out in several cases the benefit of the conjugated derivatives.
Collapse
|
18
|
Barberis A, Spissu Y, Bazzu G, Fadda A, Azara E, Sanna D, Schirra M, Serra PA. Development and Characterization of an Ascorbate Oxidase-based Sensor–Biosensor System for Telemetric Detection of AA and Antioxidant Capacity in Fresh Orange Juice. Anal Chem 2014; 86:8727-34. [DOI: 10.1021/ac502066a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Antonio Barberis
- Institute
of Sciences of Food Production (ISPA), National Research Council (CNR) Italy, Traversa La Crucca, 3 Regione Baldinca, 07100 Li Punti, Sassari, Italy
| | - Ylenia Spissu
- Dept.
of Clinical and Experimental Medicine, Section of Pharmacology, University of Sassari, v.le S. Pietro, 43/B, 07100 Sassari, Italy
| | - Gianfranco Bazzu
- Dept.
of Clinical and Experimental Medicine, Section of Pharmacology, University of Sassari, v.le S. Pietro, 43/B, 07100 Sassari, Italy
| | - Angela Fadda
- Institute
of Sciences of Food Production (ISPA), National Research Council (CNR) Italy, Traversa La Crucca, 3 Regione Baldinca, 07100 Li Punti, Sassari, Italy
| | - Emanuela Azara
- Institute
of Biomolecular Chemistry (ICB), CNR Italy, Traversa La Crucca, 3 Regione Baldinca, 07100 Li Punti, Sassari, Italy
| | - Daniele Sanna
- Institute
of Biomolecular Chemistry (ICB), CNR Italy, Traversa La Crucca, 3 Regione Baldinca, 07100 Li Punti, Sassari, Italy
| | - Mario Schirra
- Institute
of Sciences of Food Production (ISPA), National Research Council (CNR) Italy, Traversa La Crucca, 3 Regione Baldinca, 07100 Li Punti, Sassari, Italy
| | - Pier Andrea Serra
- Dept.
of Clinical and Experimental Medicine, Section of Pharmacology, University of Sassari, v.le S. Pietro, 43/B, 07100 Sassari, Italy
| |
Collapse
|
19
|
Comprehensive two-dimensional liquid chromatography coupled to the ABTS radical scavenging assay: a powerful method for the analysis of phenolic antioxidants. Anal Bioanal Chem 2014; 406:4233-42. [DOI: 10.1007/s00216-014-7847-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/07/2014] [Accepted: 04/22/2014] [Indexed: 10/25/2022]
|
20
|
Losada-Barreiro S, Costa M, Bravo-Díaz C, Paiva-Martins F. Distribution and Antioxidant Efficiency of Resveratrol in Stripped Corn Oil Emulsions. Antioxidants (Basel) 2014; 3:212-28. [PMID: 26784868 PMCID: PMC4665480 DOI: 10.3390/antiox3020212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/19/2014] [Accepted: 02/28/2014] [Indexed: 02/02/2023] Open
Abstract
We investigated the effects of resveratrol (RES) on the oxidative stability of emulsions composed of stripped corn oil, acidic water and Tween 20 and determined its distribution in the intact emulsions by employing a well-established kinetic method. The distribution of RES is described by two partition constants, that between the oil-interfacial region, PO(I), and that between the aqueous and interfacial region, PW(I). The partition constants, PO(I) and PW(I), are obtained in the intact emulsions from the variations of the observed rate constant, kobs, for the reaction between the hydrophobic 4-hexadecylbenzenediazonium ion and RES with the emulsifier volume fraction, ФI. The obtained PO(I) and PW(I) values are quite high, PW(I) = 4374 and PO(I) = 930, indicating that RES is primarily located in the interfacial region of the emulsions, %RESI > 90% at ФI = 0.005, increasing up to 99% at ФI = 0.04. The oxidative stability of the corn oil emulsions was determined by measuring the formation of conjugated dienes at a given time in the absence and in the presence of RES. The addition of RES did not improve their oxidative stability in spite that more than 90% of RES is located in the interfacial region of the emulsion, because of the very low radical scavenging activity of RES.
Collapse
Affiliation(s)
- Sonia Losada-Barreiro
- Department of Physical Chemistry, Faculty of Chemistry, University of Vigo, Vigo 36200, Spain.
| | - Marlene Costa
- CIQ-UP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal.
| | - Carlos Bravo-Díaz
- Department of Physical Chemistry, Faculty of Chemistry, University of Vigo, Vigo 36200, Spain.
| | - Fátima Paiva-Martins
- CIQ-UP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal.
| |
Collapse
|
21
|
Cheli F, Battaglia D, Pinotti L, Baldi A. State of the art in feedstuff analysis: a technique-oriented perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9529-9542. [PMID: 22954135 DOI: 10.1021/jf302555b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The need for global feed supply traceability, the high-throughput testing demands of feed industry, and regulatory enforcement drive the need for feed analysis and make extremely complex the issue of the control and evaluation of feed quality, safety, and functional properties, all of which contribute to the very high number of analyses that must be performed. Feed analysis, with respect to animal nutritional requirements, health, reproduction, and production, should be multianalytically approached. In addition to standard methods of chemical analysis, new methods for evaluation of feed composition and functional properties, authenticity, and safety have been developed. Requirements for new analytical methods emphasize performance, sensitivity, reliability, speed, simplified use, low cost for high volume, and routine assays. This review provides an overview of the most used and promising methods for feed analysis. The review is intentionally focused on the following techniques: classical chemical analysis; in situ and in vitro methods; analytical techniques coupled with chemometric tools (NIR and sensors); and cell-based bioassays. This review describes both the potential and limitations of each technique and discusses the challenges that need to be overcome to obtain validated and standardized methods of analysis for a complete and global feed evaluation and characterization.
Collapse
Affiliation(s)
- Federica Cheli
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano , Via Trentacoste 2, 20134 Milan, Italy.
| | | | | | | |
Collapse
|
22
|
Lisete-Torres P, Losada-Barreiro S, Albuquerque H, Sánchez-Paz V, Paiva-Martins F, Bravo-Díaz C. Distribution of hydroxytyrosol and hydroxytyrosol acetate in olive oil emulsions and their antioxidant efficiency. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:7318-7325. [PMID: 22720906 DOI: 10.1021/jf301998s] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We employed a kinetic method to determine the distributions of the antioxidants hydroxytyrosol (HT) and hydroxytyrosol acetate (HTA) between the oil, aqueous, and interfacial regions of a model food emulsion composed of stripped olive oil, acidic water, and a blend of Tween 80 and Span 80 [hydrophilic–lipophilic balance (HLB) = 8.05] as an emulsifier. HT is oil-insoluble, but HTA is both oil- and water-soluble (partition constant P(O)(W) = 0.61). Results indicate that, at a given emulsifier volume fraction Φ(I), the fraction of HTA in the interfacial region is higher than that of HT. The percentage of both antioxidants increases with an increasing Φ(I), so that % HT > 40% at Φ(I) = 0.005 and % HT > 80% at Φ(I) = 0.04. HTA appears to be a better antioxidant than HT, as shown by an accelerated oxidative test (Schaal oven method). A correlation between their distribution in the emulsion and their efficiency was established.
Collapse
Affiliation(s)
- Patrícia Lisete-Torres
- Departamento de Química e Bioquímica, Centro de Investigação em Química (CIQ-UP), Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
23
|
Losada-Barreiro S, Sánchez-Paz V, Bravo-Díaz C. Effects of emulsifier hydrophile-lipophile balance and emulsifier concentration on the distributions of gallic acid, propyl gallate, and α-tocopherol in corn oil emulsions. J Colloid Interface Sci 2012; 389:1-9. [PMID: 22939258 DOI: 10.1016/j.jcis.2012.07.036] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 11/17/2022]
Abstract
We evaluated the effects of the hydrophile-lipophile balance (HLB) and emulsifier concentration on the distribution of the antioxidants gallic acid (GA), propyl gallate (PG), and α-tocopherol (TOC) between the aqueous, interfacial, and oil regions of food-grade emulsions composed of stripped corn oil, acidic water, and a mixture of the non-ionic surfactants Tween 20, 40, 80, and Span 20. The distribution of the antioxidants (AOs) is described by two partition constants, that between the oil-interfacial region, P(O)(I), and that between the aqueous and interfacial region, P(W)(I), of the emulsions. The partition constants were determined from the kinetic analyses of the variation in the observed rate constant, k(obs), for the reaction between the AOs and the hydrophobic 4-hexadecylbenzenediazonium ions, 16-ArN(2)(+), with the emulsifier volume fraction. The effects of emulsifier HLB on the second-order rate constants in the interfacial region k(I) were also evaluated for each antioxidant. Results show that an increase in emulsifier concentration promotes the incorporation of AOs to the interfacial region of the emulsions, so that at surfactant volume fractions of 0.04, more than 90% of GA and PG and more than 50% of TOC are located in that region. A decrease in the HLB favors the incorporation of PG and TOC to the interfacial region of the emulsions but has a negligible effect on the fraction of GA in that region. The %AOs in the interfacial region of the emulsions does not correlate with the polarity of the antioxidant, so that GA and PG are predominantly located in the aqueous-interfacial regions of the emulsion rather that in the oil droplet interior; meanwhile, TOC is mostly located in the oil-interfacial regions. Results should aid to understand how antioxidants are distributed in food-grade emulsions and their relative efficiency in inhibiting lipid oxidation.
Collapse
Affiliation(s)
- Sonia Losada-Barreiro
- Universidad de Vigo, Facultad Química, Departamento Química Física, 36200 Vigo, Spain
| | | | | |
Collapse
|
24
|
Bountagkidou O, van der Klift EJ, Tsimidou MZ, Ordoudi SA, van Beek TA. An on-line high performance liquid chromatography-crocin bleaching assay for detection of antioxidants. J Chromatogr A 2012; 1237:80-5. [DOI: 10.1016/j.chroma.2012.03.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 03/01/2012] [Accepted: 03/07/2012] [Indexed: 11/27/2022]
|
25
|
A review of the progress in enzymatic concentration and microencapsulation of omega-3 rich oil from fish and microbial sources. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.08.085] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Temperature and emulsifier concentration effects on gallic acid distribution in a model food emulsion. J Colloid Interface Sci 2012; 370:73-9. [PMID: 22284574 DOI: 10.1016/j.jcis.2011.12.057] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 11/20/2022]
Abstract
We determined the effects of emulsifier concentration and temperature on the distribution of gallic acid (GA) in a food-grade emulsion composed of 1:9 vol:vol stripped corn oil, acidic water and Tween 20. The distribution of GA can be defined by the partition constant between the aqueous and the interfacial regions, P(W)(I), which was determined by using a kinetic method and the pseudophase kinetic model. Once P(W)(I) is known, determining the distribution of GA is straightforward. Our results show that at least 40% of the total GA is located in the interfacial region of the emulsion at 0.005 volume fraction of Tween 20, and this percentage increases to ca. 85% of the total GA at 0.04 volume fraction of Tween 20. The variation of P(W)(I) with the temperature was used to estimate the thermodynamic parameters for the GA transfer from the aqueous to the interfacial region of the emulsion and the activation parameters for the reaction between 16-ArN(2)(+) and GA in the interfacial region. The free energy of transfer from the aqueous to the interfacial region, ΔG(T)(0,W→I), is negative, the enthalpy of transfer is small and negative, but the entropy of transfer is large and positive. Our results demonstrate that the partitioning of GA in acidic emulsions between aqueous and interfacial regions depends primarily on droplet concentration and is only slightly dependent on temperature.
Collapse
|
27
|
Towards a reliable technology for antioxidant capacity and oxidative damage evaluation: Electrochemical (bio)sensors. Biosens Bioelectron 2011; 30:1-12. [DOI: 10.1016/j.bios.2011.08.036] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/11/2011] [Accepted: 08/25/2011] [Indexed: 01/05/2023]
|
28
|
Cheli F, Baldi A. Nutrition-based health: cell-based bioassays for food antioxidant activity evaluation. J Food Sci 2011; 76:R197-205. [PMID: 22416720 DOI: 10.1111/j.1750-3841.2011.02411.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Food science has progressively evolved and now there are wide evidences that foods have biological activities that are beyond their classical nutritional value. In this field, the antioxidant activity of pure compounds, food, feed, and dietary supplements has been extensively studied and numerous analytical approaches and assay models have been developed, involving various systems from simple chemical assays to animal models and human studies. This article is an overview of different cell-based models that have been used for testing the antioxidant properties of food, feed, and dietary supplements. Advantages, drawbacks, and technical problems to develop and validate suitable, robust, and high-throughput cell-based bioassays for screening food antioxidant activity will be discussed.
Collapse
Affiliation(s)
- Federica Cheli
- Dept. of Veterinary Science and Technology for Food Safety, Univ. degli Studi di Milano, Via Trentacoste 2, 20134, Milano, Italy.
| | | |
Collapse
|
29
|
Laguerre M, Chen B, Lecomte J, Villeneuve P, McClements DJ, Decker EA. Antioxidant properties of chlorogenic acid and its alkyl esters in stripped corn oil in combination with phospholipids and/or water. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:10361-10366. [PMID: 21851125 DOI: 10.1021/jf2026742] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In bulk oil, it is generally thought that hydrophilic antioxidants are more active than lipophilic antioxidants. To test this hypothesis, the antioxidant activity of phenolics with increasing hydrophobicity was evaluated in stripped corn oil using both conjugated diene and hexanal measurements. Chlorogenic acid and its butyl, dodecyl, and hexadecyl esters were used as model phenolic antioxidants with various hydrophobicities. Results showed that hydrophobicity did not correlate well with antioxidant capacity. The combination of chlorogenic acid derivatives with dioleoylphosphatidylcholine (DOPC) and/or water was also studied to determine if the physical structure in the oil affected antioxidant activity. DOPC alone made hexadecyl chlorogenate a less effective antioxidant, but it did not change the antioxidant capacity of chlorogenic acid. In contrast, the combination of DOPC and water (∼400 ppm) renders chlorogenic acid a less active antioxidant, whereas it does not change the activity of hexadecyl chlorogenate. These results show, in bulk oil, that intrinsic parameters such as the hydrophobicity of lipophilized phenolics do not exert a strong influence on antioxidant capacity, but they can be highly influential if potentialized by extrinsic factors such as physical structures in the oil.
Collapse
Affiliation(s)
- Mickaël Laguerre
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | | | | | | | | | | |
Collapse
|