1
|
Kimura Y, Taniguchi M. Effects of morroniside isolated from Cornus officinalis fruits on functional gastrointestinal disorders and gastric ulcer in mice. Fitoterapia 2024; 179:106249. [PMID: 39395697 DOI: 10.1016/j.fitote.2024.106249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
The dried fruits of Cornus officinalis (Cornaceae) are used in Kampo medicine (e.g. Hachimigan and Goshajinkigan) to treat senile osteoporosis, diabetes, gastric atony, frequent urination, and diarrhea/constipation associated with aging. The present study investigated the effects of a C. officinalis fruit extract and morroniside, an iridoid compound from isolated these fruits, on the reduction in gastric emptying small intestinal motility caused by 5-hydroxytryptamine (5-HT) and 1-(3-chlorophenyl) biguanide (5-HT3 receptor agonist), and gastric ulcers induced by 150 or 75 mM HCl/90 % EtOH (HCl-EtOH) and/or 5-HT in mice. C. officinalis extract (500 mg/kg) and morroniside (20 and 50 mg/kg) suppressed the reduction in gastric emptying induced by 5-HT- and 5-HT3 agonist. C. officinalis extract, morroniside and 5-HT3 receptor antagonist (ramosetron) attenuated 5-HT-induced diarrhea. Furthermore, morroniside (20 and 50 mg/kg) prevented EtOH/HCl-induced gastric ulcers and those caused by 5-HT. Morroniside (20 and 50 mg/kg) attenuated elevations in the plasma levels of corticosterone, corticotropin-releasing factor (CRF), and adrenocorticotropic hormone (ACTH) in 75 mM HCl/90 % EtOH- and 5-HT-treated mice. The results obtained herein suggest the potential of morroniside as an effective treatment for irritable bowel syndrome, such as diarrhea and functional dyspepsia (reductions in gastric emptying and small intestinal motility), caused by 5-HT. The present study suggests a role for morroniside in the regulation of elevations in CRF, ACTH, and corticosterone levels through hypothalamic-pituitary-adrenal axis activity induced by stress loading, such as a 5-HT treatment and/or HCl/EtOH stimulation.
Collapse
Affiliation(s)
- Yoshiyuki Kimura
- Department of Biochemical Pharmacology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan; Department of Natural Product Research Sciences, Faculty of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, Nasahara, Takatsuki, Osaka, Japan.
| | - Masahiko Taniguchi
- Department of Natural Product Research Sciences, Faculty of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, Nasahara, Takatsuki, Osaka, Japan
| |
Collapse
|
2
|
Li X, Ma G, Liu J, Zhang G, Ma K, Ding B, Liang W, Gao W. The regulatory effect and mechanism of traditional Chinese medicine on the renal inflammatory signal transduction pathways in diabetic kidney disease: A review. Medicine (Baltimore) 2024; 103:e39746. [PMID: 39312356 PMCID: PMC11419508 DOI: 10.1097/md.0000000000039746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Inflammatory injury is a critical factor in the occurrence and development of diabetic kidney disease (DKD). Signal transduction pathways such as the nuclear factor kappa beta (NF-κB), mitogen-activated protein kinase (MAPK), NOD-like receptor protein 3, and Smads are important mechanisms of inflammatory kidney injury in DKD, and the NF-κB pathway plays a key role. The inflammatory factor network formed after activation of the NF-κB pathway connects different signaling pathways and exacerbates renal inflammatory damage. Many traditional Chinese medicine compounds, single agents, effective components and active ingredients can regulate the expression of key molecules in the signaling pathways associated with inflammatory injury, such as transforming growth factor-β activated kinase 1, NF-κB, p38MAPK, NOD-like receptor protein 3, and Smad7. These treatments have the characteristics of multiple targets and have multiple and overlapping effects, which can treat DKD kidney inflammation and injury through multiple mechanisms and apply the "holistic concept" of traditional Chinese medicine.
Collapse
Affiliation(s)
- Xiaoxia Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Guoping Ma
- The First Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jin Liu
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Guoqiang Zhang
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei, China
| | - Kexin Ma
- The First Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Baozhu Ding
- Rural Physician College, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wenjie Liang
- Hebei Key Laboratory of Integrative Medicine of Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Weifang Gao
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Wang T, Yan J, Zhang S, Qi N, Zhang Y, Li G, Han Z. Silk fibroin microspheres loaded Rehmannia Liuwei extract for the protection of endothelial cells from the inhibitory effects. Colloids Surf B Biointerfaces 2024; 241:114034. [PMID: 38878662 DOI: 10.1016/j.colsurfb.2024.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 07/29/2024]
Abstract
Liuwei Dihuang (LWDH) is a multi-component and multi-target Chinese herbal compound widely used for treating chronic conditions such as diabetes, diabetic nephropathy, hypertension, osteoporosis, and chronic kidney disease. However, traditional Chinese medicine (TCM) preparations like decoction and pill face limitations, including low active component concentration, limited bioavailability, short half-life, and the need for high dosage, which may increase the burden on liver and kidney functions and reduce clinical efficacy. In this study, LWDH was further purified using D101 macroporous adsorption resin, resulting in a soluble extract with an active component content 53.6 times higher than that of LWDH itself. The freeze-dried LWDH extract was then encapsulated within silk fibroin (SF) microspheres to significantly enhance the sustained release performance of the drug. In a human umbilical vein endothelial cell (HUVEC) model cultured under high glucose conditions, methanol vapor-treated SF/LWDH microspheres demonstrated a decrease in the 24-hour drug release rate from 61.88 % to 34.81 %, augmenting their protective effect on endothelial cells.
Collapse
Affiliation(s)
- Tao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jia Yan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Shujun Zhang
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ning Qi
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yue Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Zhifen Han
- Department of Integrated Traditional Chinese and Western Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
4
|
Hassan NH, Saleh D, Abo El-Khair SM, Almasry SM, Ibrahim A. The relation between autophagy modulation by intermittent fasting and aquaporin 2 expression in experimentally induced diabetic nephropathy in albino rat. Tissue Cell 2024; 88:102395. [PMID: 38692159 DOI: 10.1016/j.tice.2024.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Polyuria is an early sign of diabetic nephropathy (DN) that produces dehydration in diabetic patients. This could be caused by alteration of renal aquaporin 2 (AQP2) expression. This study aimed to describe the relation between autophagy modulation via intermittent fasting (IF) and renal AQP2 expression and polyuria in case of DN. We divided the rats into control, DN and IF groups. After 2 and 4 weeks of diabetes induction, blood glucose (BG), serum creatinine (Scr), urine volume, and 24 hours urine protein (UP) were examined. Diabetic nephropathy histopathological index (DNHI) was calculated to evaluate histopathological changes. Immunohistochemistry and real-time PCR were performed to measure the levels of AQP2 and the autophagy marker; LC3 in kidney tissue. DNHI was correlated to the PCR and immunoexpression of AQP2 and LC3. Intermittent fasting significantly decreased the BG, Scr, urine volume, 24 hours UP, and DNHI as compared diabetes. Diabetes significantly elevated the immunoreactivity and mRNA expression levels of AQP2 and LC3 as compared to the control. However, the IF decreased AQP2 and stimulated autophagy in cyclic fashion. Our data revealed significant positive correlations between AQP2 and LC3 at the level of immunoexpression and mRNA at 2nd weeks. Taken together, these data showed that autophagy stimulation didn't regulate AQP2 expression in case of diabetic nephropathy, however IF decreased polyuria through improvement of glycemic state.
Collapse
Affiliation(s)
- Nora Hisham Hassan
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Egypt.
| | - Dalia Saleh
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Egypt
| | - Salwa M Abo El-Khair
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Egypt
| | - Shaima M Almasry
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Egypt
| | - Amira Ibrahim
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
5
|
Zhao C, Ma G, Tao S, Wang M, Chen Z, Fang Y, Shi W. Qi-Ju-Di-Huang-Pill delays the progression of diabetic retinopathy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117751. [PMID: 38216102 DOI: 10.1016/j.jep.2024.117751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qi-Ju-Di-Huang-Pill (QJDH pill) is a Chinese decoction. Although it is commonly used to treat eye conditions, such as diabetic retinopathy (DR), its exact mechanism of action is unknown. AIM OF THE STUDY To investigate the specific mechanism by which QJDH pill slows the progression of diabetic retinopathy (DR) based on animal and cellular experiments. MATERIAL AND METHODS The major components of QJDH pill were characterized by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLCMS/MS). C57BL/6J mice were randomly divided into five groups as follows: normal group (control group), model group (STZ group), low-dosage QJDH pill group (QJDH-L group), medium-dosage QJDH pill group (QJDH-M group) and high-dosage QJDH pill group (QJDH-H group). Changes in water intake, urination, food intake, and body mass were monitored weekly, while changes in blood glucose were monitored monthly. Fluorescein fundus angiography (FFA), optical coherence tomography angiography (OCTA), and optical coherence tomography (OCT) were utilized to analyze the changes in fundus imaging indications. Hematoxylin & eosin (H&E) and transmission electron microscopy (TEM) were employed to examine histopathologic and ultrastructural changes in retina. The levels of interleukin-6 (IL-6), interleukin-17 (IL-17), tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor (VEGF) in peripheral blood were detected using Enzyme-linked immunosorbent assay (ELISA). The mouse retina apoptotic cells were labeled with green fluorescence via terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (Tunel). The protein levels of Bcl-2-Associated X (Bax), B cell lymphoma 2 (Bcl-2), Caspase-3, PI3K, phosphorylated PI3K (p-PI3K), protein kinase B (AKT) and phosphorylated AKT (p-AKT) were quantified by Western blot (WB). The retinal pigment epithelium (RPE) cells were cultured and classified into five groups as follows: normal glucose group (NG group), high glucose group (HG group), high glucose + QJDH pill group (HG + QJDH group), high glucose + inhibitor group (HG + LY294002 group), and high glucose + inhibitor + QJDH pill group (HG + LY294002 + QJDH group). Cell viability and apoptosis were detected via Cell Counting Kit-8 (CCK8) and then analyzed by flow cytometry. RESULTS In vivo experiments revealed that the QJDH pill effectively reduced blood glucose, symptoms of increased water intake, elevated urination, increased food intake and decreased body mass in DR mice. QJDH pill also slowed the development of a series of fundus imaging signs, such as retinal microangiomas, tortuous dilatation of blood vessels, decreased vascular density, and thinning of retinal thickness, downregulated IL-6, IL-17, TNF-α, and VEGF levels in peripheral blood, and inhibited retinal cell apoptosis by activating the PI3K/AKT signaling pathway. Moreover, in vitro experiments showed that high glucose environment inhibited RPE cell viability and activated RPE cell apoptosis pathway. In contrast, lyophilized powder of QJDH pill increased RPE cell viability, protected RPE cells from high glucose-induced damage, and decreased apoptosis of RPE cells by activating the pi3k pathway. CONCLUSION QJDH pill induces hypoglycemic, anti-inflammatory effects, anti-VEGF and anti-retinal cell apoptosis by activating PI3K/AKT signaling pathway, and thus can protect the retina and slow the DR progression.
Collapse
Affiliation(s)
- Chunlin Zhao
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210000, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Guangcheng Ma
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210000, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Sihan Tao
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210000, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Mingyue Wang
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| | - Zhuolin Chen
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| | - Yiming Fang
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| | - Wei Shi
- Department of Ophthalmology, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, China.
| |
Collapse
|
6
|
Liu M, Di YM, Zhang AL, Chen J, Wang R, Huang J, Zhang L, Xue CC, Liu X. Renal-protective effects of Chinese medicinal herbs and compounds for diabetic kidney disease in animal models: protocol for systematic review and meta-analysis. Syst Rev 2024; 13:23. [PMID: 38217017 PMCID: PMC10785383 DOI: 10.1186/s13643-023-02446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/23/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is a common and severe complication of diabetes that can lead to end-stage renal disease with no cure. The first-line drugs recommended by clinical guidelines fail to achieve satisfactory effects for people with DKD. A Chinese herbal medicine Tangshen Qushi Formula (TQF) shows preliminary efficacy and safety in preserving renal function for people with DKD, but the effects on comprehensive renal outcomes remain unclear. We will conduct a systematic review and meta-analysis to evaluate the effects of TQF herbs and their compounds identified from ultra-high performance liquid chromatography-MS/MS in diabetic animal models with renal outcomes. METHODS This protocol complies with the guideline Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols. We will include studies investigating the effects of TQF herbs and compounds on diabetic rats or mice with renal outcomes. Six electronic databases will be searched from their inception to February 2023. Quality assessment will be conducted using SYRCLE's risk of bias tool. Standardized or weighted mean differences will be estimated for renal outcomes (creatinine, urea, proteinuria, histological changes, oxidative stress, inflammation, and kidney fibrosis). Data will be pooled using random-effects models. Heterogeneity across studies will be expressed as I2. Sensitivity analyses will explore treatment effects in adjusted models and within subgroups. Funnel plots and Egger's test will be used to explore publication bias. DISCUSSION The results of this review will provide valuable insights into the potential effects of TQF in managing DKD. The limitation is that the included studies will be animal studies from specific databases, and the interpretation of the findings must be cautious. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42023432895. Registered on 19 July 2023 ( https://www.crd.york.ac.uk/PROSPERO/#recordDetails ).
Collapse
Affiliation(s)
- Meifang Liu
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Ming Di
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Anthony Lin Zhang
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Junhui Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruobing Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Juan Huang
- Pharmaceutical Research Department for New Drug Development and Authentication of Chinese Medicines, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Charlie Changli Xue
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.
| | - Xusheng Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
7
|
Lv C, Cheng T, Zhang B, Sun K, Lu K. Triptolide protects against podocyte injury in diabetic nephropathy by activating the Nrf2/HO-1 pathway and inhibiting the NLRP3 inflammasome pathway. Ren Fail 2023; 45:2165103. [PMID: 36938748 PMCID: PMC10035962 DOI: 10.1080/0886022x.2023.2165103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Objectives: Diabetic nephropathy (DN) is the most common microvascular complication of diabetes mellitus. This study investigated the mechanism of triptolide (TP) in podocyte injury in DN.Methods: DN mouse models were established by feeding with a high-fat diet and injecting with streptozocin and MPC5 podocyte injury models were induced by high-glucose (HG), followed by TP treatment. Fasting blood glucose and renal function indicators, such as 24 h urine albumin (UAlb), serum creatinine (SCr), blood urea nitrogen (BUN), and kidney/body weight ratio of mice were examined. H&E and TUNEL staining were performed for evaluating pathological changes and apoptosis in renal tissue. The podocyte markers, reactive oxygen species (ROS), oxidative stress (OS), serum inflammatory cytokines, nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway-related proteins, and pyroptosis were detected by Western blotting and corresponding kits. MPC5 cell viability and pyroptosis were evaluated by MTT and Hoechst 33342/PI double-fluorescence staining. Nrf2 inhibitor ML385 was used to verify the regulation of TP on Nrf2.Results: TP improved renal function and histopathological injury of DN mice, alleviated podocytes injury, reduced OS and ROS by activating the Nrf2/heme oxygenase-1 (HO-1) pathway, and weakened pyroptosis by inhibiting the nod-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome pathway. In vitro experiments further verified the inhibition of TP on OS and pyroptosis by mediating the Nrf2/HO-1 and NLRP3 inflammasome pathways. Inhibition of Nrf2 reversed the protective effect of TP on MPC5 cells.Conclusions: Overall, TP alleviated podocyte injury in DN by inhibiting OS and pyroptosis via Nrf2/ROS/NLRP3 axis.
Collapse
Affiliation(s)
- Chenlei Lv
- Department of Nephrology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Tianyang Cheng
- Department of Nephrology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bingbing Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ke Sun
- Department of Nephrology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Keda Lu
- Department of Nephrology, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Wang S, Qin S, Cai B, Zhan J, Chen Q. Promising therapeutic mechanism for Chinese herbal medicine in ameliorating renal fibrosis in diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:932649. [PMID: 37522131 PMCID: PMC10376707 DOI: 10.3389/fendo.2023.932649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most serious chronic microvascular abnormalities of diabetes mellitus and the major cause of uremia. Accumulating evidence has confirmed that fibrosis is a significant pathological feature that contributes to the development of chronic kidney disease in DN. However, the exact mechanism of renal fibrosis in DN is still unclear, which greatly hinders the treatment of DN. Chinese herbal medicine (CHM) has shown efficacy and safety in ameliorating inflammation and albuminuria in diabetic patients. In this review, we outline the underlying mechanisms of renal fibrosis in DN, including oxidative stress (OS) generation and OS-elicited ASK1-p38/JNK activation. Also, we briefly summarize the current status of CHM treating DN by improving renal fibrosis. The treatment of DN by inhibiting ASK1 activation to alleviate renal fibrosis in DN with CHM will promote the discovery of novel therapeutic targets for DN and provide a beneficial therapeutic method for DN.
Collapse
Affiliation(s)
- Shengju Wang
- Department of Nephrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuai Qin
- Department of Nephrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Baochao Cai
- Diabetes Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Jihong Zhan
- Department of Nephrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Zhang J, Peng J, Zhang T, Jiang H, Qin Y, Chen H, Deng X, Ren J, Wang P, Xu H. Identification of the Main Chemical constituents and mechanism of Renshen Guben oral liquid against Renal Fibrosis. Chin Med 2023; 18:56. [PMID: 37198665 DOI: 10.1186/s13020-023-00762-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Renal fibrosis is the late stage of many chronic kidney diseases (CKD). Clinically, there is almost no effective treatment for renal fibrosis except dialysis. Renshen Guben oral liquid (RSGB) is a Chinese patent medicine approved by National Medical Products Administration (NMPA), which is suitable for clinical patients with chronic nephritis. Currently, the chemical constituents of RSGB remains unclear, and its efficacy and mechanism on renal fibrosis have not been reported. METHODS In our research, ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) was employed to describe the chemical profile of RSGB, unilateral ureteral obstruction (UUO) model in mice was established to evaluate the beneficial effect of RSGB on renal fibrosis by biochemical indexes, HE and Masson staining. RNA sequencing and "constituents-targets-pathways" multi-dimensional network was established to mine the mechanisms of RSGB. Key targets were verified by quantitative real-time PCR (qRT-PCR) and western bolt (WB). RESULTS A total of 201 constituents were identified or tentatively characterized, 15 of which were confirmed with standards. The number of triterpenes was the highest with 49, followed by phenols with 46. RSGB ameliorated the blood urea nitrogen (BUN) and serum creatinine (Scr) levels in serum, normalizing pathological structure of kidney tissue. RNA sequencing revealed that RSGB regulates 226 differential genes, which were involved in kidney development. According to the "constituents-targets-pathways" network, 26 key active constituents may mainly regulate the inflammatory immune system through 88 corresponding targets. qRT-PCR and WB results showed that RSGB inhibited the activation of the Tgfβ1/Smad2/3 pathway, Wnt4/β-Catenin pathway and NGFR/NF-κB pathway. CONCLUSIONS Overall, our study, for the first time, characterized 201 chemical constituents in RSGB, and 26 of them were screened out to alleviates renal fibrosis mainly through Tgfβ1/Smad2/3 pathway, Wnt4/β-catenin pathway and NGFR/NF-κB pathway, which may provide a new research strategy for research on the mechanism of traditional Chinese Medicine.
Collapse
Affiliation(s)
- Junhong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Juqin Peng
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Tong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hong Jiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuewen Qin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hong Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaofang Deng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Junguo Ren
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Ping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, National Medical Products Administration, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
10
|
Zhou L, Wu K, Gao Y, Qiao R, Tang N, Dong D, Li XQ, Nong Q, Luo DQ, Xiao Q, Fan X, Duan Q, Cao W. Piperlonguminine attenuates renal fibrosis by inhibiting TRPC6. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116561. [PMID: 37121453 DOI: 10.1016/j.jep.2023.116561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liuwei Dihuang (LWDH) is a classic prescription that has been used to the treatment of "Kidney-Yin" deficiency syndrome for more than 1000 years in China. Recent studies have confirmed that LWDH can prevent the progression of renal fibrosis. Numerous studies have demonstrated the critical role that TRPC6 plays in the development of renal fibrosis. Due to the complex composition of LWDH and its remarkable therapeutic effect on renal fibrosis, it is possible to discover new active ingredients targeting TRPC6 for the treatment of renal fibrosis. AIM OF STUDY This study aimed to identify selective TRPC6 inhibitors from LWDH and evaluate their therapeutical effects on renal fibrosis. MATERIALS AND METHODS Computer-aided drug design was used to screen the biologically active ingredients of LWDH, and their affinities to human TRPC6 protein were detected by microcalorimetry. TRPC6, TRPC3, and TRPC7 over-expressed HEK293 cells were constructed, and the selective activities of the compounds on TRPC6 were determined by measuring [Ca2+]i in these cells. To establish an in vitro model of renal fibrosis, human renal proximal tubular epithelial HK-2 cells were stimulated with TGF-β1. The therapeutic effects of LWDH compounds on renal fibrosis were then tested by detecting the related proteins. TRPC6 was knocked-down in HK-2 cells to investigate the effects of LWDH active ingredients on TRPC6. Finally, a unilateral ureteral obstruction model of renal fibrosis was established to test the therapeutic effect. RESULTS From hundreds of LWDH ingredients, 64 active components with oral bioavailability ≥30% and drug-likeness index ≥0.18 were acquired. A total of 10 active components were obtained by molecular docking with TRPC6 protein. Among them, 4 components had an affinity with TRPC6. Piperlonguminine (PLG) had the most potent affinity with TRPC6 and blocking effect on TRPC6-mediated Ca2+ entry. A 100 μM of PLG showed no detectable inhibition on TRPC1, TRPC3, TRPC4, TRPC5, or TRPC7-mediated Ca2+ influx into cells. In vitro results indicated that PLG concentration-dependently inhibited the abnormally high expression of α-smooth muscle actin (α-SMA), collagen I, vimentin, and TRPC6 in TGF-β1-induced HK-2 cells. Consistently, PLG also could not further inhibit TGF-β1-induced expressions of these protein biomarkers in TRPC6 knocked-down HK-2 cells. In vivo, PLG dose-dependently reduced urinary protein, serum creatinine, and blood urea nitrogen levels in renal fibrosis mice and markedly alleviated fibrosis and the expressions of α-SMA, collagen I, vimentin, and TRPC6 in kidney tissues. CONCLUSION Our results showed that PLG had anti-renal fibrosis effects by selectively inhibiting TRPC6. PLG might be a promising therapeutic agent for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Lei Zhou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Kehan Wu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Yuxuan Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Ruizhi Qiao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Na Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Dianchao Dong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Xiao-Qiang Li
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710000, China
| | - Qiuna Nong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Ding-Qiang Luo
- Shaanxi Institute for Food and Drug Control, Xi'an, 710065, China
| | - Qianhan Xiao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Xin Fan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Qimei Duan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China.
| | - Wei Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China; Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710000, China.
| |
Collapse
|
11
|
Wang Z, Jian G, Chen T, Chen Y, Li J, Wang N. The Qi-Bang-Yi-Shen formula ameliorates renal dysfunction and fibrosis in rats with diabetic kidney disease <em>via</em> regulating PI3K/AKT, ERK and PPARγ signaling pathways. Eur J Histochem 2023; 67. [PMID: 36856315 DOI: 10.4081/ejh.2023.3648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease (CKD) and a growing public health problem worldwide. Losartan potassium (Los), an angiotensin II receptor blocker, has been used to treat DKD clinically. Recently, multi-herbal formula has been shown to exhibit therapeutic activities in DKD in China. Thus, we aimed to explore the protective effects of combination of Los and Qi-Bang-Yi-Shen formula (QBF) on DKD rats. Streptozotocin (STZ) injection was used to establish a rat model of DKD. Next, the bloodurea nitrogen (BUN), creatinine (CRE) and uric acid (UA) levels were detected in serum samples from DKD rats. Hematoxylin and eosin (H&E), periodic Acid Schiff (PAS) and Masson staining were performed to observe glomerular injury and glomerular fibrosis in DKD rats. In this study, we found that QBF or Los treatment could decrease serum BUN, CRE, UA levels and reduce urine albumin-to-creatinine ratio (ACR) in DKD rats. Additionally, QBF or Los treatment obviously inhibited glomerular mesangial expansion and glomerular fibrosis, attenuated glomerular injury in kidney tissues of DKD rats. Moreover, QBF or Los treatment significantly reduced PI3K, AKT and ERK1/2 protein expressions, but increased PPARγ level in kidney tissues of DKD rats. As expected, combined treatment of QBF and Los could exert enhanced reno-protective effects compared with the single treatment. Collectively, combination of QBF and Los could ameliorate renal injury and fibrosis in DKD rats via regulating PI3K/AKT, ERK and PPARγ signaling pathways. These findings highlight the therapeutic potential of QBF to prevent DKD progression.
Collapse
Affiliation(s)
- Zhi Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai.
| | - Guihua Jian
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai.
| | - Teng Chen
- Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai.
| | - Yiping Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai.
| | - Junhui Li
- Putuo People's Hospital, Tongji University, Shanghai.
| | - Niansong Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai.
| |
Collapse
|
12
|
Mohammadi Y, Zangooei M, Zardast M, Mamashli M, Rezaei Farimani A. The effect of crocin and losartan on TGF-β gene expression and histopathology of kidney tissue in a rat model of diabetic nephropathy. AVICENNA JOURNAL OF PHYTOMEDICINE 2023; 13:189-199. [PMID: 37333473 PMCID: PMC10274314 DOI: 10.22038/ajp.2022.21414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/20/2023]
Abstract
Objective Diabetic nephropathy is one of the most common microvascular complications of diabetes mellitus that finally leads to complete loss of kidney function. Therefore, this study aimed to evaluate the effect of crocin and losartan on TGF-β gene expression and histopathology of kidney tissue in a rat model of diabetic nephropathy. Materials and Methods Forty male Wistar rats were randomly divided into five groups (n=8): Untreated control, Diabetic (D), D + crocin, D + losartan, and D + losartan + crocin. Induction of diabetes was performed using streptozotocin (50 mg/kg/ Intraperitoneal injection). At the end of the eight-week period, the rats were sacrificed. Spectrophotometry measured serum glucose, urea, creatinine, and uric acid levels. Microalbumin and creatinine levels were measured in 24-hour urine. Real-time PCR was used to determine the relative expression of the TGF-β gene in kidney tissue. Renal tissue histopathology was also examined. Results The results showed that hyperglycemia increased biochemical factors associated with diabetes, TGF-β gene expression, and kidney damage. Separate treatment with crocin and losartan led to a decrease in renal function factors and TGF-β gene expression and improved kidney damage. Conclusion Our results showed that crocin could improve kidney function in diabetic conditions. In addition, we showed that crocin increases the effectiveness of losartan. Consequently, we suggest that crocin in combination with chemical drugs can be a potential therapeutic agent for diabetes and its complications. Nonetheless, human studies are needed to make firm findings.
Collapse
Affiliation(s)
- Yaser Mohammadi
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Zangooei
- Department of Clinical Biochemistry, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahmoud Zardast
- Medical Toxicology and Drug Abuse Research Center, Department of Pathology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Morteza Mamashli
- Department of Clinical Biochemistry, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Azam Rezaei Farimani
- Department of Clinical Biochemistry, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
13
|
Fu Z, Zhang S, Gu X, Guan T, Wang C, Zhang J, Wang Y, Guo H, Wang L, Zhang T. LDP alleviates TKI-induced proteinuria through reversing the expression of RelA in renal tissues. Front Med (Lausanne) 2023; 10:1095344. [PMID: 36744132 PMCID: PMC9892181 DOI: 10.3389/fmed.2023.1095344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs), as an important tumor therapy, can induce severe proteinuria that significantly affects anti-tumor therapy. Existing therapies against proteinuria induced by other etiologies are currently ineffective for TKI-induced proteinuria. It has been shown that various types of proteinuria are related to podocyte damage caused by changes in the RelA signaling pathway. Our experiments confirmed that TKIs activate the renal RelA signaling pathway, and induce death of podocytes and destruction of the glomerular filtration barrier. Here we found that Liuwei Dihuang Pill (LDP) attenuated the inflammatory injury of podocytes through inhibiting activation of RelA, and subsequently relieved TKI-related proteinuria and prevented the progression of TMA and FSGS. Our finding indicated that LDP may be effective for the treatment of TKI-induced proteinuria, which is clinically significant.
Collapse
Affiliation(s)
- Zhou Fu
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Su Zhang
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China,Key Laboratory of Cancer Prevention and Therapy, Department of Gynecologic Oncology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiaoying Gu
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tao Guan
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chengmeng Wang
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jiaqi Zhang
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Jinzhong, China
| | - Yun Wang
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hua Guo
- Key Laboratory of Cancer Prevention and Therapy, Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China,Hua Guo,
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,Lu Wang,
| | - Ti Zhang
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China,Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Ti Zhang,
| |
Collapse
|
14
|
Li N, Amatjan M, He P, Zhang B, Mai X, Jiang Q, Xie H, Shao X. Integration of network pharmacology and intestinal flora to investigate the mechanism of action of Chinese herbal Cichorium intybus formula in attenuating adenine and ethambutol hydrochloride-induced hyperuricemic nephropathy in rats. PHARMACEUTICAL BIOLOGY 2022; 60:2338-2354. [PMID: 36444935 PMCID: PMC9897651 DOI: 10.1080/13880209.2022.2147551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/10/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Cichorium intybus L. (Asteraceae) formula (CF) has been applied as a folk medicine to treat hyperuricemic nephropathy (HN). However, the exact mechanism remains unclear. OBJECTIVE To explore the therapeutic effect and mechanism of CF on HN. MATERIALS AND METHODS Through network pharmacological methods, the targets of the active component of CF against HN were obtained. Subsequently, Male Wistar rats were divided into control, HN, allopurinol (50 mg/kg), CF high-dose (8.64 g/kg) and CF low-dose (2.16 g/kg) groups. The HN model was induced via intragastric administration of adenine (100 mg/kg) and ethambutol hydrochloride (250 mg/kg) for 3 weeks. After CF treatment, biochemical indicators including UA, UREA and CREA were measured. Then, HE staining, qRT-PCR and gut microbiota analysis were conducted to further explore the mechanism. RESULTS The network pharmacology identified 83 key targets, 6 core genes and 200 signalling pathways involved in the treatment of HN. Compared to the HN group, CF (8.64 g/kg) significantly reduced the levels of UA, UREA and CREA (from 2.4 to 1.57 μMol/L, from 15.87 to 11.05 mMol/L and from 64.83 to 54.83 μMol/L, respectively), and mitigated renal damage. Furthermore, CF inhibited the expression of IL-6, TP53, TNF and JUN. It also altered the composition of gut microbiota, and ameliorated HN by increasing the relative abundance of some probiotics. CONCLUSIONS This work elucidated the therapeutic effect and underlying mechanism by which CF protects against HN from the view of the biodiversity of the intestinal flora, thus providing a scientific basis for the usage of CF.
Collapse
Affiliation(s)
- Na Li
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Mukaram Amatjan
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Pengke He
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Boheng Zhang
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Xianyan Mai
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Qianle Jiang
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Haochen Xie
- Qinghai Tibet Plateau Research Institute, Southwest Minzu University, Chengdu, China
| | - Xiaoni Shao
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| |
Collapse
|
15
|
Wu Z, Zhu Z, Cao J, Wu W, Hu S, Deng C, Xie Q, Huang X, You C. Prediction of network pharmacology and molecular docking-based strategy to determine potential pharmacological mechanism of Liuwei Dihuang pill against tinnitus. Medicine (Baltimore) 2022; 101:e31711. [PMID: 36401375 PMCID: PMC9678611 DOI: 10.1097/md.0000000000031711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Liuwei Dihuang Pill is widely used to treat tinnitus in China. However, the underlying mechanism of Liuwei Dihuang Pill in treating tinnitus still remains unclear. OBJECTIVE To explore the potential pharmacological mechanism of Liuwei Dihuang Pill in the treatment of tinnitus based on network pharmacology and molecular docking. METHODS The active components of the Liuwei Dihuang Pill were obtained from the traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) database. Cytoscape software was used to draw the active component-target network diagram of Liuwei Dihuang Pill, and obtain the core components. Then the corresponding targets were also obtained from the TCMSP database. Targets related to tinnitus were obtained from the GeneCards, DisGeNET, TTD and DrugBank databases. The String database was used to construct protein-protein interaction (PPI) network of common targets of drugs and diseases, then the core targets were screened out. The Annotation, Visualization and Integrated Discovery (DAVID) database was used for gene ontology (GO) enrichment and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis of common targets. Finally, the molecular docking between the core component and the core target was carried out by AutoDock. RESULTS The core components of Liuwei Dihuang Pill in the treatment of tinnitus including quercetin, stigmasterol, kaempferol, β-sitosterol, tetrahydroalstonine, which may act on core targets such as STAT3, transcription factor AP-1 (JUN), tumor necrosis factor (TNF), interleukin-6 and MAPK3. HIF-1 signaling pathway, Influenza A, P53 signaling pathway, and Toll-like receptor signaling pathway play a role in anti-inflammatory, improving microcirculation in the blood-labyrinth barrier, increasing cochlear blood flow, and preventing hair cell damage. The molecular docking results showed that the affinity between core components and core targets was good. CONCLUSION The potential mechanism of Liuwei Dihuang Pill in the treatment of tinnitus was preliminarily discussed in this study, which may provide a theoretical basis and evidence for further experimental research.
Collapse
Affiliation(s)
- Zhongbiao Wu
- Jiangxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, Jiangxi, China
| | - Zhongyan Zhu
- Jiangxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, Jiangxi, China
| | - Jian Cao
- Jiangxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, Jiangxi, China
| | - Weikun Wu
- Jiangxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, Jiangxi, China
- *Correspondence: Weikun Wu, Jiangxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, Jiangxi 330003, China (e-mail: )
| | - Shiping Hu
- Jiangxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, Jiangxi, China
| | - Chengcheng Deng
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Qiang Xie
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Xinmei Huang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Chengkun You
- Pinghu Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| |
Collapse
|
16
|
Han Y, Miao W, Hao Z, An N, Yang Y, Zhang Z, Chen J, Storey KB, Lefai E, Chang H. The Protective Effects on Ischemia–Reperfusion Injury Mechanisms of the Thoracic Aorta in Daurian Ground Squirrels (Spermophilus dauricus) over the Torpor–Arousal Cycle of Hibernation. Int J Mol Sci 2022; 23:ijms231810248. [PMID: 36142152 PMCID: PMC9499360 DOI: 10.3390/ijms231810248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/28/2022] [Accepted: 09/04/2022] [Indexed: 11/25/2022] Open
Abstract
Hibernators are a natural model of vascular ischemia–reperfusion injury; however, the protective mechanisms involved in dealing with such an injury over the torpor–arousal cycle are unclear. The present study aimed to clarify the changes in the thoracic aorta and serum in summer-active (SA), late-torpor (LT) and interbout-arousal (IBA) Daurian ground squirrels (Spermophilus dauricus). The results show that total antioxidant capacity (TAC) was unchanged, but malondialdehyde (MDA), hydrogen peroxide (H2O2), interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) were significantly increased for the LT group, whereas the levels of superoxide dismutase (SOD) and interleukin-10 (IL-10) were significantly reduced in the LT group as compared with the SA group. Moreover, the levels of MDA and IL-1β were significantly reduced, whereas SOD and IL-10 were significantly increased in the IBA group as compared with the SA group. In addition, the lumen area of the thoracic aorta and the expression of the smooth muscle cells (SMCs) contractile marker protein 22α (SM22α) were significantly reduced, whereas the protein expression of the synthetic marker proteins osteopontin (OPN), vimentin (VIM) and proliferating cell nuclear antigen (PCNA) were significantly increased in the LT group as compared with the SA group. Furthermore, the smooth muscle layer of the thoracic aorta was significantly thickened, and PCNA protein expression was significantly reduced in the IBA group as compared with the SA group. The contractile marker proteins SM22α and synthetic marker protein VIM underwent significant localization changes in both LT and IBA groups, with localization of the contractile marker protein α-smooth muscle actin (αSMA) changing only in the IBA group as compared with the SA group. In tunica intima, the serum levels of heparin sulfate (HS) and syndecan-1 (Sy-1) in the LT group were significantly reduced, but the serum level of HS in the IBA group increased significantly as compared with the SA group. Protein expression and localization of endothelial nitric oxide synthase (eNOS) was unchanged in the three groups. In summary, the decrease in reactive oxygen species (ROS) and pro-inflammatory factors and increase in SOD and anti-inflammatory factors during the IBA period induced controlled phenotypic switching of thoracic aortic SMCs and restoration of endothelial permeability to resist ischemic and hypoxic injury during torpor of Daurian ground squirrels.
Collapse
Affiliation(s)
- Yuting Han
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Weilan Miao
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Ziwei Hao
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Ning An
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Yingyu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Ziwen Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Jiayu Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Etienne Lefai
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
- Correspondence:
| |
Collapse
|
17
|
Shen HS, Hsu CY, Yip HT, Lin IH. Lower risk of ischemic stroke among patients with chronic kidney disease using chinese herbal medicine as add-on therapy: A real-world nationwide cohort study. Front Pharmacol 2022; 13:883148. [PMID: 36034816 PMCID: PMC9403506 DOI: 10.3389/fphar.2022.883148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The incidence of ischemic stroke (IS) is much higher among patients with chronic kidney disease (CKD) compared to the general population. Few studies have evaluated the association between the risk of IS and the use of Chinese herbal medicine (CHM) in patients with CKD. We aimed to investigate the risk of IS among patients with CKD using CHM as add-on therapy.Methods: We conducted a retrospective cohort study based on Taiwan’s National Health Insurance Research Database to assess 21,641 patients with newly diagnosed CKD between 2003 and 2012. Patients were classified as either the CHM (n = 3,149) or the non-CHM group (n = 3,149) based on whether they used CHM after first diagnosis of CKD. We used the proportional subdistribution hazards model of Fine and Gray to examine the hazard ratio (HR) of IS in propensity-score matched samples at a ratio of 1:1 for two groups.Results: The risk of IS was significantly reduced in the CHM group (adjusted HR [aHR]: 0.58, 95% confidence interval [CI]: 0.48–0.70) compared with the non-CHM group. Those who used CHM for >180 days had an even lower risk of IS than those in the non-CHM group (aHR: 0.51, 95% CI: 0.41–0.63). Additionally, frequently prescribed formulae, such as Ji-Sheng-Shen-Qi-Wan, Liu-Wei-Di-Huang-Wan, and Zhen-Wu-Tang were associated with a 30%–50% reduced risk of IS.Conclusion: Our results suggest that patients with CKD who used CHM as add-on therapy had a lower hazard of IS than those in the non-CHM group, especially for patients taking CHM for >180 days. Further experimental studies are required to clarify the causal relationship.
Collapse
Affiliation(s)
- Hsuan-Shu Shen
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
- Sports Medicine Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Chung-Yi Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hei-Tung Yip
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - I-Hsin Lin
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- *Correspondence: I-Hsin Lin,
| |
Collapse
|
18
|
Zhu X, Shen X, Lin B, Fang J, Jin J, He Q. Liuwei Dihuang Pills Inhibit Podocyte Injury and Alleviate IgA Nephropathy by Directly Altering Mesangial Cell-Derived Exosome Function and Secretion. Front Pharmacol 2022; 13:889008. [PMID: 35899112 PMCID: PMC9309816 DOI: 10.3389/fphar.2022.889008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Immunoglobulin A nephropathy (IgAN) is the most common glomerular disease worldwide. Its pathological features include IgA immune complex deposition, accompanied by mesangial cell proliferation and mesangial matrix expansion. This study was conducted to investigate the effects of Liuwei Dihuang pills (LWDHW) on IgAN in mice and human podocytes, as well as to determine their underlying mechanisms of action. Methods: For in vitro experiments, podocytes were exposed to the human mesangial cell culture medium supernatant of glomerular cells treated with aggregated IgA1 (aIgA1) and LWDHW-containing serum. Cell viability and the proportion of positive cells were evaluated using CCK-8 and flow apoptosis kits, respectively. The cells were collected for western blot analysis. Twenty-four mice with IgAN induced by oral bovine serum albumin administration combined with tail vein injection of staphylococcal enterotoxin B were randomly divided into four groups of six mice each: untreated model group, model + LWDHW group, model + rapamycin group, and model + LWDHW + rapamycin group. The normal control group contained six mice. The red blood cell count in the urine, urine protein, blood urea nitrogen, serum creatinine, and IgA deposition were determined, and TUNEL and western blotting were performed in the mouse kidney tissues. Results:In vitro experiments showed that LWDHW promoted autophagy by regulating the PI3K/Akt/mTOR signalling pathway and improved the damage to podocytes caused by the aIgA1-treated mesangial cell supernatant. This study demonstrates the effectiveness of LWDHW for treating IgAN. In the animal experiments, LWDHW significantly reduced the urine red blood cell count, serum creatinine and urea nitrogen contents, and 24 h urinary protein function and improved IgA deposition in the kidney tissues, glomerular volume, glomerular cell proliferation and polysaccharide deposition, and glomerular cell apoptosis. The pills also reversed the changes in the LC3II/I ratio and p62 content in the kidney tissues. The combination of LWDHW and rapamycin showed stronger inhibitory effects compared to those of LWDHW or rapamycin alone. Conclusion: LWDHW may improve regulation of the PI3K-Akt-mTOR pathway and inhibit autophagy in podocytes, as well as alleviate IgA nephropathy by directly altering mesangial cell exosomes.
Collapse
Affiliation(s)
- Xiaodong Zhu
- Bengbu Medical College, Bengbu, China
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiaogang Shen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Lin
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jiaxi Fang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Juan Jin
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Juan Jin, ; Qiang He,
| | - Qiang He
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Juan Jin, ; Qiang He,
| |
Collapse
|
19
|
Pujar M, Vastrad B, Kavatagimath S, Vastrad C, Kotturshetti S. Identification of candidate biomarkers and pathways associated with type 1 diabetes mellitus using bioinformatics analysis. Sci Rep 2022; 12:9157. [PMID: 35650387 PMCID: PMC9160069 DOI: 10.1038/s41598-022-13291-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a metabolic disorder for which the underlying molecular mechanisms remain largely unclear. This investigation aimed to elucidate essential candidate genes and pathways in T1DM by integrated bioinformatics analysis. In this study, differentially expressed genes (DEGs) were analyzed using DESeq2 of R package from GSE162689 of the Gene Expression Omnibus (GEO). Gene ontology (GO) enrichment analysis, REACTOME pathway enrichment analysis, and construction and analysis of protein–protein interaction (PPI) network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network, and validation of hub genes were performed. A total of 952 DEGs (477 up regulated and 475 down regulated genes) were identified in T1DM. GO and REACTOME enrichment result results showed that DEGs mainly enriched in multicellular organism development, detection of stimulus, diseases of signal transduction by growth factor receptors and second messengers, and olfactory signaling pathway. The top hub genes such as MYC, EGFR, LNX1, YBX1, HSP90AA1, ESR1, FN1, TK1, ANLN and SMAD9 were screened out as the critical genes among the DEGs from the PPI network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network. Receiver operating characteristic curve (ROC) analysis confirmed that these genes were significantly associated with T1DM. In conclusion, the identified DEGs, particularly the hub genes, strengthen the understanding of the advancement and progression of T1DM, and certain genes might be used as candidate target molecules to diagnose, monitor and treat T1DM.
Collapse
Affiliation(s)
- Madhu Pujar
- Department of Pediatrics, J J M Medical College, Davangere, Karnataka, 577004, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag, Karnataka, 582101, India
| | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E. College of Pharmacy, Belagavi, Karnataka, 590010, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India.
| | - Shivakumar Kotturshetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India
| |
Collapse
|
20
|
Zhou Q, Han C, Wang Y, Fu S, Chen Y, Chen Q. The Effect of Chinese Medicinal Formulas on Biomarkers of Oxidative Stress in STZ-Induced Diabetic Kidney Disease Rats: A Meta-Analysis and Systematic Review. Front Med (Lausanne) 2022; 9:848432. [PMID: 35492300 PMCID: PMC9051386 DOI: 10.3389/fmed.2022.848432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/02/2022] [Indexed: 01/27/2023] Open
Abstract
Background Diabetic kidney disease (DKD), defined broadly as persistent proteinuria with low estimated glomerular filtration rate in patients with diabetes, is a main cause of end-stage renal disease. Excessive production of reactive oxygen species is an important mechanism underlying the pathogenesis of DKD and many antioxidants have been investigated as therapeutic agents. Among them, Chinese medicine antioxidative stress therapies have been widely used to combat DKD, which may offer new insights into therapeutic development of DKD. There are several discrepancies among the efficacy of Western medicine (WM) and Chinese medicinal formula (CMF) action. Methods We searched PubMed, Cochrane Library, the Web of Science databases, Embase, and Scopus from inception to December 2021 using relevant keywords and a comprehensive search for randomized controlled trials (RCTs) was performed. Calculating the pooled weighted mean difference (MD) and 95% CI by the method of inverse-variance with a random-effect. All the related statistical analyses were performed using Stata version 15.1 software (Stata Corporation) and Rvman version 5.3 (Nordic Cochrane Center). Results A total of 8 articles with the 9 groups including 106 in the model group, 105 in the CMF group, and 99 in the WM group. Pooled data from 8 studies (9 groups) showed a statistical improvement in superoxide dismutase compared with the model group [standardized MD (SMD) = 1.57; 95 CI: 1.16–1.98; P < 0.05] and the WM group (SMD = 0.56; 95 CI: 0.19–0.92; P < 0.05). For glutathione peroxidase (GSH-Px), it was significantly improved in the CMF group vs. the model group and the WM group. For malondialdehyde (MDA), it was significantly reduced in the CMF group (CMF vs. model group: SMD = −1.52; 95 CI: −1.88 −1.17; P < 0.05; CMF vs. WM group: SMD = −0.64; 95 CI: −0.95 −0.33; P < 0.05). Conclusion This systematic review and meta-analysis have demonstrated that the therapy of CMF had a notable curative effect on relieving oxidative stress in STZ-induced DKD rats and CMF was significantly more effective than the WM control group. For the clinical application, the results providing confidence and some theoretical reference for DKD via evaluating the efficacy of CMF to a certain extent. Systematic Review Registration [PROSPERO], identifier [CRD42022313737].
Collapse
Affiliation(s)
- Qian Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuyi Han
- Research Centre of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yanmei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shunlian Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiding Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Qiu Chen
| |
Collapse
|
21
|
Liuwei Dihuang Pill Attenuates Diabetic Nephropathy by Inhibiting Renal Fibrosis via TGF-β/Smad2/3 Pathway. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5063636. [PMID: 35341010 PMCID: PMC8941499 DOI: 10.1155/2022/5063636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/19/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022]
Abstract
Among all the complications of diabetes, diabetic nephropathy is a significant factor causing the end-stage renal disease associated with high death rates. Current treatment fails to produce an ideal outcome. Thus, searching for a new preventive drug is urgently needed. Liuwei Dihuang pill (LDP), a popular ancient Chinese medicine (TCM) prescription, has been applied to treat DN-like syndromes according to TCM theory. Here, we had established an animal model with DN and LDP therapy was put into use to assess its therapeutic effect in vivo. Our data showed that oxidative stress and TGF-β/Smad2/3 pathway-induced renal fibrosis could be observed in the DN animal model. However, the treatment of LDP impeded the generation of ROS and attenuated renal fibrosis-related proteins in damaged kidneys through interference in the TGF-β/Smad3 pathway. Our results indicated that LDP attenuated oxidative stress, accompanied by preventing the production of renal fibrosis through inhibiting the TGF-β/Smad2/3 pathway.
Collapse
|
22
|
Qin Q, Hu K, He Z, Chen F, Zhang W, Liu Y, Xie Z. Resolvin D1 protects against Aspergillus fumigatus keratitis in diabetes by blocking the MAPK-NF-κB pathway. Exp Eye Res 2022; 216:108941. [PMID: 35077754 DOI: 10.1016/j.exer.2022.108941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 01/20/2023]
Abstract
Fungal keratitis (FK) is one of the main causes of blindness in China. People with diabetes are susceptible to corneal epithelial disease, even fungal keratitis. At present, there are few studies on this disease. Resolvins (Rv) has been reported as a mediators that exert crucial anti-inflammatory and immune regulation roles in serval diseases. In order to investigate the roles and underlying mechanism of Resolvins D1 (RvD1) on the Aspergillus fumigatus (A. fumigatus) keratitis in diabetes, we established in vivo and in vitro models of A. fumigatus keratitis, which were then exposed to high glucose. The expression levels of RvD1, 5-lipoxygenase (5-LOX), and 15-lipoxygenase (15-LOX) in A. fumigatus keratitis patients with diabetes were determined through Enzyme Linked Immunosorbent Assay (ELISA), Western blot and immunohistochemistry. Reactive Oxygen Species (ROS) production, ELISA, flow cytometry, Hematoxylin-Eosin (HE) staining and fungal loading determination were conducted to evaluate the severity of A. fumigatus infection. Lymphangiogenesis and angiogenesis were examined by immunofluorescence assay. Western blot was applied to detect the proteins of the MAPK-NF-κB pathway. The results showed that RvD1 diminished the high glucose-induced oxidative stress and inflammatory response, as evidenced by the reduction of ROS production, Interleukin-6 (IL-6), Interleukin-8 (IL-8), Heme Oxygenase-1 (HMOX-1), and the elevation of Cyclooxygenase-2 (COX2), Superoxide Dismutase (SOD-1), and Glutathione Peroxidase-2 (GPX2) levels in A. fumigatus-infected Human Corneal Endothelial Cells (HCECs). Additionally, lymphangiogenesis and angiogenesis prominently decreased after intervention with RvD1. Furthermore, RvD1 significantly reduced the levels of p-MEK1/2 and p-ERK1/2, and restrained the NF-κB and GPR32 activation. The above results showed that RvD1 protects against A. fumigatus keratitis in diabetes by suppressing oxidative stress, inflammatory response, fungal growth, and immunoreaction via modulating MAPK-NF-κB pathway. RvD1 provides clues for the therapeutic targets of Fungal keratitis complicated with diabetes.
Collapse
Affiliation(s)
- Qin Qin
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China; Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210008, China; Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China.
| | - Kai Hu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Zifang He
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Feifei Chen
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Wenwen Zhang
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Yajun Liu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Zhenggao Xie
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
23
|
The Protective Role of Celastrol in Renal Ischemia-Reperfusion Injury by Activating Nrf2/HO-1, PI3K/AKT Signaling Pathways, Modulating NF-κb Signaling Pathways, and Inhibiting ERK Phosphorylation. Cell Biochem Biophys 2022; 80:191-202. [PMID: 35157199 PMCID: PMC8881435 DOI: 10.1007/s12013-022-01064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/26/2022] [Indexed: 11/03/2022]
Abstract
Celastrol, a natural triterpenoid derived from Tripterygium wilfordii, possesses numerous biological effects. We investigated celastrol's antioxidant potential through nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) and its effect on phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling, nuclear factor-kappa B (NF-κB) pathways, and extracellular signal-regulated kinase (ERK) activation in kidney ischemia-reperfusion injury (IRI) rat model. Rats were given celastrol 2 mg/kg orally for 1 week before subjection to renal ischemia-reperfusion surgery. Kidney functions, renal MDA, and reduced glutathione were determined; also, renal levels of ERK1/2, HO-1, PI3K, IL-6, TNF-α, IκBα, NF-κB/p65, and cleaved caspase-3 were measured. In addition, gene expression of kidney injury molecule-1 (KIM-1), Nrf-2, and AKT were determined. Celastrol pretreatment attenuated oxidative stress and increased Nrf2 gene expression and HO-1 level. Also, it activated the PI3K/AKT signaling pathway and decreased the p-ERK:t- ERK ratio and NFκBp65 level, with a remarkable decrease in inflammatory cytokines and cleaved caspase-3 levels compared with those in renal IRI rats. Conclusively, celastrol showed a reno-protective potential against renal IRI by suppressing oxidative stress through enhancing the Nrf2/HO-1 pathway, augmenting cell survival PI3K/AKT signaling pathways, and reducing inflammation by inhibiting NF-κB activation.
Collapse
|
24
|
Jiang T, Bao Y, Su H, Zheng R, Cao L. Mechanisms of Chinese Herbal Medicines for Diabetic Nephropathy Fibrosis Treatment. INTEGRATIVE MEDICINE IN NEPHROLOGY AND ANDROLOGY 2022; 9. [PMCID: PMC9549772 DOI: 10.4103/2773-0387.353727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Diabetic nephropathy (DN) is a severe microvascular complication of diabetes mellitus that is one of the main causes of end-stage renal disease, causing considerable health problems as well as significant financial burden worldwide. The pathological features of DN include loss of normal nephrons, massive fibroblast and myofibroblast hyperplasia, accumulation of extracellular matrix proteins, thickening of the basement membrane, and tubulointerstitial fibrosis. Renal fibrosis is a final and critical pathological change in DN. Although progress has been made in understanding the pathogenesis of DN fibrosis, current conventional treatment strategies may not be completely effective in preventing the disease’s progression. Traditionally, Chinese herbal medicines (CHMs) composed of natural ingredients have been used for symptomatic relief of DN. Increasing numbers of studies have confirmed that CHMs can exert a renoprotective effect in DN, and antifibrosis has been identified as a key mechanism. In this review, we summarize the antifibrotic efficacy of CHM preparations, single herbal medicines, and their bioactive compounds based on their effects on diminishing the inflammatory response and oxidative stress, regulating transforming growth factor, preventing epithelial-mesenchymal transition, and modulating microRNAs. We intend to provide patients of DN with therapeutic interventions that are complementary to existing options.
Collapse
Affiliation(s)
- Tong Jiang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
| | - Yuhang Bao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
| | - Hong Su
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
| | - Rendong Zheng
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, China,Address for correspondence: Prof. Rendong Zheng, Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, China. E-mail:
Prof. Lin Cao, Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, China E-mail:
| | - Lin Cao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, China,Address for correspondence: Prof. Rendong Zheng, Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, China. E-mail:
Prof. Lin Cao, Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, China E-mail:
| |
Collapse
|
25
|
Liu C, Wu K, Gao H, Li J, Xu X. Current Strategies and Potential Prospects for Nanoparticle-Mediated Treatment of Diabetic Nephropathy. Diabetes Metab Syndr Obes 2022; 15:2653-2673. [PMID: 36068795 PMCID: PMC9441178 DOI: 10.2147/dmso.s380550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic nephropathy (DN), a severe microvascular complication of diabetes mellitus (DM), is the most common form of chronic kidney disease (CKD) and a leading cause of renal failure in end-stage renal disease. No currently available treatment can achieve complete cure. Traditional treatments have many limitations, such as painful subcutaneous insulin injections, nephrotoxicity and hepatotoxicity with oral medication, and poor patient compliance with continual medication intake. Given the known drawbacks, recent research has suggested that nanoparticle-based drug delivery platforms as therapeutics may provide a promising strategy for treating debilitating diseases such as DN in the future. This administration method provides multiple advantages, such as delivering the loaded drug to the precise target of action and enabling early prevention of CKD progression. This article discusses the development of the main currently used nanoplatforms, such as liposomes, polymeric NPs, and inorganic NPs, as well as the prospects and drawbacks of nanoplatform application in the treatment of CKD.
Collapse
Affiliation(s)
- Chunkang Liu
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Kunzhe Wu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Huan Gao
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jianyang Li
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiaohua Xu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
- Correspondence: Xiaohua Xu, Email
| |
Collapse
|
26
|
Xuan C, Luo Y, Xiong Y, Zhang Y, Tao C, Cao W. Multitarget mechanism of Yiqi Jiedu Huayu decoction on diabetic cardiomyopathy based on network pharmacology. Eur J Integr Med 2021. [DOI: 10.1016/j.eujim.2021.101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Wang G, Zeng L, Huang Q, Lu Z, Sui R, Liu D, Zeng H, Liu X, Chu S, Kou X, Li H. Exploring the Molecular Mechanism of Liuwei Dihuang Pills for Treating Diabetic Nephropathy by Combined Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:7262208. [PMID: 34552655 PMCID: PMC8452392 DOI: 10.1155/2021/7262208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a common and serious complication of diabetes, but without a satisfactory treatment strategy till now. Liuwei Dihuang pills (LDP), an effective Chinese medicinal formula, has been used to treat DN for more than 1000 years. However, its underlying mechanism of action is still vague. METHODS Active compounds and corresponding targets of LDP were predicted from the TCMSP database. DN disease targets were extracted from the OMIM, GeneCards, TTD, DisGeNET, and DrugBank databases. Subsequently, the "herbal-compound-target" network and protein-protein interaction (PPI) network were constructed and analyzed via the STRING web platform and Cytoscape software. GO functional and KEGG pathway enrichment analyses were carried out on the Metascape web platform. Molecular docking utilized AutoDock Vina and PyMOL software. RESULTS 41 active components and 186 corresponding targets of LDP were screened out. 131 common targets of LDP and DN were acquired. Quercetin, kaempferol, beta-sitosterol, diosgenin, and stigmasterol could be defined as five crucial compounds. JUN, MAPK8, AKT1, EGF, TP53, VEGFA, MMP9, MAPK1, and TNF might be the nine key targets. The enrichment analysis showed that common targets were mainly associated with inflammation reaction, oxidative stress, immune regulation, and cell apoptosis. AGE-RAGE and IL-17 were the suggested two significant signal pathways. Molecular docking revealed that the nine key targets could closely bind to their corresponding active compounds. CONCLUSION The present study fully reveals the multicompound's and multitarget's characteristics of LDP in DN treatment. Furthermore, this study provides valuable evidence for further scientific research of the pharmacological mechanisms and broader clinical application.
Collapse
Affiliation(s)
- Gaoxiang Wang
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen 518033, Guangdong, China
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China
| | - Lin Zeng
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong, China
| | - Qian Huang
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong, China
| | - Zhaoqi Lu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong, China
| | - Ruiqing Sui
- Department of Oncology, Lishui District Traditional Chinese Medicine Hospital, Nanjing 211200, Jiangsu, China
| | - Deliang Liu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China
| | - Hua Zeng
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen 518033, Guangdong, China
| | - Xuemei Liu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China
| | - Shufang Chu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China
| | - Xinhui Kou
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China
| | - Huilin Li
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China
| |
Collapse
|
28
|
Xuan C, Xi YM, Zhang YD, Tao CH, Zhang LY, Cao WF. Yiqi Jiedu Huayu Decoction Alleviates Renal Injury in Rats With Diabetic Nephropathy by Promoting Autophagy. Front Pharmacol 2021; 12:624404. [PMID: 33912044 PMCID: PMC8072057 DOI: 10.3389/fphar.2021.624404] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetic nephropathy (DN), a common microvascular complication of diabetes, is one of the main causes of end-stage renal failure (ESRD) and imposes a heavy medical burden on the world. Yiqi Jiedu Huayu decoction (YJHD) is a traditional Chinese medicine formula, which has been widely used in the treatment of DN and has achieved stable and reliable therapeutic effects. However, the mechanism of YJHD in the treatment of DN remains unclear. This study aimed to investigate the mechanism of YJHD in the treatment of DN. Sprague-Dawley rats were randomly divided into a normal control group, a diabetic group, an irbesartan group, and three groups receiving different doses of YJHD. Animal models were constructed using streptozotocin and then treated with YJHD for 12 consecutive weeks. Blood and urine samples were collected during this period, and metabolic and renal function was assessed. Pathological kidney injury was evaluated according to the kidney appearance, hematoxylin-eosin staining, Masson staining, periodic-acid Schiff staining, periodic-acid Schiff methenamine staining, and transmission electron microscopy. The expression levels of proteins and genes were detected by immunohistochemistry, western blotting, and real-time qPCR. Our results indicate that YJHD can effectively improve renal function and alleviate renal pathological injury, including mesangial matrix hyperplasia, basement membrane thickening, and fibrosis. In addition, YJHD exhibited podocyte protection by alleviating podocyte depletion and morphological damage, which may be key in improving renal function and reducing renal fibrosis. Further study revealed that YJHD upregulated the expression of the autophagy-related proteins LC3II and Beclin-1 while downregulating p62 expression, suggesting that YJHD can promote autophagy. In addition, we evaluated the activity of the mTOR pathway, the major signaling pathway regulating the level of autophagy, and the upstream PI3K/Akt and AMPK pathways. YJHD activated the AMPK pathway while inhibiting the PI3K/Akt and mTOR pathways, which may be crucial to its promotion of autophagy. In conclusion, our study shows that YJHD further inhibits the mTOR pathway and promotes autophagy by regulating the activity of the PI3K/Akt and AMPK pathways, thereby improving podocyte injury, protecting renal function, and reducing renal fibrosis. This study provides support for the application of and further research into YJHD.
Collapse
Affiliation(s)
- Chen Xuan
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Yu-Meng Xi
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China.,College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Yu-Di Zhang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China.,College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Chun-He Tao
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China.,College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Lan-Yue Zhang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China.,College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Wen-Fu Cao
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China.,College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
29
|
Ali FEM, Hassanein EHM, El-Bahrawy AH, Omar ZMM, Rashwan EK, Abdel-Wahab BA, Abd-Elhamid TH. Nephroprotective effect of umbelliferone against cisplatin-induced kidney damage is mediated by regulation of NRF2, cytoglobin, SIRT1/FOXO-3, and NF- kB-p65 signaling pathways. J Biochem Mol Toxicol 2021; 35:e22738. [PMID: 33522649 DOI: 10.1002/jbt.22738] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/19/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
Cisplatin (Cis) is one of the most potent and effective broad-spectrum antitumor drugs, but its use is limited due to nephrotoxicity. The current study investigated the renoprotective effect of umbelliferone (UMB) on Cis-induced nephrotoxicity in rats. Renal injury was induced by a single injection of Cis (7 mg/kg, ip). Our results exhibited that the injection of Cis significantly disrupted renal function biomarkers as well as KIM-1 expression. The expressions of TNF-α, IL-1β, NF-kB-p65, and IKKβ were elevated along with downregulation of IkBα expression. Also, Cis disrupted cellular oxidant/antioxidant balance through the reduction of glutathione (GSH), glutathione-S-transferase (GST), and superoxide dismutase (SOD) levels and elevation of malondialdehyde (MDA) content. On the contrary, the levels of renal function biomarkers, cytokines, NF-kB-p65, IkBα, IKKβ, and oxidant/antioxidant status have been improved after UMB treatment. Mechanistically, rats administered Cis only exhibited a significant decrease in NRF2 and cytoglobin expressions as well as the CREB, SIRT1, FOXO-3, and PPAR-γ genes. Treatment with UMB significantly upregulated NRF2 and cytoglobin proteins, as well as effectively increased the expression of CREB, SIRT1, FOXO-3, PPAR-γ, and NRF2 genes. Histopathological findings strongly supported our biochemical results, as evidenced by attenuation of renal hemorrhage, cast diffusion, and inflammatory cell infiltration. Interestingly, UMB significantly enhanced Cis cytotoxicity in both HL-60 and HeLa cells in a dose-dependent manner. Together, our results demonstrated that UMB can protect against Cis-induced nephrotoxicity in normal rats along with the enhancement of its in vitro antitumor activity. These findings suggested that UMB could be used as a potential adjuvant therapy in Cis chemotherapeutic protocols.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ali H El-Bahrawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Zainab M M Omar
- Department of Pharmacology, College of Medicine, Al-Azhar University, Assiut, Egypt
| | - Eman K Rashwan
- Department of Physiology, College of Medicine, Al-Azhar University, Assiut, Egypt
| | - Basil A Abdel-Wahab
- Department of Pharmacology, School of Pharmacy, Najran University, Najran, Saudi Arabia.,Department of Pharmacology, Assiut University, Assiut, Egypt
| | - Tarek H Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
30
|
Li Q, Ming Y, Jia H, Wang G. Poricoic acid A suppresses TGF-β1-induced renal fibrosis and proliferation via the PDGF-C, Smad3 and MAPK pathways. Exp Ther Med 2021; 21:289. [PMID: 33717232 PMCID: PMC7885072 DOI: 10.3892/etm.2021.9720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Renal interstitial fibrosis is the most important pathological process in chronic renal failure. Previous studies have shown that poricoic acid A (PAA), the main chemical constituent on the surface layer of the mushroom Poria cocos, has protective effects against oxidative stress and acute kidney injury. The present study aimed to investigate the potential roles of PAA on the pathological process of renal fibrosis and the associated molecular mechanism. The NRK-49F cell line was treated with transforming growth factor-β1 (TGF-β1) with or without PAA or platelet-derived growth factor C (PDGF-C). Cell Counting Kit-8 assay, western blotting and 5-ethynyl-2'-deoxyuridine immunofluorescence staining were performed to examine cell growth, protein expression and cell proliferation, respectively. Data from the present study showed that 10 µM PAA attenuated TGF-β1-induced NRK-49F cell extracellular matrix (ECM) accumulation, fibrosis formation and proliferation. Renal fibrosis with the activation of Smad3 and mitogen-activated protein kinase (MAPK) pathways were also inhibited by PAA treatment. PDGF-C reversed the inhibitory effects of PAA on TGF-β1-induced renal fibroblast proliferation and activation of the Smad3/MAPK pathway. The present study suggested that suppression of TGF-β1-induced renal fibroblast ECM accumulation, fibrosis formation and proliferation by PAA is mediated via the inhibition of the PDGF-C, Smad3 and MAPK pathways. The present findings not only revealed the potential anti-fibrotic effects of PAA on renal fibroblasts, but also provided a new insight into the prevention of fibrosis formation via regulation of the PDGF-C, Smad3 and MAPK signaling pathways.
Collapse
Affiliation(s)
- Qiang Li
- Department of Nephrology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yao Ming
- Department of Nephrology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Hu Jia
- Department of Nephrology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Gang Wang
- Department of Nephrology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
31
|
Huang HZ, Qiu M, Lin JZ, Li MQ, Ma XT, Ran F, Luo CH, Wei XC, Xu RC, Tan P, Fan SH, Yang M, Han L, Zhang DK. Potential effect of tropical fruits Phyllanthus emblica L. for the prevention and management of type 2 diabetic complications: a systematic review of recent advances. Eur J Nutr 2021; 60:3525-3542. [PMID: 33439332 DOI: 10.1007/s00394-020-02471-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Phyllanthus emblica is a fruit widely consumed in subtropical areas, which is rich in polyphenols and other nutrients. There are increasing evidences that as a daily and nutritious fruit, it may have a positive role in controlling diabetic complications. According to the new study, its mechanisms include enhancing the functioning of insulin, reducing insulin resistance, activating the insulin-signaling pathway, protecting β-cells, scavenging free radicals, alleviating inflammatory reactions, and reducing the accumulation of advanced glycation end products. Owing to its few side effects, and low price, it should be easily accepted by patients and has potential for preventing diabetes. Taken together, Phyllanthus emblica may be an ideal fruit for controlling diabetic complications. This review highlights the latest findings of the role of Phyllanthus emblica in anti-diabetes and its complications, especially clarifies the molecular mechanism of the chemical components related to this effect, and prospects some existing problems and future research directions.
Collapse
Affiliation(s)
- Hao-Zhou Huang
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China
| | - Min Qiu
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China
| | - Jun-Zhi Lin
- Teaching Hospital of Chengdu University of TCM, Chengdu, 610072, China
| | - Meng-Qi Li
- Sichuan Nursing Vocational College, Chengdu, 610100, China
| | - Xi-Tao Ma
- Teaching Hospital of Chengdu University of TCM, Chengdu, 610072, China
| | - Fei Ran
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China
| | - Chuan-Hong Luo
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China
| | - Xi-Chuan Wei
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China
| | - Run-Chun Xu
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China
| | - Peng Tan
- State Key Laboratory of Biological Evaluation of Traditional Chinese Medicine Quality, National Administration of TCM, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - San-Hu Fan
- Sanajon Pharmaceutical Group, Chengdu, 610000, China
| | - Ming Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Li Han
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China.
| | - Ding-Kun Zhang
- Pharmacy College, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of TCM, Chengdu, 611137, China.
| |
Collapse
|
32
|
Kiełbasiński K, Peszek W, Grabarek BO, Boroń D, Wierzbik-Strońska M, Oplawski M. Effect of Salinomycin on Expression Pattern of Genes Associated with Apoptosis in Endometrial Cancer Cell Line. Curr Pharm Biotechnol 2020; 21:1269-1277. [PMID: 32400328 PMCID: PMC7604770 DOI: 10.2174/1389201021666200513074022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/08/2020] [Accepted: 03/25/2020] [Indexed: 12/15/2022]
Abstract
Background Salinomycin is part of a group of ionophore antibiotics characterized by an activity towards tumor cells. To this day, the mechanism through which salinomycin induces their apoptosis is not fully known yet. The goal of this study was to assess the expression pattern of genes and the proteins coded by them connected with the process of programmed cell death in an endometrial cancer cell Ishikawa culture exposed to salinomycin and compared to the control. Materials and Methods Analysis of the effect of salinomycin on Ishikawa endometrial cancer cells (ECACC 99040201) included a cytotoxicity MTT test (with a concentration range of 0.1-100 µM), assessment of the induction of apoptosis and necrosis by salinomycin at a concentration of 1 µM as well the assessment of the expression of the genes chosen in the microarray experiment (microarray HG-U 133A_2) and the proteins coded by them connected with apoptosis (RTqPCR, ELISA assay). The statistical significance level for all analyses carried out as part of this study was p<0.05. Results It was observed that salinomycin causes the death of about 50% of cells treated by it (50.74±0.80% of all cells) at a concentration of 1µM. The decrease in the number of living cells was determined directly after treatment of the cells with the drug (time 0). The average percent of late apoptotic cells was 1.65±0.24% and 0.57±0.01% for necrotic cells throughout the entire observation period. Discussion Microarray analysis indicated the following number of mRNA differentiating the culture depending on the time of incubation with the drug: H_12 vs C = 114 mRNA, H_8 vs C = 84 mRNA, H_48 vs. C = 27 mRNA, whereas 5 mRNAs were expressed differently at all times. During the whole incubation period of the cells with the drug, the following dependence of the expression profile of the analyzed transcripts was observed: Bax>p53>FASL>BIRC5>BCL2L. Conclusion The analysis carried out indicated that salinomycin, at a concentration of 1 µM, stopped the proliferation of 50% of endometrial cancer cells, mainly by inducing the apoptotic process of the cells. The molecular exponent of the induction of programmed cell death was an observed increase in the transcriptional activity of pro-apoptotic genes: Bax;p53;FASL and a decrease in the expression of anti-apoptotic genes: BCL2L2; BIRC5.
Collapse
Affiliation(s)
- Kamil Kiełbasiński
- Department of Obsterics and Gynaecology in Ruda Slaska, Medical University of Silesia, Ruda Slaska, Poland
| | - Wojciech Peszek
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| | - Beniamin O Grabarek
- Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology Krakow Branch, Kraków, Poland,Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Zabrze, Poland
| | - Dariusz Boroń
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland,Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology Krakow Branch, Kraków, Poland,Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Zabrze, Poland
| | | | - Marcin Oplawski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| |
Collapse
|
33
|
Zhang R, Lu M, Zhang S, Liu J. Renoprotective effects of Tilianin in diabetic rats through modulation of oxidative stress via Nrf2-Keap1 pathway and inflammation via TLR4/MAPK/NF-κB pathways. Int Immunopharmacol 2020; 88:106967. [PMID: 33182074 DOI: 10.1016/j.intimp.2020.106967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 01/09/2023]
Abstract
The present study was undertaken to assess the protective effects of Tilianin (TN) on type-2 diabetes-induced renal dysfunction in experimental rats. Diabetes was induced by injecting Nicotinamide (110 mg/kg) and streptozotocin (55 mg/kg) by i.p. and then the rats were treated with TN (10 and 20 mg/kg) daily by oral gavage for 28 days. TN treatment significantly decreases the BUN, creatinine, 24-hour urinary protein, urea, uric acid, and albumin protein levels. The protein of expression of Nrf2, NQO1, and HO-1 was augmented while the expression of Keap-1 decreased significantly. TN also reduces the oxidative/nitrosative status by lowering MDA content, NO, and MPO levels. TN exerted anti-inflammatory effects by suppressing TLR4/NF-κB/MAPK signaling cascades and inhibiting MyD88, TRAF6, IκBα, p38MAPK, JNK, and ERK2 in the diabetic rats. Histopathological findings supported the biochemical and molecular results. The results showed that TN modulated Nrf2-Keap1 and TLR4/MAPK/NF-κB signaling pathways and provided significant protection against diabetes-induced renal dysfunction.
Collapse
Affiliation(s)
- Ruibin Zhang
- Department of Nephrology, Central Hospital Affiliated to Shandong First Medical University, Jinan City 250013, China
| | - Min Lu
- Department of Nephrology, Central Hospital Affiliated to Shandong First Medical University, Jinan City 250013, China
| | - Shan Zhang
- Department of Nephrology, Central Hospital Affiliated to Shandong First Medical University, Jinan City 250013, China
| | - Jinyan Liu
- Department of Nephrology, Jining First People's Hospital, Jining 272000, China.
| |
Collapse
|
34
|
Intranasal administration of Cytoglobin modifies human umbilical cord‑derived mesenchymal stem cells and improves hypoxic‑ischemia brain damage in neonatal rats by modulating p38 MAPK signaling‑mediated apoptosis. Mol Med Rep 2020; 22:3493-3503. [PMID: 32945464 PMCID: PMC7453519 DOI: 10.3892/mmr.2020.11436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/17/2020] [Indexed: 12/21/2022] Open
Abstract
Neonatal hypoxic‑ischemic brain damage (HIBD) is a common clinical syndrome in newborns. Hypothermia is the only approved therapy for the clinical treatment; however, the therapeutic window of hypothermia is confined to 6 h after birth and even then, >40% of the infants either die or survive with various impairments, including cerebral palsy, seizure disorder and intellectual disability following hypothermic treatment. The aim of the present study was to determine whether nasal transplantation of Cytoglobin (CYGB) genetically modified human umbilical cord‑derived mesenchymal stem cells (CYGB‑HuMSCs) exhibited protective effects in neonatal rats with HIBD compared with those treated without genetically modified CYGB. A total of 120 neonatal Sprague‑Dawley rats (postnatal day 7) were assigned to either a Sham, HIBD, HuMSCs or CYGB‑HuMSCs group (n = 30 rats/group). For HIBD modeling, rats underwent left carotid artery ligation and were exposed to 8% oxygen for 2.5 h. A total of 30 min after HI, HuMSCs (or CYGB‑HuMSCs) labeled with enhanced‑green fluorescent protein (eGFP) were intranasally administered. After modeling for 3, 14 and 29 days, five randomly selected rats were sacrificed in each group, and the expression levels of CYGB, ERK, JNK and p38 in brain tissues were determined. Nissl staining of the cortex and hippocampal Cornu Ammonis 1 area of rats in each group were compared after 3 days of modeling. TUNEL assay and immunofluorescence were performed 3 days after modeling. Long term memory in rats was assessed using a Morris‑water maze 29 days after modeling. The HIBD group demonstrated significant deficiencies compared with the Sham group based on Nissl staining, TUNEL assay and the Morris‑water maze test. HuMSC treated rats exhibited improvement on in all the tests, and CYGB‑HuMSCs treatment resulted in further improvements. PCR and western blotting results indicated that the CYGB mRNA and protein levels were increased from day 3 to day 29 after transplantation of CYGB‑HuMSCs. Furthermore, it was identified that CYGB‑HuMSC transplantation suppressed p38 signaling at all experimental time points. Immunofluorescence indicated the scattered presence of HuMSCs or CYGB‑HuMSCs in damaged brain tissue. No eGFP and glial fibrillary acidic protein or eGFP and neuron‑specific enolase double‑stained positive cells were found in the brain tissues. Therefore, CYGB‑HuMSCs may serve as a gene transporter, as well as exert a neuroprotective and antiapoptotic effect in HIBD, potentially via the p38 mitogen‑activated protein kinase signaling pathway.
Collapse
|
35
|
Lin Y, Zhong L, Li H, Xu Y, Li X, Zheng D. Psoralen alleviates high glucose-induced HK-2 cell injury by inhibition of Smad 2 signaling via upregulation of microRNA 874. BMC Pharmacol Toxicol 2020; 21:52. [PMID: 32698907 PMCID: PMC7376944 DOI: 10.1186/s40360-020-00434-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/16/2020] [Indexed: 12/31/2022] Open
Abstract
Background Diabetic nephropathy (DN) causes the vast proportion of excess mortality for patients with diabetes. Novel therapeutic approaches slowing down its incidence is still lacking. Psoralen is the major active ingredient of Psoralea corylifolia Linn. (PCL), which was used to treat a number of diseases. In this study, we aimed to investigate whether psoralen could alleviate DN using in vitro model. Methods Cell viability assay and immunofluorescence were used to evaluate the effect of psoralen on high glucose (HG)-stimulated human kidney HK-2 cells (48 h). RT-qPCR was used to detect the expressions of miRNA in cells. Cell transfection, apoptosis assay, inflammatory cytokines detection and Western blot were further performed to explore the underlying molecular mechanisms. Results HG-induced toxicity of HK-2 cells was alleviated by psoralen. Meanwhile, the secretion of inflammatory cytokines and extracellular matrix (ECM) accumulation induced by HG in HK-2 cells were also decreased by psoralen. In addition, the expression of miR-874 in HK-2 cells was significantly upregulated by psoralen. Western blot assays indicated that psoralen could reverse HG-induced increase of TLR-4/NF-κB and Smad2 via upregulation of miR-874. Conclusion This study demonstrated that psoralen could significantly alleviate HG-induced HK-2 cell injury via upregulation of miR-874. In addition, HG-induced increase of TLR-4/NF-κB and Smad2 was revered by psoralen. Therefore, psoralen might serve as an agent for the treatment of DN.
Collapse
Affiliation(s)
- Yongtao Lin
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223001, PR China
| | - Lili Zhong
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223001, PR China
| | - Hailun Li
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223001, PR China
| | - Yong Xu
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223001, PR China
| | - Xiang Li
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223001, PR China
| | - Donghui Zheng
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223001, PR China.
| |
Collapse
|
36
|
Meng X, Wei M, Wang D, Qu X, Zhang K, Zhang N, Li X. Astragalus polysaccharides protect renal function and affect the TGF- β/Smad signaling pathway in streptozotocin-induced diabetic rats. J Int Med Res 2020; 48:300060520903612. [PMID: 32475187 PMCID: PMC7263164 DOI: 10.1177/0300060520903612] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/09/2020] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVES The objective was to observe the effects of Astragalus polysaccharides on diabetes and on regulation of the TGF-β/Smad signaling pathway. METHODS A type 2 diabetic rat model was established with a high-fat diet in combination with low-dose streptozotocin (35 mg/kg). Astragalus polysaccharides were applied as treatment intervention and changes in blood glucose and kidney morphology and function were assessed. RESULTS Eight weeks after model establishment, kidney weight as a proportion of total weight (KW/TW) in the high-, medium-, and low-dose Astragalus polysaccharide groups was significantly lower than that in the model group, and the KW/TW value gradually decreased with increasing dose of polysaccharides in each treatment group. Fasting blood glucose in the low- and medium-dose Astragalus polysaccharide groups was numerically lower than that in the model group and fasting blood glucose in rats in the high-dose group was significantly lower than that in the model group. Levels of 24-hour urinary microalbumin, creatinine, blood urea nitrogen, collagens I, III, and IV, α-smooth muscle actin, transforming growth factor-β1, and Smad3 in Astragalus polysaccharide groups (all doses) were significantly lower than those in the model group. CONCLUSIONS Astragalus polysaccharide significantly improved blood glucose and protected kidney function in a rat diabetes model.
Collapse
Affiliation(s)
- Xue Meng
- Department of Nephrology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Mingmin Wei
- Department of Nephrology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Dong Wang
- Department of Nephrology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xiaohan Qu
- Department of Nephrology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Kun Zhang
- Department of Nephrology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Nan Zhang
- Department of Nephrology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xinjian Li
- Department of Nephrology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
37
|
Meng X, Ma J, Kang SY, Jung HW, Park YK. Jowiseungki decoction affects diabetic nephropathy in mice through renal injury inhibition as evidenced by network pharmacology and gut microbiota analyses. Chin Med 2020; 15:24. [PMID: 32190104 PMCID: PMC7066842 DOI: 10.1186/s13020-020-00306-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background Jowiseungki decoction (JSD) is a prescription commonly used for the treatment of diabetic complications or diabetic nephropathy (DN) in traditional medicine clinics. However, the underlying therapeutic mechanisms of JSD are still unclear. Methods Streptozotocin (STZ)-induced DN mice were administered 100 and 500 mg/kg JSD for 4 weeks, and the therapeutic mechanisms and targets of JSD were analyzed by network pharmacology and gut microbiota analyses. Results JSD significantly decreased the increase in food and water intake, urine volume, fasting blood glucose, serum glucose and triglyceride levels, and urinary albumin excretion. JSD administration significantly increased the decrease in insulin secretion and creatinine clearance and reduced the structural damage to the kidney tissues. Moreover, JSD administration significantly inhibited the expression of protein kinase C-alpha (PKC-α), transforming growth factor beta-1 (TGF-β1), α-smooth muscle actin (α-SMA), nuclear factor-κB (NF-κB), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in the kidney tissues of DN mice, while it significantly increased the phosphorylation of insulin receptor substrate 1 (IRS-1), phosphatidylinositol-3-kinase (PI3K), and protein kinase B (Akt). In the network pharmacological analysis, JSD obviously influenced phosphatase binding, protein serine/threonine kinase, and mitogen-activated protein kinase (MAPK)-related signaling pathways. Our data suggest that JSD can improve symptoms in STZ-induced DN mice through the inhibition of kidney dysfunction, in particular, by regulating the PKCα/PI3K/Akt and NF-κB/α-SMA signaling pathways. Gut microbiota analysis can help to discover the pharmaco-mechanisms of the influence of JSD on bacterial diversity and flora structures in DN. Conclusion JSD can improve the symptoms of DN, and the underlying mechanism of this effect is renal protection through the inhibition of fibrosis and inflammation. JSD can also change bacterial diversity and community structures in DN.
Collapse
Affiliation(s)
- Xianglong Meng
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea.,Experimental Teaching Center, College of Chinese Materia Medica, Shanxi University of Chinese Medicine, Jinzhong, 030619 China
| | - Junnan Ma
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea
| | - Seok Yong Kang
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea
| | - Hyo Won Jung
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea
| | - Yong-Ki Park
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea
| |
Collapse
|
38
|
Li HY, Fang JJ, Shen HD, Zhang XQ, Ding XP, Liu JF. "Quantity-effect" research strategy for comparison of antioxidant activity and quality of Rehmanniae Radix and Rehmannia Radix Praeparata by on-line HPLC-UV-ABTS assay. BMC Complement Med Ther 2020; 20:16. [PMID: 32020888 PMCID: PMC7076824 DOI: 10.1186/s12906-019-2798-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022] Open
Abstract
Background Quantitation analysis and chromatographic fingerprint of multi-components are frequently used to evaluate quality of herbal medicines but fail to reveal activity of the components. It is necessary to develop a rational approach of chromatography coupled with activity detection for quality assessment of herbal medicines. Methods An on-line HPLC-ultraviolet detection-2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) free radical scavenging (HPLC-UV-ABTS) method was developed to obtain the chromatographic fingerprints and ABTS+• inhibition profiles (active fingerprints) of Rehmanniae Radix (Dihuang) and Rehmannia Radix Praeparata (Shu Dihuang). Eighteen compounds showing ABTS+• inhibition activity were identified by HPLC-fourier-transform mass spectrometry (HPLC-FTMS). Verbascoside was used as a positive control to evaluate the total activities of the samples and the contribution rate of each compound. The similarities of the chromatographic and active fingerprints were estimated by the vectorial angle cosine method. Results The results showed that the HPLC-UV-ABTS method could efficiently detect antioxidant activity of the herbal medicine samples. The antioxidants were different between the two herbs and several new antioxidants were identified in Shu Dihuang. A function equation was generated in terms of the negative peak area (x) and the concentrations of verbascoside (y, μg/mL), y = 2E-07 × 4 - 8E-05 × 3 + 0.0079 × 2 + 0.5755x + 1.4754, R2 = 1. Iridoid glycosides were identified as main antioxidants and showed their higher contributions to the total activity of the samples. The total contributions of the three main active components in the Dihuang and Shu Dihuang samples to the total activity, such as echinacoside, verbascoside and an unknown compound, were 39.2–58.1% and 55.9–69.4%, respectively. The potencies of the main active components in the Shu Dihuang samples were two to ten times those in the Dihuang samples. Similarity values for S12 in the chromatographic fingerprints and S03, S12 and P03 in the active fingerprints were less than 0.9. The three batches of samples might show their different quality with the other samples. Conclusions The results suggested that the combination of “quantity-effect” research strategy and the HPLC-UV-ABTS analysis method could comprehensively evaluate the active components and quality of Dihuang and Shu Dhuang.
Collapse
Affiliation(s)
- Hong-Ying Li
- Hubei Institute for Drug Control, Wuhan, 430075, Hubei, China
| | - Jiang-Ji Fang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Hua-Dan Shen
- MOE Key Laboratory of Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China
| | - Xue-Qiong Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Xiao-Ping Ding
- Hubei Institute for Drug Control, Wuhan, 430075, Hubei, China.
| | - Jun-Feng Liu
- MOE Key Laboratory of Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China.
| |
Collapse
|
39
|
Molecular mechanism of action of Liuwei Dihuang pill for the treatment of osteoporosis based on network pharmacology and molecular docking. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2019.101009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
40
|
He D, Huang JH, Zhang ZY, Du Q, Peng WJ, Yu R, Zhang SF, Zhang SH, Qin YH. A Network Pharmacology-Based Strategy For Predicting Active Ingredients And Potential Targets Of LiuWei DiHuang Pill In Treating Type 2 Diabetes Mellitus. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3989-4005. [PMID: 31819371 PMCID: PMC6890936 DOI: 10.2147/dddt.s216644] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/27/2019] [Indexed: 01/14/2023]
Abstract
Background Traditional Chinese medicine (TCM) formulations have proven to be advantageous in clinical treatment and prevention of disease. LiuWei DiHuang Pill (LWDH Pill) is a TCM that was employed to treat type 2 diabetes mellitus (T2DM). However, a holistic network pharmacology approach to understanding the active ingredients and the therapeutic mechanisms underlying T2DM has not been pursued. Methods A network pharmacology approach including drug-likeness evaluation, oral bioavailability prediction, virtual docking, and network analysis has been used to predict the active ingredients and potential targets of LWDH Pill in the treatment of type 2 diabetes. Results The comprehensive network pharmacology approach was successfully to identify 45 active ingredients in LWDH Pill. 45 active ingredients hit by 163 potential targets related to T2DM. Ten of the more highly predictive components (such as :quercetin, Kaempferol, Stigmasterol, beta-sitosterol, Kadsurenone, Diosgenin, hancinone C, Hederagenin, Garcinone B, Isofucosterol) are involved in anti-inflammatory, anti-oxidative stress, and the reduction of beta cell damage. LWDH Pill may play a role in the treatment of T2DM and its complications (atherosclerosis and nephropathy) through the AGE-RAGE signaling pathway, TNF signaling pathway, and NF-kappa B signaling pathway. Conclusion Based on a systematic network pharmacology approach, our works successfully predict the active ingredients and potential targets of LWDH Pill for application to T2DM and helps to illustrate mechanism of action on a comprehensive level. This study provides identify key genes and pathway associated with the prognosis and pathogenesis of T2DM from new insights, which also demonstrates a feasible method for the research of chemical basis and pharmacology in LWDH Pill.
Collapse
Affiliation(s)
- Dan He
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China
| | - Jian-Hua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China.,Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Changsha, Hunan 410208, People's Republic of China.,2011 Collaboration and Innovation Center for Digital Chinese Medicine in Hunan, Changsha 410013, People's Republic of China
| | - Zhe-Yu Zhang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Qing Du
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China
| | - Wei-Jun Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Rong Yu
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China.,Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Si-Fang Zhang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Shui-Han Zhang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China
| | - Yu-Hui Qin
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|
41
|
Zheng W, Wang G, Zhang Z, Wang Z, Ma K. Research progress on classical traditional Chinese medicine formula Liuwei Dihuang pills in the treatment of type 2 diabetes. Biomed Pharmacother 2019; 121:109564. [PMID: 31683180 DOI: 10.1016/j.biopha.2019.109564] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/24/2019] [Accepted: 10/20/2019] [Indexed: 01/02/2023] Open
Abstract
In traditional Chinese medicine (TCM), type 2 diabetes mellitus (T2DM) is regarded as Xiao Ke disease. Liuwei Dihuang pills (LWP), a classical TCM formula, with the function of nourishing kidney yin, has been used for treating Xiao Ke disease in clinic. In this review, we systematically highlighted recent evidence on LWP and T2DM data from clinical and animal studies, summarized the clinical application, pharmacological mechanism and the active compounds of LWP for the treatment of T2DM. This systematic review will provide an insightful understanding of TCM formulas, pharmacological mechanisms, medicinal-disease interactions, and will lay a foundation for the development of new drug therapy for T2DM.
Collapse
Affiliation(s)
- Wenjie Zheng
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Gaofeng Wang
- Department of Traditional Chinese Medicine Internal Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinn 25001, PR China
| | - Zhe Zhang
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zhenguo Wang
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Ke Ma
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
42
|
Xie S, Ge F, Yao Y, Zhang W, Wang S, Zhang M, Zhong R, Fang L, Qu D. The aqueous extract of Lycopus lucidus Turcz exerts protective effects on podocytes injury of diabetic nephropathy via inhibiting TGF-β1 signal pathway. Am J Transl Res 2019; 11:5689-5702. [PMID: 31632540 PMCID: PMC6789289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Diabetic nephropathy (DN) is known as a major microvascular complication leading cause of end-stage renal disease, it generally followed by the process of podocyte fragmentation and detachment. Transforming growth factor β1 (TGF-β1) signaling pathway plays a pivotal role in the initiation and progression of DN. In present study, we aim to investigate the effect of lycopus extracts on podocytes injury and TGF-β signaling. In present study, lycopus extracts treatment abolished the gain in blood glucose and body weight in a dose dependent manner and possessed protective effect on the renal damage, which was indicated by the decreased concentration of Scr, BUN and urine creatinine of serum. Histopathological examination also demonstrated lycopus extracts exert protective effect on renal damage. Western blotting and immunohistochemical results revealed lycopus extracts treatment upregulated the expression of nephrin and down-regulated the expression levels of TGF-β1 and Smad4. Moreover, lycopus extracts treatment suppressed TGF-β1-induced phosphorylation of Smad2/3, ERK1/2 and p38 both in vivo and vitro. In conclusion, lycopus extracts is a novel agent that ameliorate podocytes injury by inhibiting TGF-β signaling pathway and possess potential therapeutic effect on renal damage of DN rats.
Collapse
Affiliation(s)
- Shengfang Xie
- Department of Nephrology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing 210028, Jiangsu, China
- Department of Nephrology, Jiangsu Province Academy of Traditional Chinese MedicineNanjing 210028, Jiangsu, China
| | - Fengfeng Ge
- Department of Nephrology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing 210028, Jiangsu, China
- Department of Nephrology, Jiangsu Province Academy of Traditional Chinese MedicineNanjing 210028, Jiangsu, China
| | - Yuanzhang Yao
- Department of Nephrology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing 210028, Jiangsu, China
- Department of Nephrology, Jiangsu Province Academy of Traditional Chinese MedicineNanjing 210028, Jiangsu, China
| | - Wei Zhang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing 210028, Jiangsu, China
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese MedicineNanjing 210028, Jiangsu, China
| | - Shuopeng Wang
- Department of Nephrology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing 210028, Jiangsu, China
- Department of Nephrology, Jiangsu Province Academy of Traditional Chinese MedicineNanjing 210028, Jiangsu, China
| | - Min Zhang
- Department of Nephrology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing 210028, Jiangsu, China
- Department of Nephrology, Jiangsu Province Academy of Traditional Chinese MedicineNanjing 210028, Jiangsu, China
| | - Rongling Zhong
- Animal Experiment Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing 210028, Jiangsu, China
- Animal Experiment Center, Jiangsu Province Academy of Traditional Chinese MedicineNanjing 210028, Jiangsu, China
| | - Liming Fang
- Department of Nephrology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing 210028, Jiangsu, China
- Department of Nephrology, Jiangsu Province Academy of Traditional Chinese MedicineNanjing 210028, Jiangsu, China
| | - Ding Qu
- Research Center for Multicomponent Traditional Medicine and Microecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing 210028, Jiangsu, China
- Research Center for Multicomponent Traditional Medicine and Microecology, Jiangsu Province Academy of Traditional Chinese MedicineNanjing 210028, Jiangsu, China
| |
Collapse
|
43
|
Chang CM, Shih PH, Chen TJ, Ho WC, Yang CP. Integrated therapy decreases the mortality of patients with polymyositis and dermatomyositis: A Taiwan-wide population-based retrospective study. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:70-81. [PMID: 30818007 DOI: 10.1016/j.jep.2019.02.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The issue of whether integrated treatment with conventional medicine (CM) and herbal medicine (HM) can reduce mortality in patients with polymyositis/dermatomyositis (PM/DM) had not been addressed. AIM OF THE STUDY In this study, we investigated the effect of integrated therapy on mortality in a retrospective PM/DM cohort in the Taiwan National Health Insurance Research Database (NHIRD). MATERIALS AND METHODS Patients with PM/DM were retrospectively enrolled from the PM/DM Registry of Catastrophic Illnesses cohort in the Taiwan NHIRD between 1997 and 2011. The patients were divided into an integrated medicine (IM) group that received CM and HM and a non-IM group that received CM alone. The Cox proportional hazards regression model and Kaplan-Meier method were used to evaluate the hazard ratio (HR) for mortality. RESULTS Three hundred and eighty-five of 2595 patients with newly diagnosed PM/DM had received IM and 99 had received non-IM. The adjusted HR for mortality was lower in the IM group than in the non-IM group (0.42, 95% confidence interval 0.26-0.68, p < 0.001). The adjusted HR for mortality was also lower in the IM group that had received CM plus HM than in the group that received CM alone (0.48, 95% confidence interval 0.28-0.84, p < 0.05). The core pattern of HM prescriptions integrated with methylprednisolone, methotrexate, azathioprine, or cyclophosphamide to decrease mortality included "San-Qi" (Panax notoginseng), "Bai-Ji" (Bletilla striata), "Chen-Pi" (Citrus reticulata), "Hou-Po" (Magnolia officinalis), and "Dan-Shan" (Salvia miltiorrhiza). CONCLUSION Integrated therapy has reduced mortality in patients with PM/DM in Taiwan. Further investigation of the clinical effects and pharmaceutical mechanism involved is needed.
Collapse
Affiliation(s)
- Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Po-Hsuan Shih
- Department of Chinese Medicine, Cheng Hsin General Hospital, Taipei, Taiwan; Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Tzeng-Ji Chen
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Wen-Chao Ho
- Department of Public Health, China Medical University, Taichung, Taiwan.
| | - Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan; Department of Nutrition, Huang-Kuang University, Taichung, Taiwan.
| |
Collapse
|
44
|
Liu C, Li S, Zhang Q, Guo F, Tong M, Martinez MFYM, Wang HH, Zhao Y, Shang D. Emerging Role of Chinese Herbal Medicines in the Treatment of Pancreatic Fibrosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:709-726. [PMID: 31091974 DOI: 10.1142/s0192415x1950037x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic fibrosis is the main pathologic characteristic in chronic pancreatitis (CP), a common disease that arises from surgery. Pancreatitis is caused by various etiologies, but the mechanism of fibrosis is not completely understood. Existing clinical approaches mainly focus on mitigating the symptoms and therefore do not cure the phenomena. In recent years, there has been a heightened interest in the use of Chinese herbal medicine (CHMs) in the prevention and cure of CP as expressed by increasing numbers of clinical and experimental research. Despite early cell culture and animal models, CHMs are able to interact with plenty of molecular targets involved in the pathogenesis of pancreatic fibrosis mostly via the TGF- β /Smads pathway; however, integrated and up-to-date communication in this domain is unavailable. This review focuses on the research progress of CHMs against pancreatic fibrosis due to CP in vitro and in vivo and summarizes the potential mechanisms. We also outlined the toxicology of some CHMs for fibrosis treatment in order to provide a fuller understanding of drug safety. This review may provide reference for further innovative drug research and the future development of treatments for CP with pancreatic fibrosis.
Collapse
Affiliation(s)
- Chang Liu
- * Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China.,† Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Shuang Li
- * Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China.,† Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Qingkai Zhang
- * Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China.,† Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Fangyue Guo
- * Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China.,† Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Mengying Tong
- ‡ Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | | | - Heather H Wang
- ¶ Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Yutong Zhao
- ¶ Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Dong Shang
- * Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China.,† Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| |
Collapse
|
45
|
Lu Z, Zhong Y, Liu W, Xiang L, Deng Y. The Efficacy and Mechanism of Chinese Herbal Medicine on Diabetic Kidney Disease. J Diabetes Res 2019; 2019:2697672. [PMID: 31534972 PMCID: PMC6732610 DOI: 10.1155/2019/2697672] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most common microvascular complication of diabetes and is one of the main causes of end-stage renal disease (ESRD) in many countries. The pathological features of DKD are the hypertrophy of mesangial cells, apoptosis of podocytes, glomerular basement membrane (GBM) thickening, accumulation of extracellular matrix (ECM), glomerular sclerosis, and tubulointerstitial fibrosis. The etiology of DKD is very complicated and many factors are involved, such as genetic factors, hyperglycemia, hypertension, hyperlipidemia, abnormalities of renal hemodynamics, and metabolism of vasoactive substances. Although some achievements have been made in the exploration of the pathogenesis of DKD, the currently available clinical treatment methods are still not completely effective in preventing the progress of DKD to ESRD. CHM composed of natural products has traditionally been used for symptom relief, which may offer new insights into therapeutic development of DKD. We will summarize the progress of Chinese herbal medicine (CHM) in the treatment of DKD from two aspects. In clinical trials, the Chinese herbal formulas were efficacy and safety confirmed by the randomized controlled trials. In terms of experimental research, studies provided evidence for the efficacy of CHM from the perspectives of balancing metabolic disorders, reducing inflammatory response and oxidative stress, antifibrosis, protecting renal innate cells, and regulating microRNA and metabolism. CHM consisting of different ingredients may play a role in synergistic interactions and multiple target points in the treatment of DKD.
Collapse
Affiliation(s)
- Zhenzhen Lu
- The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yifei Zhong
- The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wangyi Liu
- The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ling Xiang
- The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yueyi Deng
- The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
46
|
Abstract
The main cellular constituents in glomerular mesangium are mesangial cells, which account for approximately 30-40% of the total cells in the glomerulus. Together with the mesangial matrix, mesangial cells form the glomerular basement membrane (GBM) in the glomerulus, whose main function is to perform the filtration. Under the pathologic conditions, mesangial cells are activated, leading to hyperproliferation and excess extracellular matrix (ECM). Moreover, mesangial cells also secrete several kinds of inflammatory cytokines, adhesion molecules, chemokines, and enzymes, all of which participate in the process of renal glomerular fibrosis. During the past years, researchers have revealed the roles of mesangial cells and the associated signal pathways involved in renal fibrosis. In this section, we will discuss how mesangial cells are activated and its contributions to renal fibrosis, as well as the molecular mechanisms and novel anti-fibrotic agents. Full understanding of the contributions of mesangial cells to renal fibrosis will benefit the clinical drug developing.
Collapse
Affiliation(s)
- Jing-Hong Zhao
- Department of Nephrology, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
47
|
Chen DQ, Hu HH, Wang YN, Feng YL, Cao G, Zhao YY. Natural products for the prevention and treatment of kidney disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:50-60. [PMID: 30466992 DOI: 10.1016/j.phymed.2018.09.182] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/18/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is one of the common causes resulting in a high morbidity and mortality. Renal fibrosis is the main pathological features of CKD. Natural products have begun to gain widely popularity worldwide for promoting healthcare and preventing CKD, and have been used as a conventional or complementary therapy for CKD treatment. PURPOSE The present paper reviewed the therapeutic effects of natural products on CKD and revealed the molecular mechanisms of their anti-fibrosis. METHODS All the available information on natural products against renal fibrosis was collected via a library and electronic search (using Web of Science, Pubmed, ScienceDirect, Splinker, etc.). RESULTS Accumulated evidence demonstrated that natural products exhibited the beneficial effects for CKD treatment and against renal fibrosis. This review presents an overview of the molecular mechanism of CKD and natural products against renal fibrosis, followed by an in-depth discussion of their molecular mechanism of natural products including isolated compounds and crude extracts against renal fibrosis in vitro and in vivo. A number of isolated compounds have been confirmed to retard renal fibrosis. CONCLUSION The review provides comprehensive insights into pathophysiological mechanisms of CKD and natural products against renal fibrosis. Particular challenges are presented and placed within the context of future applications of natural products against renal fibrosis.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - He-He Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Yan-Ni Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ya-Long Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
48
|
A Network Pharmacology Approach to Uncover the Mechanisms of Shen-Qi-Di-Huang Decoction against Diabetic Nephropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7043402. [PMID: 30519269 PMCID: PMC6241231 DOI: 10.1155/2018/7043402] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/15/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022]
Abstract
Shen-Qi-Di-Huang decoction (SQDHD), a well-known herbal formula from China, has been widely used in the treatment of diabetic nephropathy (DN). However, the pharmacological mechanisms of SQDHD have not been entirely elucidated. At first, we conducted a comprehensive literature search to identify the active constituents of SQDHD, determined their corresponding targets, and obtained known DN targets from several databases. A protein-protein interaction network was then built to explore the complex relations between SQDHD targets and those known to treat DN. Following the topological feature screening of each node in the network, 400 major targets of SQDHD were obtained. The pathway enrichment analysis results acquired from DAVID showed that the significant bioprocesses and pathways include oxidative stress, response to glucose, regulation of blood pressure, regulation of cell proliferation, cytokine-mediated signaling pathway, and the apoptotic signaling pathway. More interestingly, five key targets of SQDHD, named AKT1, AR, CTNNB1, EGFR, and ESR1, were significant in the regulation of the above bioprocesses and pathways. This study partially verified and predicted the pharmacological and molecular mechanisms of SQDHD on DN from a holistic perspective. This has laid the foundation for further experimental research and has expanded the rational application of SQDHD in clinical practice.
Collapse
|
49
|
Li S, Xiao X, Han L, Wang Y, Luo G. Renoprotective effect of Zhenwu decoction against renal fibrosis by regulation of oxidative damage and energy metabolism disorder. Sci Rep 2018; 8:14627. [PMID: 30279506 PMCID: PMC6168532 DOI: 10.1038/s41598-018-32115-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/02/2018] [Indexed: 12/27/2022] Open
Abstract
Zhenwu decoction (ZWD) is a promising traditional Chinese prescription against renal fibrosis, while its underlying mechanism remains unclear. Rat model of renal fibrosis were established and divided into control group, model group, ZWD treatment group and enalapril maleate treatment group. Metabolic profiles on serum samples from each group were acquired by using ultra performance liquid chromatography coupled with quadrupole time-of-flight high-resolution mass spectrometry. Metabolomics combined with molecular biology were comparatively conducted on samples of various groups. Fifteen potential biomarkers were identified and these biomarkers are mainly phospholipids and fatty acids. The results showed renal fibrosis was associated with oxidative damage and energy metabolism disorder. The results of histopathology, biochemistry and metabolomics demonstrated that ZWD exhibited an efficient renoprotective effect by alleviating oxidative stress, increasing energy metabolism and regulating fibrotic cytokines. This study provided scientific support for the research and development of new drugs from traditional Chinese medicine.
Collapse
Affiliation(s)
- Shasha Li
- Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, 510120, China
| | - Xue Xiao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ling Han
- Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, 510120, China.
| | - Yiming Wang
- Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, 510120, China.,Department of Chemistry, Tsinghua University, No. 30 Shuangqing Road in Haidian Distric, Beijing, 100084, China
| | - Guoan Luo
- Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, 510120, China. .,Department of Chemistry, Tsinghua University, No. 30 Shuangqing Road in Haidian Distric, Beijing, 100084, China.
| |
Collapse
|
50
|
Ma Y, Shi J, Wang F, Li S, Wang J, Zhu C, Li L, Lu H, Li C, Yan J, Zhang X, Jiang H. MiR-130b increases fibrosis of HMC cells by regulating the TGF-β1 pathway in diabetic nephropathy. J Cell Biochem 2018; 120:4044-4056. [PMID: 30260005 DOI: 10.1002/jcb.27688] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/27/2018] [Indexed: 12/30/2022]
Abstract
Basement membrane thickening, glomerular hypertrophy, and deposition of multiple extracellular matrix characterize the pathological basis of diabetic nephropathy (DN), a condition which ultimately leads to glomerular and renal interstitial fibrosis. Here, we identified a novel microRNA, miR-130b, and investigated its role and therapeutic efficacy in alleviating DN. Introduction of miR-130b dramatically increased cell growth and fibrosis in DN cells. We found that transforming growth factor (TGF)-β1 was a functional target of miR-130b in human glomerular mesangial cells (HMCs) and overexpression of miR-130b increased expressions of the downstream signaling molecules of TGF-β1, t-Smad2/3, p-Smad2/3, and SMAD4. An ectopic application of miR-130b increased messenger RNA and protein expressions of collagen type I (colI), colIV, and fibronectin, whose expression levels were correlated with the expression of miR-130b. Taken together, the findings of this study reveal that miR-130b in HMC cells plays an important role in fibrosis regulation and may thus be involved with the pathogenesis of DN. Therefore, miR-130b may serve as a novel therapeutic target for the prevention and the treatment of DN.
Collapse
Affiliation(s)
- Yujin Ma
- Department of Endocrinology, The First Affiliated Hospital and Clinical Medicine College of Henan University of Science and Technology, Luoyang, Henan, China.,Diabetic Nephropathy Academician Workstation of Henan Province, Luoyang, Henan, China
| | - Jingxia Shi
- Department of Human Anatomy and Histology, Medical College, Henan University of Science and Technology, Luoyang, China
| | - Feifei Wang
- Department of Geriatric Medicine, Jiaozuo People's Hospital, Xinxiang Medical University, Jiaozuo, China
| | - Shipeng Li
- Department of General Surgery, Jiaozuo People's Hospital, Xinxiang Medical University, Jiaozuo, China
| | - Jie Wang
- Department of Endocrinology, The First Affiliated Hospital and Clinical Medicine College of Henan University of Science and Technology, Luoyang, Henan, China.,Diabetic Nephropathy Academician Workstation of Henan Province, Luoyang, Henan, China
| | - Chaoxia Zhu
- Department of Endocrinology, The First Affiliated Hospital and Clinical Medicine College of Henan University of Science and Technology, Luoyang, Henan, China.,Diabetic Nephropathy Academician Workstation of Henan Province, Luoyang, Henan, China
| | - Liping Li
- Department of Endocrinology, The First Affiliated Hospital and Clinical Medicine College of Henan University of Science and Technology, Luoyang, Henan, China.,Diabetic Nephropathy Academician Workstation of Henan Province, Luoyang, Henan, China
| | - Haibo Lu
- Department of Endocrinology, The First Affiliated Hospital and Clinical Medicine College of Henan University of Science and Technology, Luoyang, Henan, China.,Diabetic Nephropathy Academician Workstation of Henan Province, Luoyang, Henan, China
| | - Chun Li
- Department of Endocrinology, The First Affiliated Hospital and Clinical Medicine College of Henan University of Science and Technology, Luoyang, Henan, China.,Diabetic Nephropathy Academician Workstation of Henan Province, Luoyang, Henan, China
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital and Clinical Medicine College of Henan University of Science and Technology, Luoyang, Henan, China
| | - Xin Zhang
- Department of Human Anatomy and Histology, Medical College, Henan University of Science and Technology, Luoyang, China
| | - Hongwei Jiang
- Department of Endocrinology, The First Affiliated Hospital and Clinical Medicine College of Henan University of Science and Technology, Luoyang, Henan, China.,Diabetic Nephropathy Academician Workstation of Henan Province, Luoyang, Henan, China
| |
Collapse
|