1
|
Alrasheed AS, Alqadhibi MA, Khoja RH, Alayyaf AS, Alhumoudi DS, Aldawlan MI, Alghanmi BO, Almutairi FS, Bin-Mahfooz MA, Altalhi LA, Aldanyowi SN, Aleid AM, Alessa AA. Emerging therapies for immunomodulation in traumatic brain injury: A systematic review and meta-analysis. Surg Neurol Int 2024; 15:327. [PMID: 39372991 PMCID: PMC11450791 DOI: 10.25259/sni_502_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/12/2024] [Indexed: 10/08/2024] Open
Abstract
Background Traumatic brain injury (TBI) represents a significant global health burden, often leading to significant morbidity and mortality. Mounting evidence underscores the intricate involvement of dysregulated immune responses in TBI pathophysiology, highlighting the potential for immunomodulatory interventions to mitigate secondary injury cascades and enhance patient outcomes. Despite advancements in treatment modalities, optimizing therapeutic strategies remains a critical challenge in TBI management. To address this gap, this systematic review and meta-analysis aimed to rigorously evaluate the efficacy and safety of emerging immunomodulatory therapies in the context of TBI. Methods We searched electronic databases such as PubMed, Scopus, Web of Science and CENTRAL for relevant studies investigating the efficacy of immunomodulatory therapies in TBI that were meticulously selected for inclusion. Two independent reviewers meticulously performed data extraction and quality assessment, adhering to predefined criteria. Both randomized controlled trials (RCTs) and observational studies reporting clinically relevant outcomes, such as mortality rates, the Glasgow coma scale, and adverse events, were meticulously scrutinized. Meta-analysis techniques were employed to assess treatment effects across studies quantitatively and analyzed using the Review Manager software (version 5.2). Results Fourteen studies (n = 1 observational and n = 13 RCTs) were included in our study. Meta-analysis showed no significant overall mortality difference, but erythropoietin (EPO) significantly reduced mortality (odds ratio = 0.49; 95% confidence interval: 0.31-0.78, P = 0.002). The adverse event meta-analysis revealed no significant differences. Conclusion Immunomodulatory therapies did not significantly affect overall mortality, but EPO demonstrated promising results. Adverse events did not significantly differ from controls. Further research is warranted to refine TBI treatment protocols.
Collapse
Affiliation(s)
| | | | - Rammaz Hussam Khoja
- Department of Surgery, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Abdulaziz Saad Alayyaf
- Department of Surgery, College of Medicine, Prince Sattam bin Abdulaziz University, Riyadh, Saudi Arabia
| | - Duaa Saleh Alhumoudi
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mubarak Ibrahim Aldawlan
- Department of Surgery, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | | | - Mohammed Ali Bin-Mahfooz
- Department of Surgery, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Lina Abdulrahim Altalhi
- Department of Surgery, College of Medicine and Medical Science, Arabian Gulf University, Manama, Bahrain
| | - Saud Nayef Aldanyowi
- Department of Surgery, College of Medicine, King Faisal University, AlAhsa, Saudi Arabia
| | | | | |
Collapse
|
2
|
Boskabadi SJ, Heydari F, Mohammadnejad F, Gholipour Baradari A, Moosazadeh M, Dashti A. Effect of erythropoietin on SOFA score, Glasgow Coma Scale and mortality in traumatic brain injury patients: a randomized-double-blind controlled trial. Ann Med Surg (Lond) 2024; 86:3990-3997. [PMID: 38989196 PMCID: PMC11230820 DOI: 10.1097/ms9.0000000000002143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/14/2024] [Indexed: 07/12/2024] Open
Abstract
Background Recent studies suggest that erythropoietin has an anti-inflammatory effect on the central nervous system. The authors aimed to investigate the effect of erythropoietin on Glasgow Coma Scale (GCS), Sequential Organ Failure Assessment (SOFA) scores, and the mortality rate of traumatic brain injury (TBI) patients. Methods Sixty-eight patients with available inclusion criteria were randomly allocated to the control or intervention groups. In the intervention group, erythropoietin (4000 units) was administrated on days 1, 3, and 5. In the control group, normal saline on the same days was used. The primary outcomes were the GCS and SOFA score changes during the intervention. The secondary outcomes were the ventilation period during the first 2 weeks and the 3-month mortality rate. Results Erythropoietin administration significantly affected SOFA score over time (P=0.008), but no significant effect on the GCS, and duration of ventilation between the two groups was observed. Finally, erythropoietin had no significant effect on the three-month mortality (23.5% vs. 38.2% in the erythropoietin and control group, respectively). However, the mortality rate in the intervention group was lower than in the control group. Conclusion Our finding showed that erythropoietin administration in TBI may improve SOFA score. Therefore, erythropoietin may have beneficial effects on early morbidity and clinical improvement in TBI patients.
Collapse
Affiliation(s)
| | - Fatemeh Heydari
- Department of Anesthesiology, School of Medicine, Sari Imam Khomeini Hospital
| | | | | | - Mahmood Moosazadeh
- Gastrointestinal Cancer Research Center, Non-communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ayat Dashti
- Pharmacology and Toxicology, Faculty of Pharmacy
| |
Collapse
|
3
|
Wang X, Li X, Ma L, Chen H, You C. Pharmacological components with neuroprotective effects in the management of traumatic brain injury: evidence from network meta-analysis. Neurol Sci 2023; 44:1665-1678. [PMID: 36642741 DOI: 10.1007/s10072-023-06600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/31/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Neuroprotective drugs have been used to prevent secondary brain injury in patients with traumatic brain injury; however, the optimal medication remains questionable. We performed a Bayesian network meta-analysis to evaluate the safety and efficacy of different medications with known neuroprotective properties in this group of patients. METHODS Several databases were searched to identify any eligible trials comparing pharmacological components with confirmed neuroprotective mechanisms. Bayesian network meta-analysis was performed to combine direct and indirect evidence. The surface under the cumulative ranking curve was obtained to determine the ranking probability of the treatment agents for each outcome. The primary outcome was all-cause mortality. RESULTS A total of 23 trials comprising 4,325 participants were identified. The pooled relative risk (RR) showed administration of erythropoietin (RR: 0.68; 95% CrI: 0.50-0.93) and propranolol (RR: 0.43; 95% CrI: 0.20-0.85) decreased all-cause mortality compared with placebo. We also found erythropoietin (RR: 1.55; 95% CrI: 1.03-2.35), propranolol (RR: 1.52; 95% CrI: 1.05-2.20), and progesterone (RR: 1.47; 95% CrI: 1.03-2.10) showed better efficacy in functional recovery. CONCLUSION Overall, erythropoietin and propranolol were associated with reduced mortality in adults with traumatic brain injury. These treatment agents were also associated with improved functional outcomes.
Collapse
Affiliation(s)
- Xing Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xiaolong Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hui Chen
- Department of Neurosurgery, Sichuan Friendship Hospital, Chengdu, Sichuan, People's Republic of China.
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
- West China Brain Research Centre, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Zheng Q, Duan D, Xu J, Wang X, Ge Y, Xiong L, Yang J, Wulayin S, Luo X. Comparative safety of multiple doses of erythropoietin for the treatment of traumatic brain injury: A systematic review and network meta-analysis. Front Neurol 2022; 13:998320. [PMID: 36582613 PMCID: PMC9793776 DOI: 10.3389/fneur.2022.998320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Over the past few decades, advances in traumatic brain injury (TBI) pathology research have dynamically enriched our knowledge. Therefore, we aimed to systematically elucidate the safety and efficacy of erythropoietin (EPO) dosing regimens in patients with TBI. Methods Data search included PubMed, the Cochrane Library, Embase, Web of Science, and ClinicalTrials.gov for related research published before July 2022. The network meta-analysis was conducted using ADDIS 1.16.8, and the CINeMA tool was used to assess the quality level of evidence. Results A total of six RCTs involving 981 patients were included in the network meta-analysis. EPO did not significantly reduce mortality in patients with TBI, but its risk of death decreased with increasing dosage (odds ratio (OR) of 12,000u vs. placebo = 0.98, 95% CI: 0.03-40.34; OR of group 30,000u vs. placebo = 0.56, 95% CI: 0.06-5.88; OR of 40,000u vs. placebo = 0.35, 95% CI: 0.01-9.43; OR of 70,000u vs. placebo = 0.29, 95% CI: 0.01-9.26; OR of group 80,000u vs. placebo = 0.22, 95% CI: 0.00-7.45). A total of three studies involving 739 patients showed that EPO did not increase the incidence of deep vein thrombosis in patients with TBI. However, the risk tended to rise as the dosage increased. Another two studies demonstrated that EPO did not increase the incidence of pulmonary embolism. The quality of evidence for all outcomes was low to moderate. Conclusion Although the efficacy of EPO was not statistically demonstrated, we found a trend toward an association between EPO dosage and reduced mortality and increased embolic events in patients with TBI. More high-quality original studies should be conducted to obtain strong evidence on the optimal dosage of EPO. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=272500. The study protocol was registered with PROSPERO (CRD42021272500).
Collapse
Affiliation(s)
- Qingyong Zheng
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China,Evidence-Based Nursing Center, School of Nursing, Lanzhou University, Lanzhou, Gansu, China,Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Dan Duan
- Evidence-Based Nursing Center, School of Nursing, Lanzhou University, Lanzhou, Gansu, China
| | - Jianguo Xu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Xing Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yonggui Ge
- Department of Rehabilitation, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lu Xiong
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jingjing Yang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Saimire Wulayin
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaofeng Luo
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China,*Correspondence: Xiaofeng Luo
| |
Collapse
|
5
|
Li M, Huo X, Wang Y, Li W, Xiao L, Jiang Z, Han Q, Su D, Chen T, Xia H. Effect of drug therapy on nerve repair of moderate-severe traumatic brain injury: A network meta-analysis. Front Pharmacol 2022; 13:1021653. [PMID: 36408253 PMCID: PMC9666493 DOI: 10.3389/fphar.2022.1021653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Objective: This network meta-analysis aimed to explore the effect of different drugs on mortality and neurological improvement in patients with traumatic brain injury (TBI), and to clarify which drug might be used as a more promising intervention for treating such patients by ranking. Methods: We conducted a comprehensive search from PubMed, Medline, Embase, and Cochrane Library databases from the establishment of the database to 31 January 2022. Data were extracted from the included studies, and the quality was assessed using the Cochrane risk-of-bias tool. The primary outcome measure was mortality in patients with TBI. The secondary outcome measures were the proportion of favorable outcomes and the occurrence of drug treatment–related side effects in patients with TBI in each drug treatment group. Statistical analyses were performed using Stata v16.0 and RevMan v5.3.0. Results: We included 30 randomized controlled trials that included 13 interventions (TXA, EPO, progesterone, progesterone + vitamin D, atorvastatin, beta-blocker therapy, Bradycor, Enoxaparin, Tracoprodi, dexanabinol, selenium, simvastatin, and placebo). The analysis revealed that these drugs significantly reduced mortality in patients with TBI and increased the proportion of patients with favorable outcomes after TBI compared with placebo. In terms of mortality after drug treatment, the order from the lowest to the highest was progesterone + vitamin D, beta-blocker therapy, EPO, simvastatin, Enoxaparin, Bradycor, Tracoprodi, selenium, atorvastatin, TXA, progesterone, dexanabinol, and placebo. In terms of the proportion of patients with favorable outcomes after drug treatment, the order from the highest to the lowest was as follows: Enoxaparin, progesterone + vitamin D, atorvastatin, simvastatin, Bradycor, EPO, beta-blocker therapy, progesterone, Tracoprodi, TXA, selenium, dexanabinol, and placebo. In addition, based on the classification of Glasgow Outcome Scale (GOS) scores after each drug treatment, this study also analyzed the three aspects of good recovery, moderate disability, and severe disability. It involved 10 interventions and revealed that compared with placebo treatment, a higher proportion of patients had a good recovery and moderate disability after treatment with progesterone + vitamin D, Bradycor, EPO, and progesterone. Meanwhile, the proportion of patients with a severe disability after treatment with progesterone + vitamin D and Bradycor was also low. Conclusion: The analysis of this study revealed that in patients with TBI, TXA, EPO, progesterone, progesterone + vitamin D, atorvastatin, beta-blocker therapy, Bradycor, Enoxaparin, Tracoprodi, dexanabinol, selenium, and simvastatin all reduced mortality and increased the proportion of patients with favorable outcomes in such patients compared with placebo. Among these, the progesterone + vitamin D had not only a higher proportion of patients with good recovery and moderate disability but also a lower proportion of patients with severe disability and mortality. However, whether this intervention can be used for clinical promotion still needs further exploration.
Collapse
Affiliation(s)
- Mei Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xianhao Huo
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, China
| | - Yangyang Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, China
| | - Wenchao Li
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, China
| | - Lifei Xiao
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, China
| | - Zhanfeng Jiang
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Qian Han
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Dongpo Su
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Tong Chen
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
- *Correspondence: Tong Chen, ; Hechun Xia,
| | - Hechun Xia
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
- *Correspondence: Tong Chen, ; Hechun Xia,
| |
Collapse
|
6
|
Current and Potential Pharmacologic Therapies for Traumatic Brain Injury. Pharmaceuticals (Basel) 2022; 15:ph15070838. [PMID: 35890136 PMCID: PMC9323622 DOI: 10.3390/ph15070838] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
The present article reviewed the pharmacologic therapies of traumatic brain injury (TBI), including current and potential treatments. Pharmacologic therapies are an essential part of TBI care, and several agents have well-established effects in TBI care. In the acute phase, tranexamic acid, antiepileptics, hyperosmolar agents, and anesthetics are the mainstay of pharmacotherapy, which have proven efficacies. In the post-acute phase, SSRIs, SNRIs, antipsychotics, zolpidem and amantadine, as well as other drugs, have been used to manage neuropsychological problems, while muscle relaxants and botulinum toxin have been used to manage spasticity. In addition, increasing numbers of pre-clinical and clinical studies of pharmaceutical agents, including potential neuroprotective nutrients and natural therapies, are being carried out. In the present article, we classify the treatments into established and potential agents based on the level of clinical evidence and standard of practice. It is expected that many of the potential medicines under investigation will eventually be accepted as standard practice in the care of TBI patients.
Collapse
|
7
|
Li Y, Zhang J, Wang H, Zhu L, Zhang H, Ma Q, Liu X, Dong L, Lu G. Does erythropoietin affect the outcome and complication rates of patient with traumatic brain injury? A pooled-analysis. Neurol Sci 2022; 43:3783-3793. [PMID: 35044560 DOI: 10.1007/s10072-022-05877-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/08/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this meta-analysis was to review the scientific literature published until April 18, 2021, to summarize existing knowledge on the efficacy and safety of erythropoietin (EPO) for traumatic brain injury (TBI). METHODS This systematic review followed PRISMA guidelines. Randomized controlled trials (RCTs) reporting on the efficacy and safety of EPO in the treatment of TBI were systematically searched in relevant electronic databases according to a pre-designed search strategy. The primary outcomes are the mortality; and secondary outcomes are the good functional outcome (GFO) and adverse events (AEs). RESULTS A total of 10 RCTs involving 2,402 participants fulfilled the inclusion criteria. The results showed that there is a significant difference in terms of the mortality (RR = 0.67, 95% CI = 0.54-0.84, P = 0.0003) and seizure rate (RR = 0.52, 95% CI = 0.29-0.96, P = 0.04) between the EPO groups compared to those in the control groups. However, compared with the control groups, the GFO in the EPO groups was not statistically significant (RR = 1.18, 95% CI = 0.93-1.48, P = 0.17). CONCLUSIONS Findings of the present meta-analysis suggest that the use of EPO could reduce mortality rate in patients with TBI, without increasing the incidence of AEs. EPO has potential research and application value in the treatment of TBI.
Collapse
Affiliation(s)
- Yuping Li
- Neuro Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China.,Department of Neurosurgery, Yangzhou Clinical Medical College of Xuzhou Medical University, Xuzhou, China
| | - Jun Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Haili Wang
- Department of Clinical Medicine, Dalian Medical University, Dalian Liaoning, China
| | - Lei Zhu
- Neuro Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hengzhu Zhang
- Department of Neurosurgery, Yangzhou Clinical Medical College of Xuzhou Medical University, Xuzhou, China
| | - Qiang Ma
- Neuro Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiaoguang Liu
- Neuro Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Lun Dong
- Neuro Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China.,Department of Neurosurgery, Yangzhou Clinical Medical College of Xuzhou Medical University, Xuzhou, China
| | - Guangyu Lu
- Institute of Public Health, Medical College, Yangzhou University, Yangzhou, China.
| |
Collapse
|
8
|
Singh A, Trivedi R, Ahmed N. Therapeutic Strategies in Traumatic Intracranial Hemorrhage and Outcomes. J Neurol Surg A Cent Eur Neurosurg 2022; 84:377-385. [PMID: 35158390 DOI: 10.1055/s-0041-1741530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Traumatic intracranial hemorrhage (TICH) and its progression have historically resulted in poor prognosis and functional disability. Such outcomes can impact the daily lives and financial condition of patients' families as well as add burden to the health care system. This review examines the diverse therapeutic intervention that were observed in randomized clinical trials (RCT) on various outcomes. Many demographic and clinical risk factors have been identified for poor prognosis after a TICH. Among the many therapeutic strategies studied, few found to have some beneficial effect in minimizing the progression of hemorrhage and reducing the overall mortality. METHODS A literature review was conducted of all relevant sources using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to include articles that were RCTs for patients aged 18 years and above to include a total of 19 articles. RESULTS Across studies, many therapies have been assessed; however, only few findings including infusion of tranexamic acid (TXA), use of β-blocker, and early operative evacuation of TICH yielded favorable results. Use of steroid and blood transfusion to target higher hemoglobin levels showed evidence of adversely impacting the outcome. CONCLUSION Of the many therapeutic strategies available for TICH, very few therapies have proven to be beneficial.
Collapse
Affiliation(s)
- Amanjung Singh
- Division of Trauma, Jersey Shore University Medical Center, Neptune, New Jersey, United States
| | - Radhika Trivedi
- Division of Trauma, Jersey Shore University Medical Center, Neptune, New Jersey, United States
| | - Nasim Ahmed
- Division of Trauma and Surgical Critical Care, Jersey Shore University Medical Center, Neptune, New Jersey, United States.,Hackensack Meridian School of Medicine, Nutley, New Jersey, United States
| |
Collapse
|
9
|
A Retrospective Analysis of Randomized Controlled Trials on Traumatic Brain Injury: Evaluation of CONSORT Item Adherence. Brain Sci 2021; 11:brainsci11111504. [PMID: 34827503 PMCID: PMC8615648 DOI: 10.3390/brainsci11111504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) contributes to death and disability, resulting in an enormous individual and socio-economic challenges. Despite huge efforts, there are still controversies on treatment strategies and early outcome estimation. We evaluate current randomized controlled trials (RCTs) on TBI according to their fulfillment of the CONSORT (Consolidated Statement of Reporting Trials) statement’s criteria as a marker of transparency and the quality of study planning and realization. A PubMed search for RCTs on TBI (January 2014–December 2019) was carried out. After screening of the abstracts (n = 1.926), the suitable full text manuscripts (n = 72) were assessed for the fulfillment of the CONSORT criteria. The mean ratio of consort statement fulfillment was 59% (±13%), 31% of the included studies (n = 22) complied with less than 50% of the CONSORT criteria. Citation frequency was moderately related to ratio of CONSORT item fulfillment (r = 0.4877; p < 0.0001) and citation frequency per year (r = 0.5249; p < 0.0001). The ratio of CONSORT criteria fulfillment was associated with the impact factor of the publishing journal (r = 0.6428; p < 0.0001). Essential data for study interpretation, such as sample size determination (item 7a), participant flow (item 13a) as well as losses and exclusions (item 13b), were only reported in 53%, 60% and 63%, respectively. Reporting and methodological aspects in RCTs on TBI still may be improved. Thus, the interpretation of study results may be hampered due to methodological weaknesses.
Collapse
|
10
|
Potential Efficacy of Erythropoietin on Reducing the Risk of Mortality in Patients with Traumatic Brain Injury: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7563868. [PMID: 33178833 PMCID: PMC7644316 DOI: 10.1155/2020/7563868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 01/28/2023]
Abstract
Objective The objective of this study is to assess the effectiveness of erythropoietin (EPO) on mortality, neurological outcomes, and adverse event in the treatment of traumatic brain injury (TBI). Methods We searched databases including PubMed, OVID, and the Cochrane Library from inception until October 18, 2019 for randomized controlled trials (RCTs) to compare EPO treatment group and placebo in patients with TBI. Two authors independently processed the data and evaluated the quality of inclusion studies. Statistical analysis was performed with heterogeneity test with I 2 and chi-square tests. We summarized the mortality, prognosis of neurological function, and deep vein thrombosis (DVT) outcomes and presented as risk ratio (RR) or risk difference (RD) with a 95% CI. Results Seven RCTs accounting for 1180 patients were included after meeting the inclusion criteria. Compared with placebo, the overall mortality of EPO-treated patients was significantly reduced (RR 0.68 [95% CI 0.50-0.93]; p = 0.02). EPO therapy did not improve neurological prognosis (RR 1.21 [95% CI 0.93-1.15]; p = 0.16) or increase the occurrence of DVT (RR 0.83 [95% CI 0.61-1.13]; p = 0.242), which showed no significant difference. Conclusions The results showed that the administration of EPO may reduce the risk of mortality without enhancing the occurrence of DVT in TBI patients. However, the effect of EPO on neurological outcome remains indistinct. Through subgroup analysis, we demonstrated that the dose of EPO may be a potential factor affecting the heterogeneity in neurological function and that the follow-up duration may influence the stability of the result.
Collapse
|
11
|
Liu M, Wang AJ, Chen Y, Zhao G, Jiang Z, Wang X, Shi D, Zhang T, Sun B, He H, Williams Z, Hu K. Efficacy and safety of erythropoietin for traumatic brain injury. BMC Neurol 2020; 20:399. [PMID: 33138778 PMCID: PMC7604969 DOI: 10.1186/s12883-020-01958-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 10/14/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Recent studies regarding the effects of erythropoietin (EPO) for treating traumatic brain injury (TBI) have been inconsistent. This study conducts a meta-analysis of randomized controlled trials (RCTs) to assess the safety and efficacy of EPO for TBI patients at various follow-up time points. METHODS A literature search was performed using PubMed, Web of Science, MEDLINE, Embase, Google Scholar and the Cochrane Library for RCTs studying EPO in TBI patients published through March 2019. Non-English manuscripts and non-human studies were excluded. The assessed outcomes include mortality, neurological recovery and associated adverse effects. Dichotomous variables are presented as risk ratios (RR) with a 95% confidence interval (CI). RESULTS A total of seven RCTs involving 1197 TBI patients (611 treated with EPO, 586 treated with placebo) were included in this study. Compared to the placebo arm, treatment with EPO did not improve acute hospital mortality or short-term mortality. However, there was a significant improvement in mid-term (6 months) follow-up survival rates. EPO administration was not associated with neurological function improvement. Regarding adverse effects, EPO treatment did not increase the incidence of thromboembolic events or other associated adverse events. CONCLUSIONS This meta-analysis indicates a slight mortality benefit for TBI patients treated with EPO at mid-term follow-up. EPO does not improve in-hospital mortality, nor does it increase adverse events including thrombotic, cardiovascular and other associated complications. Our analysis did not demonstrate a significant beneficial effect of EPO intervention on the recovery of neurological function. Future RCTs are required to further characterize the use of EPO in TBI.
Collapse
Affiliation(s)
- Motao Liu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Second Ruijin Street, Shanghai, 200025, China.,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Amy J Wang
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Yu Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Gexin Zhao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhifeng Jiang
- Department of Neurosurgery, Ji Zhong Energy Fengfeng Group General hospital, Handan City, 056200, China
| | - Xinbang Wang
- Department of Neurosurgery, The PLA Navy Anqing Hospital, Anqing City, 246000, China
| | - Dongliang Shi
- Department of Neurosurgery, No.904th Hospital of The People's Liberation Army Joint Logistics Support Force, Wuxi, 214000, China
| | - Tiansong Zhang
- Department of Traditional Chinese Medicine, Jing-an District Central Hospital, Shanghai, 200437, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Second Ruijin Street, Shanghai, 200025, China.,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hua He
- Department of Neurosurgery, Third Affiliated Hospital, Second Military Medical University, Shanghai, 200438, China.
| | - Ziv Williams
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.,MGH-HMS Center for Nervous System Repair, Harvard Medical School, Boston, MA, 02114, USA
| | - Kejia Hu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Second Ruijin Street, Shanghai, 200025, China. .,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA. .,MGH-HMS Center for Nervous System Repair, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
12
|
Drugs with anti-inflammatory effects to improve outcome of traumatic brain injury: a meta-analysis. Sci Rep 2020; 10:16179. [PMID: 32999392 PMCID: PMC7528105 DOI: 10.1038/s41598-020-73227-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/11/2020] [Indexed: 12/26/2022] Open
Abstract
Outcome after traumatic brain injury (TBI) varies largely and degree of immune activation is an important determinant factor. This meta-analysis evaluates the efficacy of drugs with anti-inflammatory properties in improving neurological and functional outcome. The systematic search following PRISMA guidelines resulted in 15 randomized placebo-controlled trials (3734 patients), evaluating progesterone, erythropoietin and cyclosporine. The meta-analysis (15 studies) showed that TBI patients receiving a drug with anti-inflammatory effects had a higher chance of a favorable outcome compared to those receiving placebo (RR = 1.15; 95% CI 1.01–1.32, p = 0.041). However, publication bias was indicated together with heterogeneity (I2 = 76.59%). Stratified analysis showed that positive effects were mainly observed in patients receiving this treatment within 8 h after injury. Subanalyses by drug type showed efficacy for progesterone (8 studies, RR 1.22; 95% CI 1.01–1.47, p = 0.040), again heterogeneity was high (I2 = 62.92%) and publication bias could not be ruled out. The positive effect of progesterone covaried with younger age and was mainly observed when administered intramuscularly and not intravenously. Erythropoietin (4 studies, RR 1.20; p = 0.110; I2 = 76.59%) and cyclosporine (3 studies, RR 0.75; p = 0.189, I2 = 0%) did not show favorable significant effects. While negative findings for erythropoietin may reflect insufficient power, cyclosporine did not show better outcome at all. Current results do not allow firm conclusions on the efficacy of drugs with anti-inflammatory properties in TBI patients. Included trials showed heterogeneity in methodological and sample parameters. At present, only progesterone showed positive results and early administration via intramuscular administration may be most effective, especially in young people. The anti-inflammatory component of progesterone is relatively weak and other mechanisms than mitigating overall immune response may be more important.
Collapse
|
13
|
Abstract
Therapeutic strategies for traumatic injuries in the central nervous system (CNS) are largely limited to the efficiency of drug delivery. Despite the disrupted blood-CNS barrier during the early phase after injury, the drug administration faces a variety of obstacles derived from homeostatic imbalance at the injury site. In the late phase after CNS injury, the restoration of the blood-CNS barrier integrity varies depending on the injury severity resulting in inconsistent delivery of therapeutics. This review intends to characterize those different challenges of the therapeutic delivery in acute and chronic phases after injury and discuss recent advances in various approaches to explore novel strategies for the treatment of traumatic CNS injury.
Collapse
|
14
|
Katiyar V, Chaturvedi A, Sharma R, Gurjar HK, Goda R, Singla R, Ganeshkumar A. Meta-Analysis with Trial Sequential Analysis on the Efficacy and Safety of Erythropoietin in Traumatic Brain Injury: A New Paradigm. World Neurosurg 2020; 142:465-475. [PMID: 32450313 DOI: 10.1016/j.wneu.2020.05.142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Erythropoietin (EPO) has been shown to be beneficial in traumatic brain injury (TBI). We have attempted to quantitatively synthesize the findings of current randomized controlled trials (RCTs) in this meta-analysis and analyzed the need for further trials using trial sequential analysis (TSA). METHODS A systematic search was performed in PubMed, the Cochrane Library databases, and Google Scholar for RCTs until December 2019 evaluating the role of EPO in patients with TBI. Seven RCTs were finally included in the quantitative analysis. TSA was done to evaluate the need for further studies. RESULTS The pooled estimate demonstrated that EPO significantly reduced mortality at 6 months (odds ratio [OR], 0.65; 95% confidence interval [CI], 0.43-0.97; P = 0.04) but not in hospital mortality (OR, 0.84; 95% CI, 0.31-2.32; P = 0.74). There was no significant difference in the rate of favorable outcomes with EPO (OR, 1.58; 95% CI, 0.84-2.99; P = 0.16). The rate of deep vein thrombosis (RD, -0.02; 95% CI, -0.06 to 0.02; P =0.41) was also not found to be significantly different in the 2 groups. TSA showed that the accrued information is insufficient to make any definitive conclusions. CONCLUSIONS EPO seems to be beneficial in terms of reducing 6-month mortality, however, its effect on in-hospital mortality, neurologic outcomes, and risk of deep vein thrombosis fails to reach statistical significance. TSA suggests a need for large trials to evaluate the role of EPO in patients with TBI in a more systematic way.
Collapse
Affiliation(s)
- Varidh Katiyar
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Aprajita Chaturvedi
- Department of Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Ravi Sharma
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Hitesh Kumar Gurjar
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India.
| | - Revanth Goda
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Raghav Singla
- Department of Neurosurgery, Post Graduate Institute for Medical Education and Research, Chandigarh, India
| | - Akshay Ganeshkumar
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
15
|
Safety and efficacy of erythropoiesis-stimulating agents in critically ill patients admitted to the intensive care unit: a systematic review and meta-analysis. Intensive Care Med 2019; 45:1190-1199. [DOI: 10.1007/s00134-019-05686-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022]
|
16
|
Wang H, Song GF, Nie J, Xu XH, Zhang Y, Liu JR. Electrical stimulation for limb spasticity in children with traumatic brain injury: Study protocol for a systematic review of randomized controlled trial. Medicine (Baltimore) 2019; 98:e14515. [PMID: 30813153 PMCID: PMC6408011 DOI: 10.1097/md.0000000000014515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Previous clinical studies have reported that electrical stimulation (ES) can be utilized to treat children with limbs spasticity (LS) after traumatic brain injury (TBI). Currently, no systematic review has addressed the effect of ES in children with LS following TBI. Thus, this systematic review will assess the effect and safety of ES for the children with LS after TBI. METHODS We will conduct the present systematic review of randomized controlled trials that will be retrieved from searches of PubMed, PsycINFO, WOS, Scopus, OpenGrey, Google Scholar, Cochrane Central Register of Controlled Trials, Embase, Cumulative Index to Nursing and Allied Health Literature, Allied and Complementary Medicine Database, and Chinese Biomedical Literature Database from the inception to the date of the literature searched. In addition, the clinical register websites, and reference lists of relevant studies will also be searched. Two independent reviewers will evaluate the eligibility criteria for all papers, extract the data and determine the methodology quality by using Cochrane risk of bias tool. RESULTS The results of this systematic review will pool the latest available data, and are expected to provide the summary of present evidence of ES for children with LS following TBI. TIMELINE This systematic review will start on January 10, 2019 and expected to complete by June 1, 2019. ETHICS AND DISSEMINATION No research ethic approval is needed in this study, because the data of this systematic review will not base on the individual data level. The results will be disseminated to publish at peer-reviewed journals or will present at relevant conferences. PROSPERO REGISTRATION NUMBER CRD42019120037.
Collapse
Affiliation(s)
- He Wang
- Department of Neurosurgery, First Affiliated Hospital of Jiamusi University
| | - Guang-fu Song
- Department of Neurosurgery, First Affiliated Hospital of Jiamusi University
| | - Jing Nie
- First Ward of Pediatrics Department, First Affiliated Hospital of Jiamusi University
| | - Xiao-hao Xu
- Third Ward of Neurology Department, Jiamusi Central Hospital, Jiamusi
| | - Ying Zhang
- Department of Neurology, Heilongjiang Electricity Hospital, Harbin, China
| | - Jin-rui Liu
- Department of Neurosurgery, First Affiliated Hospital of Jiamusi University
| |
Collapse
|
17
|
Choi S(C, Casias M, Tompkins D, Gonzalez J, Ray SD. Blood, blood components, plasma, and plasma products. SIDE EFFECTS OF DRUGS ANNUAL 2019; 41. [PMCID: PMC7148809 DOI: 10.1016/bs.seda.2019.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This review of 2018 publications identifies side effects of blood, blood components, and plasma products. In addition, albumin, blood transfusion (erythrocytes, granulocytes, and platelets), blood substitutes (hemoglobin-based oxygen carriers), plasma products (alpha1-antitrypsin, C1 esterase inhibitor concentrate, cryoprecipitate, and fresh frozen plasma), plasma substitutes (etherified starches, and gelatin), globulins (intravenous immunoglobulin, subcutaneous immunoglobulin, and anti-D immunoglobulin), coagulation proteins (factor I, factor II, factor VIIa, factor VIII, factor IX, prothrombin complex concentrate, antithrombin III, and von Willebrand factor/factor VIII concentrates), erythropoietin and derivatives, thrombopoietin and receptor agonists, transmission of infectious agents through blood donation, and stem cells are reviewed. This chapter informs the reader about newly recognized and published data in the blood product domain.
Collapse
Affiliation(s)
- Seohyun (Claudia) Choi
- Department of Pharmacy Practice and Administration, Rutgers, The State University of New Jersey, Piscataway, NJ, United States,Medical Intensive Care Unit, Saint Barnabas Medical Center, Livingston, NJ, United States,Corresponding author:
| | - Michael Casias
- Department of Pharmacy Practice and Administration, Rutgers, The State University of New Jersey, Piscataway, NJ, United States,Hunterdon Medical Center, Flemington, NJ, United States
| | - Danielle Tompkins
- Department of Pharmacy Practice and Administration, Rutgers, The State University of New Jersey, Piscataway, NJ, United States,Hackensack University Medical Center, Hackensack, NJ, United States
| | - Jimmy Gonzalez
- Department of Pharmacy Practice and Administration, Rutgers, The State University of New Jersey, Piscataway, NJ, United States,Jersey Shore University Medical Center, Neptune City, NJ, United States
| | - Sidhartha D. Ray
- Department of Pharmaceutical & Biomedical Sciences, Touro College of Pharmacy, New York, NY, United States
| |
Collapse
|
18
|
Sulhan S, Lyon KA, Shapiro LA, Huang JH. Neuroinflammation and blood-brain barrier disruption following traumatic brain injury: Pathophysiology and potential therapeutic targets. J Neurosci Res 2018; 98:19-28. [PMID: 30259550 DOI: 10.1002/jnr.24331] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/11/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022]
Abstract
Traumatic Brain Injury (TBI) is the most frequent cause of death and disability in young adults and children in the developed world, occurring in over 1.7 million persons and resulting in 50,000 deaths in the United States alone. The Centers for Disease Control and Prevention estimate that between 3.2 and 5.3 million persons in the United States live with a TBI-related disability, including several neurocognitive disorders and functional limitations. Following the primary mechanical injury in TBI, literature suggests the presence of a delayed secondary injury involving a variety of neuroinflammatory changes. In the hours to days following a TBI, several signaling molecules and metabolic derangements result in disruption of the blood-brain barrier, leading to an extravasation of immune cells and cerebral edema. The primary, sudden injury in TBI occurs as a direct result of impact and therefore cannot be treated, but the timeline and pathophysiology of the delayed, secondary injury allows for a window of possible therapeutic options. The goal of this review is to discuss the pathophysiology of the primary and delayed injury in TBI as well as present several preclinical studies that identify molecular targets in the potential treatment of TBI. Additionally, certain recent clinical trials are briefly discussed to demonstrate the current state of TBI investigation.
Collapse
Affiliation(s)
- Suraj Sulhan
- Department of Neurosurgery, Baylor Scott & White Health Neuroscience Institute, Temple, Texas.,College of Medicine, Texas A&M University, Temple, Texas
| | - Kristopher A Lyon
- Department of Neurosurgery, Baylor Scott & White Health Neuroscience Institute, Temple, Texas.,College of Medicine, Texas A&M University, Temple, Texas
| | - Lee A Shapiro
- College of Medicine, Texas A&M University, Temple, Texas
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health Neuroscience Institute, Temple, Texas.,College of Medicine, Texas A&M University, Temple, Texas
| |
Collapse
|