1
|
Wang S, Zhang W, Wu X, Zhu Z, Chen Y, Liu W, Xu J, Chen L, Zhuang C. Comprehensive analysis of T-cell regulatory factors and tumor immune microenvironment in stomach adenocarcinoma. BMC Cancer 2024; 24:570. [PMID: 38714987 PMCID: PMC11077837 DOI: 10.1186/s12885-024-12302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most prevalent malignant tumors worldwide and is associated with high morbidity and mortality rates. However, the specific biomarkers used to predict the postoperative prognosis of patients with gastric cancer remain unknown. Recent research has shown that the tumor microenvironment (TME) has an increasingly positive effect on anti-tumor activity. This study aims to build signatures to study the effect of certain genes on gastric cancer. METHODS Expression profiles of 37 T cell-related genes and their TME characteristics were comprehensively analyzed. A risk signature was constructed and validated based on the screened T cell-related genes, and the roles of hub genes in GC were experimentally validated. RESULTS A novel T cell-related gene signature was constructed based on CD5, ABCA8, SERPINE2, ESM1, SERPINA5, and NMU. The high-risk group indicated lower overall survival (OS), poorer immune efficacy, and higher drug resistance, with SERPINE2 promoting GC cell proliferation, according to experiments. SERPINE2 and CXCL12 were significantly correlated, indicating poor OS via the Youjiang cohort. CONCLUSIONS This study identified T cell-related genes in patients with stomach adenocarcinoma (STAD) for prognosis estimation and proposed potential immunotherapeutic targets for STAD.
Collapse
Affiliation(s)
- Shuchang Wang
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Weifeng Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xinrui Wu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhu Zhu
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, China
| | - Yuanbiao Chen
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Wangrui Liu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Junnfei Xu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Li Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Department of Nursing, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Chun Zhuang
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
2
|
Role of IL-6/STAT3 Axis in Resistance to Cisplatin in Gastric Cancers. Biomedicines 2023; 11:biomedicines11030694. [PMID: 36979673 PMCID: PMC10044743 DOI: 10.3390/biomedicines11030694] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Gastric cancer, the second most common cause of death worldwide, is characterized by poor prognosis and low responsiveness to chemotherapy. Indeed, multidrug resistance, based mainly on cellular and molecular factors, remains one of the most limiting factors of the current approach to gastric cancer (GC) therapy. We employed a comprehensive gene expression analysis through data mining of publicly available databases to assess the role of the signal transducer and activator of transcription 3 (STAT3) in gastric cancer drug efficiency. It has been proposed that gastric cancer cells are less sensitive to these drugs because they develop resistance to these agents through activating alternative signalling pathways responsible for overcoming pharmacological inhibition. Our study evaluated the hypothesis that activating STAT3 signalling in response to cisplatin reduces the reaction to the drug. Consistent with this hypothesis, inhibition of interleukin 6 (IL-6)/STAT3 in combination therapy with cisplatin prevented both STAT3 activation and more lethality than induction by a single agent. The data suggest that the IL-6/STAT3 axis block associated with cisplatin treatment may represent a strategy to overcome resistance.
Collapse
|
3
|
Shah MA, Shitara K, Lordick F, Bang YJ, Tebbutt NC, Metges JP, Muro K, Lee KW, Shen L, Tjulandin S, Hays JL, Starling N, Xu RH, Sturtz K, Fontaine M, Oh C, Brooks EM, Xu B, Li W, Li CJ, Borodyansky L, Van Cutsem E. Randomized, Double-Blind, Placebo-Controlled Phase III Study of Paclitaxel ± Napabucasin in Pretreated Advanced Gastric or Gastroesophageal Junction Adenocarcinoma. Clin Cancer Res 2022; 28:OF1-OF9. [PMID: 35833783 PMCID: PMC9433958 DOI: 10.1158/1078-0432.ccr-21-4021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/22/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE To compare napabucasin (generator of reactive oxygen species) plus paclitaxel with paclitaxel only in patients with second-line advanced gastric or gastroesophageal junction (GEJ) adenocarcinoma. EXPERIMENTAL DESIGN In the double-blind, phase III BRIGHTER study (NCT02178956), patients were randomized (1:1) to napabucasin (480 mg orally twice daily) plus paclitaxel (80 mg/m2 i.v. weekly for 3 of 4 weeks) or placebo plus paclitaxel. The primary endpoint was overall survival (OS). Secondary endpoints included progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR), and safety. RESULTS Overall, 714 patients were randomized (napabucasin plus paclitaxel, n = 357; placebo plus paclitaxel, n = 357). 72.1% were male, 74.6% had gastric adenocarcinoma, and 46.2% had peritoneal metastases. The study was unblinded following an interim analysis at 380 deaths. The final efficacy analysis was performed on 565 deaths (median follow-up, 6.8 months). No significant differences were observed between napabucasin plus paclitaxel and placebo plus paclitaxel for OS (6.93 vs. 7.36 months), PFS (3.55 vs. 3.68 months), ORR (16% vs. 18%), or DCR (55% vs. 58%). Grade ≥3 adverse events occurred in 69.5% and 59.7% of patients administered napabucasin plus paclitaxel and placebo plus paclitaxel, respectively, with grade ≥3 diarrhea reported in 16.2% and 1.4%, respectively. CONCLUSIONS Adding napabucasin to paclitaxel did not improve survival in patients with pretreated advanced gastric or GEJ adenocarcinoma. Consistent with previous reports, the safety profile of napabucasin was driven by manageable gastrointestinal events; grade ≥3 diarrhea occurred at a higher frequency with napabucasin plus paclitaxel versus placebo plus paclitaxel.
Collapse
Affiliation(s)
- Manish A. Shah
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, New York
| | - Kohei Shitara
- Department of Immunology, Nagoya University Graduate School of Medicine and Department of Gastrointestinal Oncology, National Cancer Center Hospital East and the Department of Immunology, Nagoya University Graduate School of Medicine, Tokyo, Japan
| | - Florian Lordick
- Department of Oncology, University Cancer Center Leipzig, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Yung-Jue Bang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Niall C. Tebbutt
- Department of Medical Oncology, Austin Health, Heidelberg, Victoria, Australia
| | - Jean-Phillippe Metges
- Department of Medical Oncology, CHRU de Brest-Hopital Morvan, Arpego Network Brest, Bretagne, France
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Sergei Tjulandin
- Department of Clinical Pharmacology and Chemotherapy, N.N. Blokhin Russian Cancer Research Centre, Moscow, Russia
| | - John L. Hays
- Department of Internal Medicine, The Ohio State University, James Cancer Hospital, Columbus, Ohio
| | - Naureen Starling
- Gastrointestinal Unit, The Royal Marsden, London & Surrey, United Kingdom
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Keren Sturtz
- Western States Cancer Research NCORP, Denver, Colorado
| | | | - Cindy Oh
- Sumitomo Pharma Oncology, Inc., Cambridge, Massachusetts
| | | | - Bo Xu
- Sumitomo Pharma Oncology, Inc., Cambridge, Massachusetts
| | - Wei Li
- Sumitomo Pharma Oncology, Inc., Cambridge, Massachusetts
| | - Chiang J. Li
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- 1Globe Health Institute, Boston, Massachusetts
| | | | - Eric Van Cutsem
- Department of Gastroenterology/Digestive Oncology, University Hospitals Gasthuisberg Leuven and KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
STAT3 Activation in Psoriasis and Cancers. Diagnostics (Basel) 2021; 11:diagnostics11101903. [PMID: 34679602 PMCID: PMC8534757 DOI: 10.3390/diagnostics11101903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022] Open
Abstract
Activation of signal transducer and activator of transcription (STAT)3 has been reported in many cancers. It is also well known that STAT3 is activated in skin lesions of psoriasis, a chronic skin disease. In this study, to ascertain whether patients with psoriasis have a predisposition to STAT3 activation, we examined phosphorylated STAT3 in cancer cells of psoriasis patients via immunohistochemistry. We selected patients with psoriasis who visited the Department of Dermatology, Jichi Medical University Hospital, from January 2000 to May 2015, and had a history of cancer. We performed immunostaining for phosphorylated STAT3 in tumor cells of five, four, and six cases of gastric, lung, and head and neck cancer, respectively. The results showed that there was no significant difference in STAT3 activation in any of the three cancer types between the psoriasis and control groups. Although this study presents limitations in its sample size and inconsistency in the histology and differentiation of the cancers, results suggest that psoriasis patients do not have a predisposition to STAT3 activation. Instead, STAT3 activation is intricately regulated by each disorder or cellular microenvironment in both cancer and psoriasis.
Collapse
|
5
|
Kim SJ, Kang HG, Kim K, Kim H, Zetterberg F, Park YS, Cho HS, Hewitt SM, Chung JY, Nilsson UJ, Leffler H, Chun KH. Crosstalk between WNT and STAT3 is mediated by galectin-3 in tumor progression. Gastric Cancer 2021; 24:1050-1062. [PMID: 33834359 PMCID: PMC9907361 DOI: 10.1007/s10120-021-01186-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Aberrant activation of the WNT/β-catenin and STAT3 signaling pathways plays a critical role in cancer progression. However, direct targeting of these pathways as an anti-cancer therapeutic approach needs to be reconsidered due to its serious side effects. Here, we demonstrate that overexpression of WNT induces STAT3 activation in a galectin-3-dependent manner. METHODS We investigated how galectin-3 mediates the crosstalk between WNT/β-catenin and STAT3 signaling and whether inhibition of galectin-3 can reduce gastric cancer. The molecular mechanisms were analyzed by biochemical assays using cultured gastric cancer cells, patient tissues, and genetically engineered mice. Moreover, we confirm of therapeutic effects of GB1107, a cell-penetrating galectin-3 specific inhibitor, using orthotopic gastric cancer-bearing mice RESULTS: Increased levels of galectin-3 and STAT3 phosphorylation were detected in the stomach tissues of WNT1-overexpressing mouse models. Also, high expression levels and co-localization of β-catenin, pSTAT3, and galectin-3 in patients with advanced gastric cancer were correlated with a poorer prognosis. Galectin-3 depletion significantly decreased STAT3 Tyr705 phosphorylation, which regulates its nuclear localization and transcriptional activation. A peptide of galectin-3 (Y45-Q48) directly bound to the STAT3 SH2 domain and enhanced its phosphorylation. GB1107, a specific membrane-penetrating inhibitor of galectin-3, significantly reduced the activation of both STAT3 and β-catenin and inhibited tumor growth in orthotopic gastric cancer-bearing mice. CONCLUSIONS We propose that galectin-3 mediates the crosstalk between the WNT and STAT3 signaling pathways. Therefore GB1107, a galectin-3-specific inhibitor, maybe a potent agent with anti-gastric cancer activity. Further studies are needed for its clinical application in gastric cancer therapy.
Collapse
Affiliation(s)
- Seok-Jun Kim
- Department of Biomedical Science, BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, College of Natural Science, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Hyeok-Gu Kang
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyungeun Kim
- Experimental Pathology Laboratory, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA,Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Hoyoung Kim
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Fredrik Zetterberg
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8 A, 413 46 Gothenburg, Sweden
| | - Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hyun-Soo Cho
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Stephen M. Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ulf J. Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, POB 124, 22100 Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG-Microbiology, Immunology, Glycobiology, Lund University, Lund, Sweden
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
STAT3 Pathway in Gastric Cancer: Signaling, Therapeutic Targeting and Future Prospects. BIOLOGY 2020; 9:biology9060126. [PMID: 32545648 PMCID: PMC7345582 DOI: 10.3390/biology9060126] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Molecular signaling pathways play a significant role in the regulation of biological mechanisms, and their abnormal expression can provide the conditions for cancer development. The signal transducer and activator of transcription 3 (STAT3) is a key member of the STAT proteins and its oncogene role in cancer has been shown. STAT3 is able to promote the proliferation and invasion of cancer cells and induces chemoresistance. Different downstream targets of STAT3 have been identified in cancer and it has also been shown that microRNA (miR), long non-coding RNA (lncRNA) and other molecular pathways are able to function as upstream mediators of STAT3 in cancer. In the present review, we focus on the role and regulation of STAT3 in gastric cancer (GC). miRs and lncRNAs are considered as potential upstream mediators of STAT3 and they are able to affect STAT3 expression in exerting their oncogene or onco-suppressor role in GC cells. Anti-tumor compounds suppress the STAT3 signaling pathway to restrict the proliferation and malignant behavior of GC cells. Other molecular pathways, such as sirtuin, stathmin and so on, can act as upstream mediators of STAT3 in GC. Notably, the components of the tumor microenvironment that are capable of targeting STAT3 in GC, such as fibroblasts and macrophages, are discussed in this review. Finally, we demonstrate that STAT3 can target oncogene factors to enhance the proliferation and metastasis of GC cells.
Collapse
|
7
|
Nanoparticle mediated codelivery of nifuratel and doxorubicin for synergistic anticancer therapy through STAT3 inhibition. Colloids Surf B Biointerfaces 2020; 193:111109. [PMID: 32416521 DOI: 10.1016/j.colsurfb.2020.111109] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/09/2020] [Accepted: 05/03/2020] [Indexed: 12/31/2022]
Abstract
Chemotherapy is one of the most potent strategies to treat gastric cancer in clinic. However, the resistance of cancer cells to chemotherapeutics is a remarkable impediment to the treatment. Moreover, signal transducer and activator of transcription 3 (STAT3) is a critical transcriptional factor that over-activated in gastric cancer, and highly involved in the induction of chemoresistance. In this study, we developed poly (lactic-co-glycolic acid) (PLGA) nanoparticles to achieve the simultaneous codelivery of doxorubicin (DOX) and nifuratel (NIF, a novel STAT3 inhibitor) for enhanced cancer therapy. The synergistic effect of DOX and NIF against cancer cells was evaluated in gastric cancer cells. PLGA nanoparticles with an optimal ratio of DOX and NIF (DNNPs) were prepared and characterized. The cellular uptake and anticancer effects of DNNPs were investigated, and the underlying mechanisms were further explored. DNNPs presented as a spherical shape, provided sustained release profiles, and exhibited significantly increased uptake and cytotoxicity in gastric cancer cells. Mechanism studies showed that DNNPs significantly induced mitochondrial-dependent apoptosis and inhibited STAT3 phosphorylation, explaining the enhanced anticancer effect. These results suggested that DNNPs represented a promising strategy against gastric cancer by inhibiting the STAT3 pathway and amplifying apoptosis.
Collapse
|
8
|
Huang J, Chen YX, Zhang B. IGF2-AS affects the prognosis and metastasis of gastric adenocarcinoma via acting as a ceRNA of miR-503 to regulate SHOX2. Gastric Cancer 2020; 23:23-38. [PMID: 31183590 DOI: 10.1007/s10120-019-00976-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
Disorder of long non-coding RNAs (LncRNAs) is found in various types of cancers and demonstrated to be associated with tumor occurrence and development. Our study found that lncRNA insulin growth factor 2 antisense (IGF2-AS) is up-regulated in gastric adenocarcinoma (GAC) tissues and correlated with poor prognosis in patients with GAC. Cell counting kit-8 (CCK8), colony formation, wound healing and transwell assays revealed that knockdown of IGF2-AS in BGC823 and SGC7901 cells significantly suppressed cell proliferation, migration and invasion. While, overexpression of IGF2-AS in AGS and MGC803 cells exhibited the opposite effects. RNA-FISH and subcellular fractionation assay found that most IGF2-AS was distributed in the cytoplasm, suggesting that IGF2-AS functioned as a potential ceRNA. RNA binding protein immunoprecipitation (RIP) assays further confirmed this assumption. By informatics prediction and luciferase reporter assay, we found that IGF2-AS functioned as an efficient miR-503 sponge and the level of miR-503 showed an inverse correlation with IGF2-AS. Short stature homeobox 2 (SHOX2) is predicted and verified as a target of miR-503. Moreover, IGF2-AS expression exhibited a negative correlation with miR-503 and a positive correlation with IGF2-AS. Subsequent rescue assay revealed that down-regulation of miR-503 or restoration of SHOX2 canceled IGF2-AS depletion-induced depression in proliferation and motility of BGC823 and SGC7901 cells. Meanwhile, up-regulation of miR-503 or down-regulation of SHOX2 decreased IGF2-AS overexpression induced promotion in proliferation and motility of AGS and MGC803 cells. In vivo tumorigenicity assay showed that knockdown of IGF2-AS significantly reduced tumor volume. Taken together, our results demonstrated that IGF2-AS takes important regulatory parts in GAC development by functioning as a ceRNA to regulate SHOX2 via sponging miR-503.
Collapse
Affiliation(s)
- Ju Huang
- Queen Mary School of Nanchang University, Nanchang, 330031, Jiangxi, China
| | - You-Xiang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bo Zhang
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China.
| |
Collapse
|
9
|
Zhou C, Zhong X, Song Y, Shi J, Wu Z, Guo Z, Sun J, Wang Z. Prognostic Biomarkers for Gastric Cancer: An Umbrella Review of the Evidence. Front Oncol 2019; 9:1321. [PMID: 31850212 PMCID: PMC6895018 DOI: 10.3389/fonc.2019.01321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
Introduction: Biomarkers are biological molecules entirely or partially participating in cancerous processes that function as measurable indicators of abnormal changes in the human body microenvironment. Aiming to provide an overview of associations between prognostic biomarkers and gastric cancer (GC), we performed this umbrella review analyzing currently available meta-analyses and grading the evidence depending on the credibility of their associations. Methods: A systematic literature search was conducted by two independent investigators of the PubMed, Embase, Web of Science, and Cochrane Databases to identify meta-analyses investigating associations between prognostic biomarkers and GC. The strength of evidence for prognostic biomarkers for GC were categorized into four grades: strong, highly suggestive, suggestive, and weak. Results: Among 120 associations between prognostic biomarkers and GC survival outcomes, only one association, namely the association between platelet count and GC OS, was supported by strong evidence. Associations between FITC, CEA, NLR, foxp3+ Treg lymphocytes (both 1- and 3-year OS), CA 19-9, or VEGF and GC OS were supported by highly suggestive evidence. Four associations were considered suggestive and the remaining 108 associations were supported by weak or not suggestive evidence. Discussion: The association between platelet count and GC OS was supported by strong evidence. Associations between FITC, CEA, NLR, foxp3+ Treg lymphocytes (both 1- and 3-year OS), CA 19-9, or VEGF and GC OS were supported by highly suggestive evidence, however, the results should be interpreted cautiously due to inadequate methodological quality as deemed by AMSTAR 2.0.
Collapse
Affiliation(s)
- Cen Zhou
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xi Zhong
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinxin Shi
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhexu Guo
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jie Sun
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Li X, Na H, Xu L, Zhang X, Feng Z, Zhou X, Cui J, Zhang J, Lin F, Yang S, Yue F, Mousa H, Zuo Y. DC-SIGN mediates gastric cancer progression by regulating the JAK2/STAT3 signaling pathway and affecting LncRNA RP11-181G12.2 expression. Biomed Pharmacother 2019; 121:109644. [PMID: 31766099 DOI: 10.1016/j.biopha.2019.109644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The molecular mechanisms of gastric cancer (GC) development are very complicated. Recent studies revealed that DC-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein (DC-SIGNR) is involved in colon cancer and GC biological processes. However, the exact roles of DC-SIGN in GC remain unrevealed. METHODS DC-SIGN overexpression and knockdown experiments were performed by using DC-SIGN shRNA or DC-SIGN plasmid to investigate the biological roles of DC-SIGN in proliferation, cell cycle progression, migration and invasion of GC cells in vitro. Furthermore, the lncRNA profiles of SGC-7901 cells with control shRNA and DC-SIGN shRNA were generated by using microarray analysis. Mechanistically, the relationship between DC-SIGN, RP11-181G12.2 and the JAK2/STAT3 signaling pathway was then investigated using qRT-PCR and western blot assays. Additionally, we analyzed DC-SIGN and RP11-181G12.2 expression levels in GC specimens based on the Cancer Genome Atlas database. RESULTS In this study, the results showed that DC-SIGN was highly expressed in GC cells and significantly correlated with advanced clinical stage and lymphatic metastasis. Downregulation of DC-SIGN significantly inhibited the proliferation, cell cycle progression, migration and invasion of GC cells in vitro. The reverse results could partly be seen with the upregulation of DC-SIGN. Mechanistically, knockdown of DC-SIGN inactivated the JAK2/STAT3 signaling pathway, and overexpression of DC-SIGN activated the JAK2/STAT3 signaling pathway. In addition, through LncPath microarray analysis, we identified a lncRNA, RP11-181G12.2, that was significantly upregulated after knockdown of DC-SIGN; this was also confirmed by qRT-PCR. Furthermore, RP11-181G12.2 knockdown enhanced DC-SIGN expression in GC cells, further activating the JAK2/STAT3 signaling pathway. In contrast, DC-SIGN overexpression suppressed RP11-181G12.2 expression. CONCLUSIONS Our study suggests that DC-SIGN might be involved in the progression of GC by regulating the JAK2/STAT3 signaling pathway and affecting lncRNA RP11-181G12.2 expression.
Collapse
Affiliation(s)
- Xiaomeng Li
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Heya Na
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China; Department of Laboratory Medicine, The People's Hospital of Liaoning Province, Shenyang, 110016, China.
| | - Lijie Xu
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Xinsheng Zhang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116044, China.
| | - Zhen Feng
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116044, China.
| | - Xu Zhou
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Jingyi Cui
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Jingbo Zhang
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Fang Lin
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Shiqing Yang
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Fangxia Yue
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Haithm Mousa
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Yunfei Zuo
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
11
|
Interplay between STAT3, Cell Adhesion Molecules and Angiogenesis-Related Parameters in Gastric Carcinoma. Does STAT3 Really Have a Prognostic Value? ACTA ACUST UNITED AC 2019; 55:medicina55060300. [PMID: 31234597 PMCID: PMC6630606 DOI: 10.3390/medicina55060300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/24/2022]
Abstract
Background and objectives: Gastric cancer (GC) is one of the deadliest malignancies, with the underlying pathophysiological mechanisms still not completely understood. In this study, we aimed to investigate the signal transducer and activator of transcription 3 (STAT3) moleculeconnection with the pathological features of GCs, and the expression of cell adhesive molecules (E-cadherin and β-catenin) and angiogenesis-related factors (vascular endothelial growth factor (VEGF), HIF1α, and CD31)). Materials and Methods: This study comprised 136 cases of GCs with data related to the patients’ demographic characteristics (age, gender) and pathological features (tumor location, gross type, Laurens’ type of GC, histological differentiation, invasion depth, lymphovascular invasion and the presence of metastases) which were correlated with STAT3 expression. Additionally, STAT3 expression and the expression of adhesive molecules and angiogenesis-related factors were studied by immunohistochemical methods. Results: The expression of STAT3 was found to be significantly associated with the occurrence of poorly differentiated GCs in the lower portion of the stomach and with the presence of distant metastases. Interestingly, none of the investigated parameters related to cell adhesion or to angiogenesis were found to be related to the expression of STAT3. Conclusions: The lack of significant differences between the studied STAT3 expression and some of the molecules associated with different cancer features might be due to the characteristics of the studied population sample associated with the origin, heterogeneity, and cancer pathophysiological background. Nonetheless, the results of our study suggest that STAT3 could be a useful marker for the presence of distant GC metastases, which further indicates that STAT3 action might involve some other signaling molecules/pathways that warrant further elucidation.
Collapse
|
12
|
Li S, Cong X, Gao H, Lan X, Li Z, Wang W, Song S, Wang Y, Li C, Zhang H, Zhao Y, Xue Y. Tumor-associated neutrophils induce EMT by IL-17a to promote migration and invasion in gastric cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:6. [PMID: 30616627 PMCID: PMC6323742 DOI: 10.1186/s13046-018-1003-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/13/2018] [Indexed: 12/24/2022]
Abstract
PURPOSE Epithelial to mesenchymal transition (EMT) can contribute to gastric cancer (GC) progression and recurrence following therapy. Tumor-associated neutrophils (TANs) are associated with poor outcomes in a variety of cancers. However, it is not clear whether TANs interact with the EMT process during GC development. METHODS Immunohistochemistry was performed to examine the distribution and levels of CD66 + neutrophils in samples from 327 patients with GC. CD66b + TANs were isolated either directly from GC cell suspensions or were conditioned from healthy donor peripheral blood polymorphonuclear neutrophils (PMNs) stimulated with tumor tissue culture supernatants (TTCS) and placed into co-culture with MKN45 or MKN74 cells, after which migration, invasion and EMT were measured. Interleukin-17a (IL-17a) was blocked with a polyclonal antibody, and the STAT3 pathway was blocked with the specific inhibitor AG490. RESULTS Neutrophils were widely distributed in gastric tissues of patients with GC and were enriched predominantly at the invasion margin. Neutrophil levels at the invasion margin were an independent predictor of poor disease-free survival (DFS) and disease-specific survival (DSS). IL-17a + neutrophils constituted a large portion of IL-17a-producing cells in GC, and IL-17a was produced at the highest levels in co-culture compared with that in TANs not undergoing co-culture. TANs enhanced the migration, invasion and EMT of GC cells through the secretion of IL-17a, which activated the Janus kinase 2/signal transducers and activators of transcription (JAK2/STAT3) pathway in GC cells, while deprivation of IL-17a using a neutralizing antibody or inhibition of the JAK2/STAT3 pathway with AG490 markedly reversed these TAN-induced phenotypes in GC cells induced by TANs. CONCLUSIONS Neutrophils correlate with tumor stage and predict poor prognosis in GC. TANs produce IL-17a, which promotes EMT of GC cells through JAK2/STAT3 signalling. Blockade of IL-17a signalling with a neutralizing antibody inhibits TAN-stimulated activity in GC cells. Therefore, IL-17a-targeted therapy might be used to treat patients with GC.
Collapse
Affiliation(s)
- Sen Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, 127 Dong Ming Road, Zhengzhou, 450008, China.,Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Xiliang Cong
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Hongyu Gao
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Xiuwen Lan
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Zhiguo Li
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Wenpeng Wang
- Department of Gynecologic Oncology, Cancer Hospital Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shubin Song
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Yimin Wang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Chunfeng Li
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Hongfeng Zhang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Yuzhou Zhao
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, 127 Dong Ming Road, Zhengzhou, 450008, China.
| | - Yingwei Xue
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China.
| |
Collapse
|
13
|
Koh JS, Joo MK, Park JJ, Yoo HS, Choi BI, Lee BJ, Chun HJ, Lee SW. Inhibition of STAT3 in gastric cancer: role of pantoprazole as SHP-1 inducer. Cell Biosci 2018; 8:50. [PMID: 30202514 PMCID: PMC6127946 DOI: 10.1186/s13578-018-0248-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023] Open
Abstract
Background We investigated the inhibitory effect of pantoprazole on signal transducer and activator of transcription 3 (STAT3) activity and invasiveness of gastric adenocarcinoma cells, and the role of SH2-containing protein tyrosine phosphatase 1 (SHP-1) in mediating role. Methods We used AGS and MKN-28 cells because of reduced SHP-1 and preserved p-STAT3 expression. Western blot, wound closure assay, Matrigel invasion assay and 3-D culture invasion assay were performed. Pharmacologic inhibitor of SHP-1 and siRNA were used for validation of the role of SHP-1. Results We observed that pantoprazole at 40, 80, and 160 μg/ml upregulated SHP-1 and downregulated p-STAT3 expression in a dose-dependent manner in AGS and MKN-28 cells. Furthermore, pantoprazole significantly downregulated mesenchymal markers (Snail1 and vimentin), upregulated epithelial marker (E-cadherin), and inhibited migration and invasion of AGS and MKN-28 cells. To validate the role of SHP-1 in inhibition of STAT3 activity by pantoprazole in gastric cancer cells, we performed pharmacologic inhibition (pervanadate) or knockdown of SHP-1 before pantoprazole treatment, which significantly attenuated the suppression of p-STAT3 and anti-migration and invasion effect by pantoprazole in AGS cells. In xenograft tumor model, tumor volume was significantly reduced by intraperitoneal injection of pantoprazole, with upregulation of SHP-1 and downregulation of p-STAT3, which were attenuated by concomitant injection of pervanadate. Conclusion Our data suggest that the inhibitory effect of pantoprazole on cellular migration and invasion might be through inducing SHP-1 in gastric cancer cells.
Collapse
Affiliation(s)
- Jin Sung Koh
- 1Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703 Republic of Korea
| | - Moon Kyung Joo
- 1Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703 Republic of Korea
| | - Jong-Jae Park
- 1Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703 Republic of Korea
| | - Hyo Soon Yoo
- 1Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703 Republic of Korea
| | - Byung Il Choi
- 1Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703 Republic of Korea
| | - Beom Jae Lee
- 1Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703 Republic of Korea
| | - Hoon Jai Chun
- 2Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Anam Hospital, 73, Inchon-ro, Seongbuk-gu, Seoul, 136-705 Republic of Korea
| | - Sang Woo Lee
- 3Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu,, Ansan-si, Gyeonggi-do 425-707 Republic of Korea
| |
Collapse
|
14
|
Wei H, Li Y, Ning Q, Suo ZM. Regulation of miR-155 affects the invasion and migration of gastric carcinoma cells by modulating the STAT3 signaling pathway. Oncol Lett 2018; 16:4137-4142. [PMID: 30250530 PMCID: PMC6144110 DOI: 10.3892/ol.2018.9152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 11/02/2017] [Indexed: 12/14/2022] Open
Abstract
Studies investigating the effects of microRNA (miR)-155 on the behavior of tumor cells have concentrated primarily on proliferation and apoptosis. The aim of the present study was to investigate the effect of miR-155 inhibitor on the metastatic and invasive ability of gastric carcinoma cells and whether this effect is mediated via the signal transduction and activators of transcription 3 (STAT3) signaling pathway. The miR-155 inhibitor and miR-155 negative control (NC) were transfected into the AGs and MKN-45 cell lines. The migratory and invasive abilities of the cells were analyzed. The level of phosphorylated (p-)STAT3 and the expression levels of matrix metalloproteinases (MMPs), vascular endothelial growth factor (VEGF) and suppressor of cytokine signaling 1 (SOCS1) were also detected. For the AGS cell line, the cell counts (mean ± standard deviation) for the Transwell migration assay were 98.99±9.13 in the miR-155 NC group and 45.32±4.32 in the miR-155 inhibitor group (P<0.01). For the MKN-45 cell line, the cell counts for the migration assay were 129.99±10.12 and 50.36±5.2 in the miR-155 NC and miR-155 inhibitor groups, respectively (P<0.01). The cell counts of the AGS cell line for the invasion assay were 70.25±7.94 in the miR-155 NC group and 40.68±4.73 in the miR-155 inhibitor group (P<0.05). For the MKN-45 cell line, the cell counts for the invasion assay were 84.63±8.12 and 40.35±4.29 in the miR-155 NC and miR-155 inhibitor groups, respectively (P<0.05). Transfection with the miR-155 inhibitor was able to significantly decrease the level of p-STAT3 in the AGS and MKN-45 cell lines compared with the negative control group (all P<0.05). The levels of MMP2 and MMP9 expression were decreased following transfection with miR-155 in AGS and MKN-45 cells (both P<0.05). Notably, transfection with the miR-155 inhibitor was able to decrease the level of VEGF expression, whilst increasing the SOCS1 expression level compared with the negative control group (both P<0.05). Additionally, the downregulation of miR-155 expression in gastric carcinoma cell lines was able to significantly decrease the expression of VEGF, MMP2 and MMP9, thereby inhibiting the invasion and metastasis of gastric carcinoma cells.
Collapse
Affiliation(s)
- Hua Wei
- Department of Endoscopy, Huaihe Hospital Affiliated to Henan University, Kaifeng, Henan 475000, P.R. China
| | - Yan Li
- Department of Gastroenterology, Huaihe Hospital Affiliated to Henan University, Kaifeng, Henan 475000, P.R. China
| | - Qiang Ning
- Department of Endoscopy, Third Hospital of Wafangdian, Dalian, Liaoning 116300, P.R. China
| | - Zhi-Min Suo
- Department of Gastroenterology, Huaihe Hospital Affiliated to Henan University, Kaifeng, Henan 475000, P.R. China
| |
Collapse
|
15
|
Kim SH, Yoo HS, Joo MK, Kim T, Park JJ, Lee BJ, Chun HJ, Lee SW, Bak YT. Arsenic trioxide attenuates STAT-3 activity and epithelial-mesenchymal transition through induction of SHP-1 in gastric cancer cells. BMC Cancer 2018; 18:150. [PMID: 29409467 PMCID: PMC5801683 DOI: 10.1186/s12885-018-4071-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 01/29/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND We investigated the effect of arsenic trioxide (ATO) for inhibition of signal transducer and activator of transcription 3 (STAT3) and epithelial-mesenchymal transition (EMT) in gastric cancer cells, and the role of SH2 domain-containing phosphatase-1 (SHP-1) during this process. METHODS We used AGS cells, which showed minimal SHP-1 expression and constitutive STAT3 expression. After treatment of ATO, cellular migration and invasion were assessed by using wound closure assay, Matrigel invasion assay and 3-D culture invasion assay. To validate the role of SHP-1, pervanadate, a pharmacologic phosphatase inhibitor, and SHP-1 siRNA were used. Xenograft tumors were produced, and ATO or pervanadate were administered via intraperitoneal (IP) route. RESULTS Treatment of ATO 5 and 10 μM significantly decreased cellular migration and invasion in a dose-dependent manner. Western blot showed that ATO upregulated SHP-1 expression and downregulated STAT3 expression, and immunofluorescence showed upregulation with E-cadherin (epithelial marker) and downregulation of Snail1 (mesenchymal marker) expression by ATO treatment. Anti-migration and invasion effect and modulation of SHP-1/STAT3 axis by ATO were attenuated by pervanadate or SHP-1 siRNA. IP injection of ATO significantly decreased the xenograft tumor volume and upregulated SHP-1 expression, which were attenuated by co-IP injection of pervanadate. CONCLUSION Our data suggest that ATO inhibits STAT3 activity and EMT process by upregulation of SHP-1 in gastric cancer cells.
Collapse
Affiliation(s)
- Sung Ho Kim
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea
| | - Hyo Soon Yoo
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea
| | - Moon Kyung Joo
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea.
| | - Taehyun Kim
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea
| | - Jong-Jae Park
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea
| | - Beom Jae Lee
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea
| | - Hoon Jai Chun
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Anam Hospital, 73, Inchon-ro, Seongbuk-gu, Seoul, 136-705, Republic of Korea
| | - Sang Woo Lee
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 425-707, Republic of Korea
| | - Young-Tae Bak
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea
| |
Collapse
|
16
|
Garrido-Tapia M, Hernández CJ, Ascui G, Kramm K, Morales M, Ga Rate V, Zúñiga R, Bustamante M, Aguillón JC, Catala N D, Ribeiro CH, Molina MAC. STAT3 inhibition by STA21 increases cell surface expression of MICB and the release of soluble MICB by gastric adenocarcinoma cells. Immunobiology 2017; 222:1043-1051. [PMID: 28578917 DOI: 10.1016/j.imbio.2017.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/27/2017] [Accepted: 05/14/2017] [Indexed: 02/04/2023]
Abstract
NKG2D is an activating receptor expressed on NK cells that binds to a variety of ligands, including MICA and MICB. These cell surface glycoproteins are overexpressed under cellular transformation, thus playing an important role in cell-mediated immune response to tumors. STAT3 is a transcription factor that is constitutively active in cancer. It negatively regulates MICA expression on target cells, while its inhibition enhances NK cell cytotoxicity against tumors. In this work, we aimed to describe the effect of STAT3 signaling inhibition by STA21 on the regulation of MICB expression in gastric adenocarcinoma cells and its effect on the cytotoxic function of NK cells. Treatment of gastric adenocarcinoma cells with STA21 induced an increase in MICB expression and soluble MICB secretion, as well as a variable pattern on effector cell degranulation. Soluble MICB secretion by gastric adenocarcinoma cells was not affected by metalloprotease inhibition. We also observed that primary gastric adenocarcinoma tissue released soluble MICB into the extracellular milieu. Recombinant MICB induced a significant decrease in the levels of NKG2D receptor on effector NK and CD8+ T cells, which correlated with an impaired cytotoxic function. Altogether, our data provide evidence that STAT3 signaling pathway regulates MICB expression on gastric adenocarcinoma cells and that recombinant soluble MICB compromises the cytolytic activity of NK cells.
Collapse
Affiliation(s)
- Macarena Garrido-Tapia
- Laboratorio de Anticuerpos Recombinantes e Inmunoterapia anti tumoral. Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Carolina J Hernández
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Chile.
| | - Gabriel Ascui
- Laboratorio de Inmunoedición del Cáncer, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Karina Kramm
- Laboratorio de Anticuerpos Recombinantes e Inmunoterapia anti tumoral. Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Marcela Morales
- Laboratorio de Anticuerpos Recombinantes e Inmunoterapia anti tumoral. Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Valentina Ga Rate
- Laboratorio de Anticuerpos Recombinantes e Inmunoterapia anti tumoral. Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Roberto Zúñiga
- Centro de Inmunobiotecnología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile; Programa de Doctorado en Química, Universidad de la República Oriental de Uruguay, Uruguay.
| | - Marco Bustamante
- Departamento de Cirugía Digestiva, Hospital del Salvador, Facultad de Medicina, Universidad de Chile, Chile.
| | - Juan Carlos Aguillón
- Laboratorio de Enfermedades Autoinmunes e Inflamatorias, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Diego Catala N
- Laboratorio de Inmunoregulación, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Carolina H Ribeiro
- Laboratorio de Inmunoedición del Cáncer, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Mari A Carmen Molina
- Laboratorio de Anticuerpos Recombinantes e Inmunoterapia anti tumoral. Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile; Centro de Inmunobiotecnología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| |
Collapse
|
17
|
Ji K, Zhang M, Chu Q, Gan Y, Ren H, Zhang L, Wang L, Li X, Wang W. The Role of p-STAT3 as a Prognostic and Clinicopathological Marker in Colorectal Cancer: A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0160125. [PMID: 27504822 PMCID: PMC4978497 DOI: 10.1371/journal.pone.0160125] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/13/2016] [Indexed: 01/04/2023] Open
Abstract
Objective High expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) has been detected in a variety of human tumors. However, the association of positive p-STAT3 expression with clinicopathological parameters and the prognosis of colorectal cancer patients remain controversial. To identify the relationship between p-STAT3 expression and clinicopathological parameters and prognosis in patients with colorectal cancer, a systematic review and meta-analysis were performed. Methods We performed a comprehensive literature search from PubMed, EMBASE, and SinoMed through 27 March, 2016. Hazard ratios (HRs) with 95% confidence intervals (CI) were combined to evaluate the association between p-STAT3 expression and overall survival of colorectal cancer patients. Odds ratios (ORs) with 95% CI were combined to evaluate the association between p-STAT3 expression and clinicopathological parameters in patients with colorectal cancer. Results Seventeen studies including a total of 2,346 colorectal cancer patients were included in this meta-analysis. The combined HR was 1.43 (95% CI: 1.23–1.67, P < 0.001), which suggested a positive relationship between p-STAT3 overexpression and poorer overall survival of colorectal cancer patients. In addition, the results indicated that positive p-STAT3 expression was significantly associated with the presence of lymph node metastasis (OR: 2.43, 95% CI: 1.18–5.01, P = 0.02) but was not associated with TNM stage, tumor differentiation or gender. Conclusion The meta-analysis results suggest that p-STAT3 overexpression is unfavorable for the prognosis of colorectal cancer patients, and p-STAT3 overexpression is associated with the presence of lymph node metastasis among colorectal cancer patients.
Collapse
Affiliation(s)
- Kun Ji
- Department of Pathophysiology, Shenyang Medical College, Shenyang, Liaoning, China
- * E-mail: (KJ); (WW)
| | - Mingxuan Zhang
- Grade 2012 Clinical Medicine, Shenyang Medical College, Shenyang, Liaoning, China
| | - Qi Chu
- Grade 2012 Clinical Medicine, Shenyang Medical College, Shenyang, Liaoning, China
| | - Yong Gan
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Ren
- Department of Colorectal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Liyan Zhang
- Department of Pathophysiology, Shenyang Medical College, Shenyang, Liaoning, China
| | - Liwei Wang
- Department of health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Xiaoxiu Li
- Department of Pharmacology, Shenyang Medical College, Shenyang, Liaoning, China
| | - Wei Wang
- Department of Neurosurgery, The Second Clinical Medical School of Inner Mongolia University for the Nationalities (Inner Mongolia General Forestry Hospital), Yakeshi, Inner Mongolia, China
- * E-mail: (KJ); (WW)
| |
Collapse
|