1
|
Wydrych A, Pakuła B, Janikiewicz J, Dobosz AM, Jakubek-Olszewska P, Skowrońska M, Kurkowska-Jastrzębska I, Cwyl M, Popielarz M, Pinton P, Zavan B, Dobrzyń A, Lebiedzińska-Arciszewska M, Więckowski MR. Metabolic impairments in neurodegeneration with brain iron accumulation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149517. [PMID: 39366438 DOI: 10.1016/j.bbabio.2024.149517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/12/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a broad, heterogeneous group of rare inherited diseases (1-3 patients/1,000,000 people) characterized by progressive symptoms associated with excessive abnormal iron deposition in the brain. Approximately 15,000-20,000 individuals worldwide are estimated to be affected by NBIA. NBIA is usually associated with slowly progressive pyramidal and extrapyramidal symptoms, axonal motor neuropathy, optic nerve atrophy, cognitive impairment and neuropsychiatric disorders. To date, eleven subtypes of NBIA have been described and the most common ones include pantothenate kinase-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), mitochondrial membrane protein-associated neurodegeneration (MPAN) and beta-propeller protein-associated neurodegeneration (BPAN). We present a comprehensive overview of the evidence for disturbed cellular homeostasis and metabolic alterations in NBIA variants, with a careful focus on mitochondrial bioenergetics and lipid metabolism which drives a new perspective in understanding the course of this infrequent malady.
Collapse
Affiliation(s)
- Agata Wydrych
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Barbara Pakuła
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Justyna Janikiewicz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | - Aneta M Dobosz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | - Patrycja Jakubek-Olszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta Skowrońska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Maciej Cwyl
- Warsaw University of Technology, Warsaw, Poland; NBIA Poland Association, Warsaw, Poland
| | | | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Agnieszka Dobrzyń
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | | | - Mariusz R Więckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
2
|
Cavestro C, Diodato D, Tiranti V, Di Meo I. Inherited Disorders of Coenzyme A Biosynthesis: Models, Mechanisms, and Treatments. Int J Mol Sci 2023; 24:ijms24065951. [PMID: 36983025 PMCID: PMC10054636 DOI: 10.3390/ijms24065951] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Coenzyme A (CoA) is a vital and ubiquitous cofactor required in a vast number of enzymatic reactions and cellular processes. To date, four rare human inborn errors of CoA biosynthesis have been described. These disorders have distinct symptoms, although all stem from variants in genes that encode enzymes involved in the same metabolic process. The first and last enzymes catalyzing the CoA biosynthetic pathway are associated with two neurological conditions, namely pantothenate kinase-associated neurodegeneration (PKAN) and COASY protein-associated neurodegeneration (CoPAN), which belong to the heterogeneous group of neurodegenerations with brain iron accumulation (NBIA), while the second and third enzymes are linked to a rapidly fatal dilated cardiomyopathy. There is still limited information about the pathogenesis of these diseases, and the knowledge gaps need to be resolved in order to develop potential therapeutic approaches. This review aims to provide a summary of CoA metabolism and functions, and a comprehensive overview of what is currently known about disorders associated with its biosynthesis, including available preclinical models, proposed pathomechanisms, and potential therapeutic approaches.
Collapse
Affiliation(s)
- Chiara Cavestro
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Daria Diodato
- Unit of Muscular and Neurodegenerative Disorders, Ospedale Pediatrico Bambino Gesù, 00165 Rome, Italy
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| |
Collapse
|
3
|
Dong S, Tuo Y, Qi Z, Zhang Y, Liu X, Huang P, Chen X. Case report: Novel compound heterozygous variants in the PANK2 gene in a Chinese patient diagnosed with ASD and ADHD. Front Neurol 2023; 14:1118076. [PMID: 37139068 PMCID: PMC10149840 DOI: 10.3389/fneur.2023.1118076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/20/2023] [Indexed: 05/05/2023] Open
Abstract
The PANK2 gene, which encodes mitochondrial pantothenate kinase 2 protein, is the disease-causing gene for pantothenate kinase-associated neurodegeneration (PKAN). We report a case of atypical PKAN with autism-like symptoms presenting with speech difficulties, psychiatric symptoms, and mild developmental retardation. Magnetic resonance imaging (MRI) of the brain showed the typical "eye-of-the-tiger" sign. Whole-exon sequencing revealed PANK2 p.Ile501Asn/p.Thr498Ser compound heterozygous variants. Our study highlights the phenotypic heterogeneity of PKAN, which can be confused with autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD) and requires careful clinical identification.
Collapse
Affiliation(s)
- Siqi Dong
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Ya Tuo
- Department of Biochemistry and Physiology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zihan Qi
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Yuanfeng Zhang
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoni Liu
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Ping Huang
- Department of Forensic Pathology, Academy of Forensic Science, Shanghai, China
- *Correspondence: Ping Huang
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
- Xiangjun Chen
| |
Collapse
|
4
|
Cerebral Iron Deposition in Neurodegeneration. Biomolecules 2022; 12:biom12050714. [PMID: 35625641 PMCID: PMC9138489 DOI: 10.3390/biom12050714] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Disruption of cerebral iron regulation appears to have a role in aging and in the pathogenesis of various neurodegenerative disorders. Possible unfavorable impacts of iron accumulation include reactive oxygen species generation, induction of ferroptosis, and acceleration of inflammatory changes. Whole-brain iron-sensitive magnetic resonance imaging (MRI) techniques allow the examination of macroscopic patterns of brain iron deposits in vivo, while modern analytical methods ex vivo enable the determination of metal-specific content inside individual cell-types, sometimes also within specific cellular compartments. The present review summarizes the whole brain, cellular, and subcellular patterns of iron accumulation in neurodegenerative diseases of genetic and sporadic origin. We also provide an update on mechanisms, biomarkers, and effects of brain iron accumulation in these disorders, focusing on recent publications. In Parkinson’s disease, Friedreich’s disease, and several disorders within the neurodegeneration with brain iron accumulation group, there is a focal siderosis, typically in regions with the most pronounced neuropathological changes. The second group of disorders including multiple sclerosis, Alzheimer’s disease, and amyotrophic lateral sclerosis shows iron accumulation in the globus pallidus, caudate, and putamen, and in specific cortical regions. Yet, other disorders such as aceruloplasminemia, neuroferritinopathy, or Wilson disease manifest with diffuse iron accumulation in the deep gray matter in a pattern comparable to or even more extensive than that observed during normal aging. On the microscopic level, brain iron deposits are present mostly in dystrophic microglia variably accompanied by iron-laden macrophages and in astrocytes, implicating a role of inflammatory changes and blood–brain barrier disturbance in iron accumulation. Options and potential benefits of iron reducing strategies in neurodegeneration are discussed. Future research investigating whether genetic predispositions play a role in brain Fe accumulation is necessary. If confirmed, the prevention of further brain Fe uptake in individuals at risk may be key for preventing neurodegenerative disorders.
Collapse
|
5
|
Coenzyme a Biochemistry: From Neurodevelopment to Neurodegeneration. Brain Sci 2021; 11:brainsci11081031. [PMID: 34439650 PMCID: PMC8392065 DOI: 10.3390/brainsci11081031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
Coenzyme A (CoA) is an essential cofactor in all living organisms. It is involved in a large number of biochemical processes functioning either as an activator of molecules with carbonyl groups or as a carrier of acyl moieties. Together with its thioester derivatives, it plays a central role in cell metabolism, post-translational modification, and gene expression. Furthermore, recent studies revealed a role for CoA in the redox regulation by the S-thiolation of cysteine residues in cellular proteins. The intracellular concentration and distribution in different cellular compartments of CoA and its derivatives are controlled by several extracellular stimuli such as nutrients, hormones, metabolites, and cellular stresses. Perturbations of the biosynthesis and homeostasis of CoA and/or acyl-CoA are connected with several pathological conditions, including cancer, myopathies, and cardiomyopathies. In the most recent years, defects in genes involved in CoA production and distribution have been found in patients affected by rare forms of neurodegenerative and neurodevelopmental disorders. In this review, we will summarize the most relevant aspects of CoA cellular metabolism, their role in the pathogenesis of selected neurodevelopmental and neurodegenerative disorders, and recent advancements in the search for therapeutic approaches for such diseases.
Collapse
|
6
|
Biswas A, Malhotra M, Mankad K, Carney O, D'Arco F, Muthusamy K, Sudhakar SV. Clinico-radiological phenotyping and diagnostic pathways in childhood neurometabolic disorders-a practical introductory guide. Transl Pediatr 2021; 10:1201-1230. [PMID: 34012862 PMCID: PMC8107844 DOI: 10.21037/tp-20-335] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inborn errors of metabolism (IEM) although individually rare, together constitute a significant proportion of childhood neurological disorders. Majority of these disorders occur due to deficiency of an enzyme in a specific metabolic pathway, leading to damage by accumulation of a toxic substrate or deficiency of an essential metabolite. Early diagnosis is crucial in many of these conditions to prevent or minimise brain damage. Whilst many of the neuroimaging features are nonspecific, certain disorders demonstrate specific patterns due to selective vulnerability of different structures to different insults. Along with clinical and biochemical profile, neuroimaging thus plays a pivotal role in differentiating metabolic disorders from other causes, in providing a differential diagnosis or suggesting a metabolic pathway derangement, and on occasion also helps make a specific diagnosis. This allows initiation of targeted metabolic and genetic work up and treatment. Familiarity with the clinical features, relevant biochemical features and neuroimaging findings of common metabolic disorders to facilitate a prompt diagnosis cannot thus be overemphasized. In this article, we describe the latest classification scheme, the clinical and biochemical clues and common radiological patterns. The diagnostic algorithm followed in daily practice after clinico-radiological phenotyping is alluded to and illustrated by clinical vignettes. Focused sections on neonatal metabolic disorders and mitochondrial disorders are also provided. The purpose of this article is to provide a brief overview and serve as a practical primer to clinical and radiological phenotypes and diagnostic aspects of IEM.
Collapse
Affiliation(s)
- Asthik Biswas
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Mukul Malhotra
- Department of Neurology, Christian Medical College, Vellore, India
| | - Kshitij Mankad
- Neuroradiology Unit, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Olivia Carney
- Neuroradiology Unit, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Felice D'Arco
- Neuroradiology Unit, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | | | - Sniya Valsa Sudhakar
- Neuroradiology Unit, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
7
|
Exploring Yeast as a Study Model of Pantothenate Kinase-Associated Neurodegeneration and for the Identification of Therapeutic Compounds. Int J Mol Sci 2020; 22:ijms22010293. [PMID: 33396642 PMCID: PMC7795310 DOI: 10.3390/ijms22010293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Mutations in the pantothenate kinase 2 gene (PANK2) are the cause of pantothenate kinase-associated neurodegeneration (PKAN), the most common form of neurodegeneration with brain iron accumulation. Although different disease models have been created to investigate the pathogenic mechanism of PKAN, the cascade of molecular events resulting from CoA synthesis impairment is not completely understood. Moreover, for PKAN disease, only symptomatic treatments are available. Despite the lack of a neural system, Saccharomyces cerevisiae has been successfully used to decipher molecular mechanisms of many human disorders including neurodegenerative diseases as well as iron-related disorders. To gain insights into the molecular basis of PKAN, a yeast model of this disease was developed: a yeast strain with the unique gene encoding pantothenate kinase CAB1 deleted, and expressing a pathological variant of this enzyme. A detailed functional characterization demonstrated that this model recapitulates the main phenotypes associated with human disease: mitochondrial dysfunction, altered lipid metabolism, iron overload, and oxidative damage suggesting that the yeast model could represent a tool to provide information on pathophysiology of PKAN. Taking advantage of the impaired oxidative growth of this mutant strain, a screening for molecules able to rescue this phenotype was performed. Two molecules in particular were able to restore the multiple defects associated with PKAN deficiency and the rescue was not allele-specific. Furthermore, the construction and characterization of a set of mutant alleles, allowing a quick evaluation of the biochemical consequences of pantothenate kinase (PANK) protein variants could be a tool to predict genotype/phenotype correlation.
Collapse
|
8
|
Pan S, Zhu C. Atypical pantothenate kinase-associated neurodegeneration with PANK2 mutations : clinical description and a review of the literature. Neurocase 2020; 26:175-182. [PMID: 32310012 DOI: 10.1080/13554794.2020.1752739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Panthothenate kinase-associated neurodegeneration (PKAN) is arare neurodegeneration caused by mutations in the pantothenate kinase (PANK2) gene, which is located on chromosome 20p13. These mutations result in iron accumulation in the brain basal ganglia leading to parkinsonism, dysarthria, spasticity, cognitive impairment, and retinopathy. Herein, we report acase of adult-onset PKAN who presented with young-onset action tremor, bradykinesia, dysarthria, and bilateral interossei atrophy. Neuroimaging demonstrated "eye-of-the-tiger signs". Through analyzing PANK2 gene, PANK2 NM_153638:c.1133A>G (p.Asp378 Gly) and PANK2 NM_153638:c.1502 T > A (p.lle501Asn), were detected. In addition, we reviewed the clinical and genetic features and therapeutic strategies for patients with PKAN.
Collapse
Affiliation(s)
- Si Pan
- Department of Neurology Intervention, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou University , Zhengzhou, Henan, China
| | - Chenkai Zhu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University , Zhengzhou, Henan, China
| |
Collapse
|
9
|
Harmful Iron-Calcium Relationship in Pantothenate kinase Associated Neurodegeneration. Int J Mol Sci 2020; 21:ijms21103664. [PMID: 32456086 PMCID: PMC7279353 DOI: 10.3390/ijms21103664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/22/2022] Open
Abstract
Pantothenate Kinase-associated Neurodegeneration (PKAN) belongs to a wide spectrum of diseases characterized by brain iron accumulation and extrapyramidal motor signs. PKAN is caused by mutations in PANK2, encoding the mitochondrial pantothenate kinase 2, which is the first enzyme of the biosynthesis of Coenzyme A. We established and characterized glutamatergic neurons starting from previously developed PKAN Induced Pluripotent Stem Cells (iPSCs). Results obtained by inductively coupled plasma mass spectrometry indicated a higher amount of total cellular iron in PKAN glutamatergic neurons with respect to controls. PKAN glutamatergic neurons, analyzed by electron microscopy, exhibited electron dense aggregates in mitochondria that were identified as granules containing calcium phosphate. Calcium homeostasis resulted compromised in neurons, as verified by monitoring the activity of calcium-dependent enzyme calpain1, calcium imaging and voltage dependent calcium currents. Notably, the presence of calcification in the internal globus pallidus was confirmed in seven out of 15 genetically defined PKAN patients for whom brain CT scan was available. Moreover, we observed a higher prevalence of brain calcification in females. Our data prove that high amount of iron coexists with an impairment of cytosolic calcium in PKAN glutamatergic neurons, indicating both, iron and calcium dys-homeostasis, as actors in pathogenesis of the disease.
Collapse
|
10
|
Auffray-Calvier E, Lintia-Gaultier A, Bourcier R, Aguilar Garcia J. [Basal ganglia calcification]. Rev Med Interne 2020; 41:404-412. [PMID: 32165049 DOI: 10.1016/j.revmed.2020.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
Abstract
Calcifications of the basal ganglia are frequently seen on the cerebral CT scans and particularly in the globus pallidus. Their frequency increases physiologically with age after 50 years old. However, pathological processes can also be associated with calcium deposits in the gray nuclei, posterior fossa or white matter. Unilateral calcification is often related to an acquired origin whereas bilateral ones are mostly linked to an acquired or genetic origin that will be sought after eliminating a perturbation of phosphocalcic metabolism. In pathological contexts, these calcifications may be accompanied by neurological symptoms related to the underlying disease: Parkinson's syndrome, psychiatric and cognitive disorders, epilepsy or headache. The purpose of this article is to provide a diagnostic aid, in addition to clinical and biology, through the analysis of calcification topography and the study of different MRI sequences.
Collapse
Affiliation(s)
- E Auffray-Calvier
- Service de neuroradiologie, hôpital René-et-Guillaume-Laënnec, boulevard Jacques-Monod, 44093 Saint-Herblain cedex 1, France.
| | - A Lintia-Gaultier
- Service de neuroradiologie, hôpital René-et-Guillaume-Laënnec, boulevard Jacques-Monod, 44093 Saint-Herblain cedex 1, France
| | - R Bourcier
- Service de neuroradiologie, hôpital René-et-Guillaume-Laënnec, boulevard Jacques-Monod, 44093 Saint-Herblain cedex 1, France
| | - J Aguilar Garcia
- Service de neuroradiologie, hôpital René-et-Guillaume-Laënnec, boulevard Jacques-Monod, 44093 Saint-Herblain cedex 1, France
| |
Collapse
|
11
|
Zhang Y, Zhou D, Yang T. Novel PANK2 mutation in a Chinese boy with PANK2-associated neurodegeneration: A case report and review of Chinese cases. Medicine (Baltimore) 2019; 98:e14122. [PMID: 30681573 PMCID: PMC6358370 DOI: 10.1097/md.0000000000014122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RATIONALE Pantothenate kinase-associated neurodegeneration (PKAN), also called Hallervorden-Spatz Syndrome (HSS), is a rare neurodegeneration with brain iron accumulation from pantothenate kinase 2 gene (PANK2) mutation characterized as extrapyramidal symptoms. However, few studies involving PKAN patients were reported in China. This study was conducted to identify the genetic mutations in a Chinese boy with PKAN, and to review all PANK2 mutations reported in Chinese cases with PKAN. PATIENT CONCERN We reported a 23-year-old Chinese boy with PKAN, exhibiting difficulty in writing and manipulation using right hand with slow progression for 12 years. He spoke with a severe stutter when he was 15 years old. DIAGNOSIS Considering results of magnetic resonance images, brain computed tomography and medical history, the case was suspected to be related to genetic factors. INTERVENTIONS Whole exome sequencing was arranged, and the mutations were identified in his parents' genome. OUTCOMES In the present study, whole exome sequencing revealed 2 novel mutations (c.1696C > G in exon 7 and c.1160_c.1161insG in exon3) of the PANK2 gene in the proband. c.1696C > G and c.1160_c.1161insG, respectively, were confirmed in his father and mother. We also reviewed 14 different PANK2 mutations, most of which were missense type in Chinese cases. Those mutations did not show apparent hotspots, but exon 3 and 4 were frequently involved. LESSONS Two novel compound heterozygous mutations were identified and considered to be pathogenic in PKAN patients. This review of the reports indicated that atypical PKAN is the more common phenotype in China and no apparent genotype-phenotype correlation was found.
Collapse
|