1
|
García R, Alkayyali T, Gomez LM, Wright C, Chen W, Oliver D, Koduru P. Recurrent cytogenetic abnormalities reveal alterations that promote progression and transformation in myelodysplastic syndrome. Cancer Genet 2024; 288-289:92-105. [PMID: 39499993 DOI: 10.1016/j.cancergen.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 07/05/2024] [Accepted: 10/14/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVE To illustrate patterns of cytogenetic abnormalities that promote progression and/or transformation in myelodysplastic syndrome. METHODS In this study we evaluated three different data sets to identify recurrent cytogenetic abnormalities (RCAs) to delineate the cytogenetic evolutionary trajectories and their clinical significance. RESULTS Datasets 1 and 2 were 2402 cross sectional samples from Mitelman database of Chromosome Aberrations and Gene Fusions in Cancer; these were used to discover RCAs and to validate them. Dataset 3 was a cohort of 163 institutional patients with serial samples from 35 % of them. This was used to further validate RCAs identified in the cross-sectional data, and their clinical impact. We identified MDS subtype associated RCAs, and some exclusive RCAs (Xp-, 2q-, 17q-, 21q-) that led to disease progression or transformation to leukemia. Evolutionary pathway analysis had shown temporal acquisition of RCAs. Therefore, presence of two or more RCAs suggests cooperative or complementary role in disease progression or transformation. Patients with one or more of these RCAs had poor prognosis and high risk for transformation. Genes frequently altered in MDS are mapped to some of the RCAs and suggest a close correlation between RCAs and molecular alterations in MDS. Karyotypic complexity, clonal evolution, loss of 17p had poor clinical outcomes. CONCLUSION This study identified a unique combination of RCAs that are components in distinct cytogenetic trajectories. Some of these were primary changes while others were secondary or tertiary changes. Acquiring specific additional aberrations predicts progression or transformation to leukemia.
Collapse
Affiliation(s)
- Rolando García
- Department of Pathology, UT Southwestern Medical Center, Dallas TX, United States.
| | - Tasnim Alkayyali
- Department of Pathology, UT Southwestern Medical Center, Dallas TX, United States
| | - Luis Mosquera Gomez
- Department of Pathology, UT Southwestern Medical Center, Dallas TX, United States
| | - Carter Wright
- Department of Pathology, UT Southwestern Medical Center, Dallas TX, United States
| | - Weina Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas TX, United States
| | - Dwight Oliver
- Department of Pathology, UT Southwestern Medical Center, Dallas TX, United States
| | - Prasad Koduru
- Department of Pathology, UT Southwestern Medical Center, Dallas TX, United States
| |
Collapse
|
2
|
Temaj G, Chichiarelli S, Saha S, Telkoparan-Akillilar P, Nuhii N, Hadziselimovic R, Saso L. Alternative Splicing: A Potential Therapeutic Target in Hematological Malignancies. Hematol Rep 2024; 16:682-697. [PMID: 39584923 PMCID: PMC11587037 DOI: 10.3390/hematolrep16040066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/07/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Leukemia represents the most prevalent malignancy in children, constituting 30% of childhood cancer cases, with acute lymphoblastic leukemia (ALL) being particularly heterogeneous. This paper explores the role of alternative splicing in leukemia, highlighting its significance in cancer development and progression. Aberrant splicing is often driven by mutations in splicing-factor genes, which can lead to the production of variant proteins that contribute to oncogenesis. The spliceosome, a complex of small nuclear RNAs and proteins, facilitates RNA splicing, a process critical for generating diverse mRNA and protein products from single genes. Mutations in splicing factors, such as U2AF1, SF3B1, SRSF2, ZRSR2, and HNRNPH1, are frequently observed across various hematological malignancies and are associated with poor prognosis and treatment resistance. This research underscores the necessity of understanding the mechanisms of RNA splicing dysregulation in order to develop targeted therapies to correct these aberrant processes, thereby improving outcomes for patients with leukemia and related disorders.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000 Prishtina, Kosovo;
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 00185, Uttar Pradesh, India
| | | | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200 Tetovo, North Macedonia;
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
3
|
Zavras PD, Sinanidis I, Tsakiroglou P, Karantanos T. Understanding the Continuum between High-Risk Myelodysplastic Syndrome and Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:5018. [PMID: 36902450 PMCID: PMC10002503 DOI: 10.3390/ijms24055018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Myelodysplastic syndrome (MDS) is a clonal hematopoietic neoplasm characterized by bone marrow dysplasia, failure of hematopoiesis and variable risk of progression to acute myeloid leukemia (AML). Recent large-scale studies have demonstrated that distinct molecular abnormalities detected at earlier stages of MDS alter disease biology and predict progression to AML. Consistently, various studies analyzing these diseases at the single-cell level have identified specific patterns of progression strongly associated with genomic alterations. These pre-clinical results have solidified the conclusion that high-risk MDS and AML arising from MDS or AML with MDS-related changes (AML-MRC) represent a continuum of the same disease. AML-MRC is distinguished from de novo AML by the presence of certain chromosomal abnormalities, such as deletion of 5q, 7/7q, 20q and complex karyotype and somatic mutations, which are also present in MDS and carry crucial prognostic implications. Recent changes in the classification and prognostication of MDS and AML by the International Consensus Classification (ICC) and the World Health Organization (WHO) reflect these advances. Finally, a better understanding of the biology of high-risk MDS and the mechanisms of disease progression have led to the introduction of novel therapeutic approaches, such as the addition of venetoclax to hypomethylating agents and, more recently, triplet therapies and agents targeting specific mutations, including FLT3 and IDH1/2. In this review, we analyze the pre-clinical data supporting that high-risk MDS and AML-MRC share the same genetic abnormalities and represent a continuum, describe the recent changes in the classification of these neoplasms and summarize the advances in the management of patients with these neoplasms.
Collapse
Affiliation(s)
| | | | | | - Theodoros Karantanos
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| |
Collapse
|
4
|
Abstract
Dysregulated RNA splicing is a molecular feature that characterizes almost all tumour types. Cancer-associated splicing alterations arise from both recurrent mutations and altered expression of trans-acting factors governing splicing catalysis and regulation. Cancer-associated splicing dysregulation can promote tumorigenesis via diverse mechanisms, contributing to increased cell proliferation, decreased apoptosis, enhanced migration and metastatic potential, resistance to chemotherapy and evasion of immune surveillance. Recent studies have identified specific cancer-associated isoforms that play critical roles in cancer cell transformation and growth and demonstrated the therapeutic benefits of correcting or otherwise antagonizing such cancer-associated mRNA isoforms. Clinical-grade small molecules that modulate or inhibit RNA splicing have similarly been developed as promising anticancer therapeutics. Here, we review splicing alterations characteristic of cancer cell transcriptomes, dysregulated splicing's contributions to tumour initiation and progression, and existing and emerging approaches for targeting splicing for cancer therapy. Finally, we discuss the outstanding questions and challenges that must be addressed to translate these findings into the clinic.
Collapse
Affiliation(s)
- Robert K Bradley
- Computational Biology Program, Public Health Sciences Division and Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
5
|
Komrokji R, Aguirre LE, Al Ali N, Hussaini M, Sallman D, Rollison D, Padron E. U2AF1 and EZH2 mutations are associated with nonimmune hemolytic anemia in myelodysplastic syndromes. Blood Adv 2023; 7:1-8. [PMID: 36129843 DOI: 10.1182/bloodadvances.2022007504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/10/2022] [Accepted: 09/05/2022] [Indexed: 01/18/2023] Open
Abstract
Hemolysis is a well-recognized but poorly characterized phenomenon in a subset of patients with myelodysplastic syndromes (MDS). Its pathobiological basis seems to underpin a nonimmune etiology whose clinical significance has not been adequately characterized. Hemolysis in MDS is often attributed to either ineffective intramedullary erythropoiesis or acquired hemoglobinopathies and red blood cell (RBC) membrane defects. These heterogeneous processes have not been associated with specific genetic subsets of the disease. We aimed to describe the prevalence of hemolysis among patients with MDS, their baseline characteristics, molecular features, and resulting impact on outcomes. We considered baseline serum haptoglobin <10 mg/dL a surrogate marker for intravascular hemolysis. Among 519 patients, 10% had hemolysis. The baseline characteristics were similar among both groups. Only 13% of patients with hemolysis were Coombs-positive, suggesting that hemolysis in MDS is largely not immune-mediated. Inferior survival trends were observed among lower-risk patients with MDS undergoing hemolysis. Decreased response rates to erythropoiesis-stimulating agents (ESA) and higher responses to hypomethylating agents (HMA) were also observed in the hemolysis group. U2AF1 and EZH2 hotspot mutations were more prevalent among those undergoing hemolysis (P < .05). U2AF1 mutations were observed in 30% of patients with hemolysis and occurred almost exclusively at the S34 hotspot. Somatic mutations encoding splicing factors may affect erythrocyte membrane components, biochemical properties, and RBC metabolic function, which underpin the development of atypical clones from erythroid precursors in MDS presenting with hemolysis. Future studies will explore the contribution of altered splicing to the development of acquired hemoglobinopathies.
Collapse
Affiliation(s)
| | | | | | | | | | - Dana Rollison
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | |
Collapse
|
6
|
Wang BA, Mehta HM, Penumutchu SR, Tolbert BS, Cheng C, Kimmel M, Haferlach T, Maciejewski JP, Corey SJ. Alternatively spliced CSF3R isoforms in SRSF2 P95H mutated myeloid neoplasms. Leukemia 2022; 36:2499-2508. [PMID: 35941213 DOI: 10.1038/s41375-022-01672-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022]
Abstract
Alternatively spliced colony stimulating factor 3 receptor (CSF3R) isoforms Class III and Class IV are observed in myelodysplastic syndromes (MDS), but their roles in disease remain unclear. We report that the MDS-associated splicing factor SRSF2 affects the expression of Class III and Class IV isoforms and perturbs granulopoiesis. Add-back of the Class IV isoform in Csf3r-null mouse progenitor cells increased granulocyte progenitors with impaired neutrophil differentiation, while add-back of the Class III produced dysmorphic neutrophils in fewer numbers. These CSF3R isoforms were elevated in patients with myeloid neoplasms harboring SRSF2 mutations. Using in vitro splicing assays, we confirmed increased Class III and Class IV transcripts when SRSF2 P95 mutations were co-expressed with the CSF3R minigene in K562 cells. Since SRSF2 regulates splicing partly by recognizing exonic splicing enhancer (ESE) sequences on pre-mRNA, deletion of either ESE motifs within CSF3R exon 17 decreased Class IV transcript levels without affecting Class III. CD34+ cells expressing SRSF2 P95H showed impaired neutrophil differentiation in response to G-CSF and was accompanied by increased levels of Class IV. Our findings suggest that SRSF2 P95H promotes Class IV splicing by binding to key ESE sequences in CSF3R exon 17, and that SRSF2, when mutated, contributes to dysgranulopoiesis.
Collapse
Affiliation(s)
- Borwyn A Wang
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Hrishikesh M Mehta
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | | | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Chonghui Cheng
- Department of Molecular and Human Genetics and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Marek Kimmel
- Departments of Statistics and Bioengineering, Rice University, Houston, TX, USA.,Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | | | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Seth J Corey
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
7
|
Hellesøy M, Engen C, Grob T, Löwenberg B, Valk PJM, Gjertsen BT. Sex disparity in acute myeloid leukaemia with FLT3 internal tandem duplication mutations: implications for prognosis. Mol Oncol 2021; 15:2285-2299. [PMID: 34101344 PMCID: PMC8410575 DOI: 10.1002/1878-0261.13035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/22/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Incidence, molecular presentation and outcome of acute myeloid leukaemia (AML) are influenced by sex, but little attention has been directed at untangling sex‐related molecular and phenotypic differences between female and male patients. While increased incidence and poor risk are generally associated with a male phenotype, the poor prognostic FLT3 internal tandem duplication (FLT3‐ITD) mutation and co‐mutations with NPM1 and DNMT3A are overrepresented in female AML. Here, we have investigated the relationship between sex and FLT3‐ITD mutation status by comparing clinical data, mutational profiles, gene expression and ex vivo drug sensitivity in four cohorts: Beat AML, LAML‐TCGA and two independent HOVON/SAKK cohorts, comprising 1755 AML patients in total. We found prevalent sex‐associated molecular differences. Co‐occurrence of FLT3‐ITD, NPM1 and DNMT3A mutations was overrepresented in females, while males with FLT3‐ITDs were characterized by additional mutations in RNA splicing and epigenetic modifier genes. We observed diverging expression of multiple leukaemia‐associated genes as well as discrepant ex vivo drug responses, suggestive of discrete functional properties. Importantly, significant prognostication was observed only in female FLT3‐ITD‐mutated AML. Thus, we suggest optimization of FLT3‐ITD mutation status as a clinical tool in a sex‐adjusted manner and hypothesize that prognostication, prediction and development of therapeutic strategies in AML could be improved by including sex‐specific considerations.
Collapse
Affiliation(s)
- Monica Hellesøy
- Haematology Section, Department of Medicine, Haukeland University Hospital, Helse Bergen HF, Norway
| | - Caroline Engen
- Department of Clinical Science, Center for Cancer Biomarkers CCBIO, University of Bergen, Norway
| | - Tim Grob
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bob Löwenberg
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bjørn T Gjertsen
- Haematology Section, Department of Medicine, Haukeland University Hospital, Helse Bergen HF, Norway.,Department of Clinical Science, Center for Cancer Biomarkers CCBIO, University of Bergen, Norway
| |
Collapse
|
8
|
Diamantopoulos PT, Viniou NA. Factors affecting response to 5-azacytidine and prognosis of myelodysplastic syndrome. Is long-term survival a realistic goal? Leuk Res 2021; 103:106543. [PMID: 33640709 DOI: 10.1016/j.leukres.2021.106543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022]
Abstract
The introduction of hypomethylating agents (HMAs) 5-azacytidine and decitabine has altered the prognosis of patients with myelodysplastic syndrome (MDS). Over the past few years, the International Prognostic Scoring System (IPSS) and the revised IPSS (IPSS-R) have been used both to define the prognosis of patients with MDS and to select patients to be treated with HMAs. Nevertheless, the prognosis of individual patients with MDS can differ considerably from the one calculated with the use of the above-mentioned prognostic systems. Thus, some patients may achieve long-term survival irrespective of their initial prognostic score. Several factors besides those used to define the IPSS/IPSS-R are analyzed in this review article; these include age and gender, the baseline hematologic characteristics, the comorbidities, the cytogenetic and molecular profile of the patients, as well as their response to treatment with 5-azacytidine. Thus, insight into a more personalized way of managing patients with MDS is given and long-term survival is set as a more realistic goal of treatment with 5-azacytidine.
Collapse
Affiliation(s)
- Panagiotis T Diamantopoulos
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Nora-Athina Viniou
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Wan C, Wen J, Huang Y, Li H, Wu W, Xie Q, Liang X, Tang Z, Zhao W, Cheng P, Liu Z. Microarray analysis of differentially expressed microRNAs in myelodysplastic syndromes. Medicine (Baltimore) 2020; 99:e20904. [PMID: 32629683 PMCID: PMC7337584 DOI: 10.1097/md.0000000000020904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Our study aimed to analyze differential microRNA expression between myelodysplastic syndromes (MDS) and normal bone marrow, and to identify novel microRNAs relevant to MDS pathogenesis. METHODS MiRNA microarray analysis was used to profile microRNA expression levels in MDS and normal bone marrow. Quantitative real-time polymerase chain reaction was employed to verify differentially expressed microRNAs. RESULTS MiRNA microarray analysis showed 96 significantly upregulated (eg, miR-146a-5p, miR-151a-3p, miR-125b-5p) and 198 significantly downregulated (eg, miR-181a-2-3p, miR-124-3p, miR-550a-3p) microRNAs in MDS compared with normal bone marrow. The quantitative real-time polymerase chain reaction confirmed the microarray analysis: expression of six microRNAs (miR-155-5p, miR-146a-5p, miR-151a-3p, miR-221-3p, miR-125b-5p, and miR-10a-5p) was significantly higher in MDS, while 3 microRNAs (miR-181a-2-3p, miR-124-3p, and miR-550a-3p) were significantly downregulated in MDS. Bioinformatics analysis demonstrated that differentially expressed microRNAs might participate in MDS pathogenesis by regulating hematopoiesis, leukocyte migration, leukocyte apoptotic process, and hematopoietic cell lineage. CONCLUSIONS Our study indicates that differentially expressed microRNAs might play a key role in MDS pathogenesis by regulating potential relevant functional and signaling pathways. Targeting these microRNAs may provide new treatment modalities for MDS.
Collapse
Affiliation(s)
- Chengyao Wan
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Jing Wen
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Ying Huang
- Department of Hematology, Hainan General Hospital, Haikou, Hainan
| | - Hongying Li
- Department of Hematology, The First People's Hospital of Nanning, Nanning, Guangxi, China
| | - Wenqi Wu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Qiongni Xie
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Xiaolin Liang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Zhongyuan Tang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Weihua Zhao
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Peng Cheng
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Zhenfang Liu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| |
Collapse
|